hynky's picture
hynky HF Staff
regex for groups
f6ba6f9
raw
history blame
17.1 kB
from concurrent.futures import ThreadPoolExecutor
import enum
from functools import partial
import json
import os
from pathlib import Path
import re
import tempfile
from typing import Literal
import gradio as gr
from collections import defaultdict
from datatrove.io import DataFolder, get_datafolder
import plotly.graph_objects as go
from datatrove.utils.stats import MetricStatsDict
import plotly.express as px
import gradio as gr
PARTITION_OPTIONS = Literal[ "Top", "Bottom", "Most frequent (n_docs)"]
LOG_SCALE_STATS = {
"length",
"n_lines",
"n_docs",
"n_words",
"avg_words_per_line",
"pages_with_lorem_ipsum",
}
STATS_LOCATION_DEFAULT = os.getenv("STATS_LOCATION_DEFAULT", "s3://")
def find_folders(base_folder, path):
base_folder = get_datafolder(base_folder)
if not base_folder.exists(path):
return []
return sorted(
[
folder["name"]
for folder in base_folder.ls(path, detail=True)
if folder["type"] == "directory" and not folder["name"].rstrip("/") == path
]
)
def find_stats_folders(base_folder: str):
base_data_folder = get_datafolder(base_folder)
# First find all stats-merged.json using globing for stats-merged.json
stats_merged = base_data_folder.glob("**/stats-merged.json")
# Then for each of stats.merged take the all but last two parts of the path (grouping/stat_name)
stats_folders = [str(Path(x).parent.parent.parent) for x in stats_merged]
# Finally get the unique paths
return sorted(list(set(stats_folders)))
def fetch_datasets(base_folder: str):
datasets = sorted(find_stats_folders(base_folder))
return datasets, gr.update(choices=datasets, value=None), fetch_groups(base_folder, datasets, None, "union")
def export_data(exported_data):
if not exported_data:
return None
# Assuming exported_data is a dictionary where the key is the dataset name and the value is the data to be exported
with tempfile.NamedTemporaryFile(mode="w", delete=False, suffix=".json") as temp:
json.dump(exported_data, temp)
temp_path = temp.name
return gr.update(visible=True, value=temp_path)
def fetch_groups(base_folder, datasets, old_groups, type="intersection"):
if not datasets:
return gr.update(choices=[], value=None)
with ThreadPoolExecutor() as executor:
GROUPS = list(executor.map(lambda run: [Path(x).name for x in find_folders(base_folder, run)], datasets))
if len(GROUPS) == 0:
return gr.update(choices=[], value=None)
if type == "intersection":
new_choices = set.intersection(*(set(g) for g in GROUPS))
elif type == "union":
new_choices = set.union(*(set(g) for g in GROUPS))
value = None
if old_groups:
value = list(set.intersection(new_choices, {old_groups}))
value = value[0] if value else None
# now take the intersection of all grups
return gr.update(choices=sorted(list(new_choices)), value=value)
def fetch_stats(base_folder, datasets, group, old_stats, type="intersection"):
print("Fetching stats")
with ThreadPoolExecutor() as executor:
STATS = list(executor.map(lambda run: [Path(x).name for x in find_folders(base_folder, f"{run}/{group}")], datasets))
if len(STATS) == 0:
return gr.update(choices=[], value=None)
if type == "intersection":
new_possibles_choices = set.intersection(*(set(s) for s in STATS))
elif type == "union":
new_possibles_choices = set.union(*(set(s) for s in STATS))
value = None
if old_stats:
value = list(set.intersection(new_possibles_choices, {old_stats}))
value = value[0] if value else None
return gr.update(choices=sorted(list(new_possibles_choices)), value=value)
def reverse_search(base_folder, possible_datasets, grouping, stat_name):
with ThreadPoolExecutor() as executor:
found_datasets = list(executor.map(lambda dataset: dataset if stat_exists(base_folder, dataset, stat_name, grouping) else None, possible_datasets))
found_datasets = [dataset for dataset in found_datasets if dataset is not None]
return "\n".join(found_datasets)
def reverse_search_add(datasets, reverse_search_results):
datasets = datasets or []
return sorted(list(set(datasets + reverse_search_results.strip().split("\n"))))
def stat_exists(base_folder, path, stat_name, group_by):
base_folder = get_datafolder(base_folder)
return base_folder.exists(f"{path}/{group_by}/{stat_name}/stats-merged.json")
def load_stats(base_folder, path, stat_name, group_by):
base_folder = get_datafolder(base_folder)
with base_folder.open(
f"{path}/{group_by}/{stat_name}/stats-merged.json",
) as f:
json_stat = json.load(f)
# No idea why this is necessary, but it is, otheriwse the Metric StatsDict is malforme
return MetricStatsDict() + MetricStatsDict(init=json_stat)
def prepare_non_grouped_data(dataset_path, base_folder, grouping, stat_name, normalization):
stats = load_stats(base_folder, dataset_path, stat_name, grouping)
