metric naming
Browse files
app.py
CHANGED
@@ -5,29 +5,21 @@ import json
|
|
5 |
import os
|
6 |
from pathlib import Path
|
7 |
import re
|
|
|
8 |
import tempfile
|
9 |
from typing import Literal
|
10 |
import gradio as gr
|
11 |
|
12 |
from collections import defaultdict
|
13 |
-
from datatrove.io import
|
14 |
import plotly.graph_objects as go
|
15 |
-
from datatrove.utils.stats import MetricStatsDict
|
16 |
import plotly.express as px
|
|
|
17 |
|
18 |
import gradio as gr
|
19 |
PARTITION_OPTIONS = Literal[ "Top", "Bottom", "Most frequent (n_docs)"]
|
20 |
-
|
21 |
-
LOG_SCALE_STATS = {
|
22 |
-
"length",
|
23 |
-
"n_lines",
|
24 |
-
"n_docs",
|
25 |
-
"n_words",
|
26 |
-
"avg_words_per_line",
|
27 |
-
"pages_with_lorem_ipsum",
|
28 |
-
}
|
29 |
-
|
30 |
-
STATS_LOCATION_DEFAULT = os.getenv("STATS_LOCATION_DEFAULT", "s3://")
|
31 |
|
32 |
|
33 |
def find_folders(base_folder, path):
|
@@ -43,28 +35,31 @@ def find_folders(base_folder, path):
|
|
43 |
)
|
44 |
|
45 |
|
46 |
-
def
|
47 |
base_data_folder = get_datafolder(base_folder)
|
48 |
-
# First find all
|
49 |
-
|
50 |
|
51 |
-
# Then for each of
|
52 |
-
|
53 |
# Finally get the unique paths
|
54 |
-
return sorted(list(set(
|
55 |
|
56 |
|
57 |
def fetch_datasets(base_folder: str):
|
58 |
-
datasets = sorted(
|
59 |
return datasets, gr.update(choices=datasets, value=None), fetch_groups(base_folder, datasets, None, "union")
|
60 |
|
61 |
|
62 |
-
def export_data(exported_data,
|
63 |
if not exported_data:
|
64 |
return None
|
65 |
# Assuming exported_data is a dictionary where the key is the dataset name and the value is the data to be exported
|
66 |
-
with tempfile.NamedTemporaryFile(mode="w", delete=False, prefix=
|
67 |
-
json.dump(
|
|
|
|
|
|
|
68 |
temp_path = temp.name
|
69 |
return gr.update(visible=True, value=temp_path)
|
70 |
|
@@ -80,7 +75,7 @@ def fetch_groups(base_folder, datasets, old_groups, type="intersection"):
|
|
80 |
|
81 |
if type == "intersection":
|
82 |
new_choices = set.intersection(*(set(g) for g in GROUPS))
|
83 |
-
|
84 |
new_choices = set.union(*(set(g) for g in GROUPS))
|
85 |
value = None
|
86 |
if old_groups:
|
@@ -91,27 +86,27 @@ def fetch_groups(base_folder, datasets, old_groups, type="intersection"):
|
|
91 |
return gr.update(choices=sorted(list(new_choices)), value=value)
|
92 |
|
93 |
|
94 |
-
def
|
95 |
with ThreadPoolExecutor() as executor:
|
96 |
-
|
97 |
-
if len(
|
98 |
return gr.update(choices=[], value=None)
|
99 |
|
100 |
if type == "intersection":
|
101 |
-
new_possibles_choices = set.intersection(*(set(s) for s in
|
102 |
-
|
103 |
-
new_possibles_choices = set.union(*(set(s) for s in
|
104 |
value = None
|
105 |
-
if
|
106 |
-
value = list(set.intersection(new_possibles_choices, {
|
107 |
value = value[0] if value else None
|
108 |
|
109 |
return gr.update(choices=sorted(list(new_possibles_choices)), value=value)
|
110 |
|
111 |
|
112 |
-
def reverse_search(base_folder, possible_datasets, grouping,
|
113 |
with ThreadPoolExecutor() as executor:
|
114 |
-
found_datasets = list(executor.map(lambda dataset: dataset if
|
115 |
found_datasets = [dataset for dataset in found_datasets if dataset is not None]
|
116 |
return "\n".join(found_datasets)
|
117 |
|
@@ -122,46 +117,47 @@ def reverse_search_add(datasets, reverse_search_results):
|
|
122 |
|
123 |
|
124 |
|
125 |
-
def
|
126 |
base_folder = get_datafolder(base_folder)
|
127 |
-
return base_folder.exists(f"{path}/{group_by}/{
|
128 |
|
129 |
-
|
|
|
130 |
base_folder = get_datafolder(base_folder)
|
131 |
with base_folder.open(
|
132 |
-
f"{path}/{group_by}/{
|
133 |
) as f:
|
134 |
-
|
135 |
-
# No idea why this is necessary, but it is, otheriwse the Metric StatsDict is
|
136 |
-
return MetricStatsDict()
|
137 |
|
138 |
|
139 |
-
def
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
stats_rounded[round(float(key), 2)] += value.total
|
144 |
if normalization:
|
145 |
-
normalizer = sum(
|
146 |
-
|
147 |
# check that the sum of the values is 1
|
148 |
-
