File size: 5,673 Bytes
3cb4732
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import json
from pathlib import Path
import gradio as gr

from collections import defaultdict
import fsspec.config
import math
from datatrove.io import DataFolder, get_datafolder
from datatrove.utils.stats import MetricStatsDict

BASE_DATA_FOLDER = get_datafolder("s3://fineweb-stats/summary/")


def find_folders(base_folder, path):
    return sorted(
        [
            folder["name"]
            for folder in base_folder.ls(path, detail=True)
            if folder["type"] == "directory" and not folder["name"].rstrip("/") == path
        ]
    )


def find_stats_folders(base_folder: DataFolder):
    # First find all stats-merged.json using globing for stats-merged.json
    stats_merged = base_folder.glob("**/stats-merged.json")

    # Then for each of stats.merged take the all but last two parts of the path (grouping/stat_name)
    stats_folders = [str(Path(x).parent.parent.parent) for x in stats_merged]
    # Finally get the unique paths
    return list(set(stats_folders))


RUNS = sorted(find_stats_folders(BASE_DATA_FOLDER))
print(RUNS)
GROUPS = [Path(x).name for x in find_folders(BASE_DATA_FOLDER, RUNS[0])]
print(GROUPS)
STATS = [
    Path(x).name for x in find_folders(BASE_DATA_FOLDER, str(Path(RUNS[0], GROUPS[0])))
]


def load_stats(path, stat_name, group_by):
    with BASE_DATA_FOLDER.open(
        f"{path}/{group_by}/{stat_name}/stats-merged.json",
        filecache={"cache_storage": "/tmp/files"},
    ) as f:
        json_stat = json.load(f)
        # No idea why this is necessary, but it is, otheriwse the Metric StatsDict is malforme
        return MetricStatsDict() + MetricStatsDict(init=json_stat)


def prepare_non_grouped_data(stats: MetricStatsDict):

    stats_rounded = defaultdict(lambda: 0)
    for key, value in stats.items():
        stats_rounded[float(key)] += value.total
    normalizer = sum(stats_rounded.values())
    normalizer = 1
    stats_rounded = {k: v / normalizer for k, v in stats_rounded.items()}
    return stats_rounded


def prepare_grouped_data(stats: MetricStatsDict, top_k=100):
    means = {key: value.mean for key, value in stats.items()}

    # Take the top_k most frequent keys
    top_keys = sorted(means, key=lambda x: means[x], reverse=True)[:top_k]
    return {key: means[key] for key in top_keys}


import math
import plotly.graph_objects as go
from plotly.offline import plot


def plot_scatter(histograms: dict[str, dict[float, float]], stat_name: str):
    fig = go.Figure()

    colors = iter(
        [
            "rgba(31, 119, 180, 0.5)",
            "rgba(255, 127, 14, 0.5)",
            "rgba(44, 160, 44, 0.5)",
            "rgba(214, 39, 40, 0.5)",
            "rgba(148, 103, 189, 0.5)",
        ]
    )

    for name, histogram in histograms.items():
        if all(isinstance(k, str) for k in histogram.keys()):
            x = [k for k, v in sorted(histogram.items(), key=lambda item: item[1])]
        else:
            x = sorted(histogram.keys())

        y = [histogram[k] for k in x]

        fig.add_trace(
            go.Scatter(x=x, y=y, mode="lines", name=name, line=dict(color=next(colors)))
        )

    fig.update_layout(
        title=f"Line Plots for {stat_name}",
        xaxis_title=stat_name,
        yaxis_title="Frequency",
        xaxis_type="log",
        width=1000,
        height=600,
    )

    return fig


def plot_bars(histograms: dict[str, dict[float, float]], stat_name: str):
    fig = go.Figure()

    for name, histogram in histograms.items():
        x = [k for k, v in sorted(histogram.items(), key=lambda item: item[1])]
        y = [histogram[k] for k in x]

        fig.add_trace(go.Bar(x=x, y=y, name=name))

    fig.update_layout(
        title=f"Bar Plots for {stat_name}",
        xaxis_title=stat_name,
        yaxis_title="Frequency",
        autosize=True,
        width=600,
        height=600,
    )

    return fig


def update_graph(multiselect_crawls, stat_name, grouping):
    if len(multiselect_crawls) <= 0 or not stat_name or not grouping:
        return None
    # Placeholder for logic to rerender the graph based on the inputs
    prepare_fc = (
        prepare_non_grouped_data if grouping == "histogram" else prepare_grouped_data
    )
    graph_fc = plot_scatter if grouping == "histogram" else plot_bars

    print("Loading stats")
    histograms = {
        path: prepare_fc(load_stats(path, stat_name, grouping))
        for path in multiselect_crawls
    }

    print("Plotting")
    return graph_fc(histograms, stat_name)


# Create the Gradio interface
with gr.Blocks() as demo:
    with gr.Row():
        with gr.Column(scale=2):
            # Define the multiselect for crawls
            multiselect_crawls = gr.Dropdown(
                choices=RUNS,
                label="Multiselect for crawls",
                multiselect=True,
            )
        with gr.Column(scale=1):
            # Define the dropdown for stat_name
            stat_name_dropdown = gr.Dropdown(
                choices=STATS,
                label="Stat name",
                multiselect=False,
            )
            # Define the dropdown for grouping
            grouping_dropdown = gr.Dropdown(
                choices=GROUPS,
                label="Grouping",
                multiselect=False,
            )
            update_button = gr.Button("Update Graph", variant="primary")
    with gr.Row():
        # Define the graph output
        graph_output = gr.Plot(label="Graph")

    update_button.click(
        fn=update_graph,
        inputs=[multiselect_crawls, stat_name_dropdown, grouping_dropdown],
        outputs=graph_output,
    )


# Launch the application
if __name__ == "__main__":
    demo.launch()