stats_rounded = defaultdict(lambda: 0)
for key, value in stats.items():
stats_rounded[float(key)] += value.total
if normalization:
normalizer = sum(stats_rounded.values())
stats_rounded = {k: v / normalizer for k, v in stats_rounded.items()}
return stats_rounded
def prepare_grouped_data(dataset_path, base_folder, grouping, stat_name, top_k, direction: PARTITION_OPTIONS, regex):
import heapq
regex_compiled = re.compile(regex) if regex else None
stats = load_stats(base_folder, dataset_path, stat_name, grouping)
stats = {key: value for key, value in stats.items() if not regex or regex_compiled.match(key)}
means = {key: value.mean for key, value in stats.items()}
# Use heap to get top_k keys
if direction == "Top":
keys = heapq.nlargest(top_k, means, key=means.get)
elif direction == "Most frequent (n_docs)":
totals = {key: value.n for key, value in stats.items()}
keys = heapq.nlargest(top_k, totals, key=totals.get)
else:
keys = heapq.nsmallest(top_k, means, key=means.get)
return [(key, means[key]) for key in keys]
def set_alpha(color, alpha):
"""
Takes a hex color and returns
rgba(r, g, b, a)
"""
if color.startswith('#'):
r, g, b = int(color[1:3], 16), int(color[3:5], 16), int(color[5:7], 16)
else:
r, g, b = 0, 0, 0 # Fallback to black if the color format is not recognized
return f"rgba({r}, {g}, {b}, {alpha})"
def plot_scatter(
histograms: dict[str, dict[float, float]],
stat_name: str,
normalization: bool,
progress: gr.Progress,
):
fig = go.Figure()
for i, (name, histogram) in enumerate(progress.tqdm(histograms.items(), total=len(histograms), desc="Plotting...")):
if all(isinstance(k, str) for k in histogram.keys()):
x = [k for k, v in sorted(histogram.items(), key=lambda item: item[1])]
else:
x = sorted(histogram.keys())
y = [histogram[k] for k in x]
fig.add_trace(
go.Scatter(
x=x,
y=y,
mode="lines",
name=name,
marker=dict(color=set_alpha(px.colors.qualitative.Plotly[i % len(px.colors.qualitative.Plotly)], 0.5)),
)
)
xaxis_scale = "log" if stat_name in LOG_SCALE_STATS else "linear"
yaxis_title = "Frequency" if normalization else "Total"
fig.update_layout(
title=f"Line Plots for {stat_name}",
xaxis_title=stat_name,
yaxis_title=yaxis_title,
xaxis_type=xaxis_scale,
width=1200,
height=600,
showlegend=True,
)
return fig
def plot_bars(
histograms: dict[str, list[tuple[str, float]]],
stat_name: str,
progress: gr.Progress,
):
fig = go.Figure()
for i, (name, histogram) in enumerate(progress.tqdm(histograms.items(), total=len(histograms), desc="Plotting...")):
x = [k for k, v in histogram]
y = [v for k, v in histogram]
fig.add_trace(go.Bar(x=x, y=y, name=name, marker=dict(color=set_alpha(px.colors.qualitative.Plotly[i % len(px.colors.qualitative.Plotly)], 0.5))))
fig.update_layout(
title=f"Bar Plots for {stat_name}",
xaxis_title=stat_name,
yaxis_title="Mean value",
autosize=True,
width=1200,
height=600,
showlegend=True,
)
return fig
def update_graph(
base_folder,
datasets,
stat_name,
grouping,
normalization,
top_k,
direction,
regex,
progress=gr.Progress(),
):
if len(datasets) <= 0 or not stat_name or not grouping:
return None
# Placeholder for logic to rerender the graph based on the inputs
prepare_fc = (
partial(prepare_non_grouped_data, normalization=normalization)
if grouping == "histogram"
else partial(prepare_grouped_data, top_k=top_k, direction=direction, regex=regex)
)
graph_fc = (
partial(plot_scatter, normalization=normalization)
if grouping == "histogram"
else plot_bars
)
with ThreadPoolExecutor() as pool:
data = list(
progress.tqdm(
pool.map(
partial(prepare_fc, base_folder=base_folder, stat_name=stat_name, grouping=grouping),
datasets,
),
total=len(datasets),
desc="Loading data...",
)
)
histograms = {path: result for path, result in zip(datasets, data)}
return graph_fc(histograms=histograms, stat_name=stat_name, progress=progress), histograms, gr.update(visible=True)
# Create the Gradio interface
with gr.Blocks() as demo:
datasets = gr.State([])
exported_data = gr.State([])
stats_headline = gr.Markdown(value="# Stats Exploration")
with gr.Row():
with gr.Column(scale=2):
# Define the multiselect for crawls
with gr.Row():
with gr.Column(scale=1):
base_folder = gr.Textbox(
label="Stats Location",
value="s3://fineweb-stats/summary/",
)
datasets_refetch = gr.Button("Fetch Datasets")
with gr.Column(scale=1):
regex_select = gr.Text(label="Regex select datasets", value=".*")
regex_button = gr.Button("Filter")
with gr.Row():
datasets_selected = gr.Dropdown(
choices=[],
label="Datasets",
multiselect=True,
)
# add a readme description
readme_description = gr.Markdown(
label="Readme",
value="""
Explaination of the tool:
Groupings:
- histogram: creates a line plot of values with their occurences. If normalization is on, the values are frequencies summing to 1.
- (fqdn/suffix): creates a bar plot of the mean values of the stats for full qualied domain name/suffix of domain
* k: the number of groups to show
* Top/Bottom: the top/bottom k groups are shown
- summary: simply shows the average value of given stat for selected crawls
""",
)
with gr.Column(scale=1):
# Define the dropdown for grouping
grouping_dropdown = gr.Dropdown(
choices=[],
label="Grouping",
multiselect=False,
)
# Define the dropdown for stat_name
stat_name_dropdown = gr.Dropdown(
choices=[],
label="Stat name",
multiselect=False,
)
with gr.Row(visible=False) as histogram_choices:
normalization_checkbox = gr.Checkbox(
label="Normalize",
value=False, # Default value
)
with gr.Row(visible=False) as group_choices:
with gr.Column(scale=2):
group_regex = gr.Text(
label="Group Regex",
value=None,
)
with gr.Row():
top_select = gr.Number(
label="N Groups",
value=100,
interactive=True,
)
direction_checkbox = gr.Radio(
label="Partition",
choices=[
"Top",
"Bottom",
"Most frequent (n_docs)",
],
value="Most frequent (n_docs)",
)
update_button = gr.Button("Update Graph", variant="primary")
with gr.Row():
export_data_button = gr.Button("Export data", visible=False)
export_data_json = gr.File(visible=False)
with gr.Row():
# Define the graph output
graph_output = gr.Plot(label="Graph")
with gr.Row():
reverse_search_headline = gr.Markdown(value="# Reverse stats search")
with gr.Row():
with gr.Column(scale=1):
# Define the dropdown for grouping
reverse_grouping_dropdown = gr.Dropdown(
choices=[],
label="Grouping",
multiselect=False,
)
# Define the dropdown for stat_name
reverse_stat_name_dropdown = gr.Dropdown(
choices=[],
label="Stat name",
multiselect=False,
)
with gr.Column(scale=1):
reverse_search_button = gr.Button("Search")
reverse_search_add_button = gr.Button("Add to selection")
with gr.Column(scale=2):
reverse_search_results = gr.Textbox(
label="Found datasets",
lines=10,
placeholder="Found datasets containing the group/stat name. You can modify the selection after search by removing unwanted lines and clicking Add to selection"
)
update_button.click(
fn=update_graph,
inputs=[
base_folder,
datasets_selected,
stat_name_dropdown,
grouping_dropdown,
normalization_checkbox,
top_select,
direction_checkbox,
group_regex,
],
outputs=[graph_output, exported_data, export_data_button],
)
export_data_button.click(
fn=export_data,
inputs=[exported_data],
outputs=export_data_json,
)
datasets_selected.change(
fn=fetch_groups,
inputs=[base_folder, datasets_selected, grouping_dropdown],
outputs=grouping_dropdown,
)
grouping_dropdown.select(
fn=fetch_stats,
inputs=[base_folder, datasets_selected, grouping_dropdown, stat_name_dropdown],
outputs=stat_name_dropdown,
)
reverse_grouping_dropdown.select(
fn=partial(fetch_stats, type="union"),
inputs=[base_folder, datasets, reverse_grouping_dropdown, reverse_stat_name_dropdown],
outputs=reverse_stat_name_dropdown,
)
reverse_search_button.click(
fn=reverse_search,
inputs=[base_folder, datasets, reverse_grouping_dropdown, reverse_stat_name_dropdown],
outputs=reverse_search_results,
)
reverse_search_add_button.click(
fn=reverse_search_add,
inputs=[datasets_selected, reverse_search_results],
outputs=datasets_selected,
)
datasets_refetch.click(
fn=fetch_datasets,
inputs=[base_folder],
outputs=[datasets, datasets_selected, reverse_grouping_dropdown],
)
def update_datasets_with_regex(regex, selected_runs, all_runs):
if not regex:
return
new_dsts = {run for run in all_runs if re.search(regex, run)}
dst_union = new_dsts.union(selected_runs)
return gr.update(value=list(dst_union))
regex_button.click(
fn=update_datasets_with_regex,
inputs=[regex_select, datasets_selected, datasets],
outputs=datasets_selected,
)
def update_grouping_options(grouping):
if grouping == "histogram":
return {
histogram_choices: gr.Column(visible=True),
group_choices: gr.Column(visible=False),
}
else:
return {
histogram_choices: gr.Column(visible=False),
group_choices: gr.Column(visible=True),
}
grouping_dropdown.select(
fn=update_grouping_options,
inputs=[grouping_dropdown],
outputs=[histogram_choices, group_choices],
)
# Launch the application
if __name__ == "__main__":
demo.launch()