summed = sum(
|
149 |
-
|
|
|
150 |
|
151 |
|
152 |
-
def
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
stats = load_stats(base_folder, dataset_path, stat_name, grouping)
|
157 |
-
stats = {key: value for key, value in stats.items() if not regex or regex_compiled.match(key)}
|
158 |
-
means = {key: value.mean for key, value in stats.items()}
|
159 |
|
|
|
|
|
|
|
|
|
160 |
# Use heap to get top_k keys
|
161 |
if direction == "Top":
|
162 |
keys = heapq.nlargest(top_k, means, key=means.get)
|
163 |
elif direction == "Most frequent (n_docs)":
|
164 |
-
totals = {key: value.n for key, value in
|
165 |
keys = heapq.nlargest(top_k, totals, key=totals.get)
|
166 |
else:
|
167 |
keys = heapq.nsmallest(top_k, means, key=means.get)
|
@@ -181,23 +177,23 @@ def set_alpha(color, alpha):
|
|
181 |
return f"rgba({r}, {g}, {b}, {alpha})"
|
182 |
|
183 |
|
184 |
-
|
185 |
-
|
186 |
def plot_scatter(
|
187 |
-
|
188 |
-
|
|
|
|
|
189 |
normalization: bool,
|
|
|
190 |
progress: gr.Progress,
|
191 |
):
|
192 |
fig = go.Figure()
|
193 |
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
y = [histogram[k] for k in x]
|
201 |
|
202 |
fig.add_trace(
|
203 |
go.Scatter(
|
@@ -209,14 +205,14 @@ def plot_scatter(
|
|
209 |
)
|
210 |
)
|
211 |
|
212 |
-
xaxis_scale = "log" if stat_name in LOG_SCALE_STATS else "linear"
|
213 |
yaxis_title = "Frequency" if normalization else "Total"
|
214 |
|
215 |
fig.update_layout(
|
216 |
-
title=f"Line Plots for {
|
217 |
-
xaxis_title=
|
218 |
yaxis_title=yaxis_title,
|
219 |
-
xaxis_type=
|
|
|
220 |
width=1200,
|
221 |
height=600,
|
222 |
showlegend=True,
|
@@ -226,22 +222,33 @@ def plot_scatter(
|
|
226 |
|
227 |
|
228 |
def plot_bars(
|
229 |
-
|
230 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
231 |
progress: gr.Progress,
|
232 |
):
|
233 |
fig = go.Figure()
|
|
|
|
|
234 |
|
235 |
-
for i, (name, histogram) in enumerate(progress.tqdm(
|
236 |
-
|
237 |
-
y =
|
238 |
|
239 |
fig.add_trace(go.Bar(x=x, y=y, name=name, marker=dict(color=set_alpha(px.colors.qualitative.Plotly[i % len(px.colors.qualitative.Plotly)], 0.5))))
|
|
|
240 |
|
241 |
fig.update_layout(
|
242 |
-
title=f"Bar Plots for {
|
243 |
-
xaxis_title=
|
244 |
-
yaxis_title="
|
|
|
|
|
245 |
autosize=True,
|
246 |
width=1200,
|
247 |
height=600,
|
@@ -254,33 +261,26 @@ def plot_bars(
|
|
254 |
def update_graph(
|
255 |
base_folder,
|
256 |
datasets,
|
257 |
-
|
258 |
grouping,
|
|
|
|
|
|
|
259 |
normalization,
|
260 |
top_k,
|
261 |
direction,
|
262 |
regex,
|
263 |
progress=gr.Progress(),
|
264 |
):
|
265 |
-
if len(datasets) <= 0 or not
|
266 |
return None
|
267 |
# Placeholder for logic to rerender the graph based on the inputs
|
268 |
-
prepare_fc = (
|
269 |
-
partial(prepare_non_grouped_data, normalization=normalization)
|
270 |
-
if grouping == "histogram"
|
271 |
-
else partial(prepare_grouped_data, top_k=top_k, direction=direction, regex=regex)
|
272 |
-
)
|
273 |
-
graph_fc = (
|
274 |
-
partial(plot_scatter, normalization=normalization)
|
275 |
-
if grouping == "histogram"
|
276 |
-
else plot_bars
|
277 |
-
)
|
278 |
|
279 |
with ThreadPoolExecutor() as pool:
|
280 |
data = list(
|
281 |
progress.tqdm(
|
282 |
pool.map(
|
283 |
-
partial(
|
284 |
datasets,
|
285 |
),
|
286 |
total=len(datasets),
|
@@ -288,30 +288,39 @@ def update_graph(
|
|
288 |
)
|
289 |
)
|
290 |
|
291 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
292 |
|
293 |
-
return graph_fc(histograms=histograms, stat_name=stat_name, progress=progress), histograms, gr.update(visible=True)
|
294 |
|
295 |
|
296 |
# Create the Gradio interface
|
297 |
with gr.Blocks() as demo:
|
298 |
datasets = gr.State([])
|
299 |
exported_data = gr.State([])
|
300 |
-
|
301 |
with gr.Row():
|
302 |
with gr.Column(scale=2):
|
303 |
-
# Define the multiselect for crawls
|
304 |
with gr.Row():
|
305 |
with gr.Column(scale=1):
|
306 |
base_folder = gr.Textbox(
|
307 |
-
label="
|
308 |
-
value=
|
309 |
)
|
310 |
datasets_refetch = gr.Button("Fetch Datasets")
|
311 |
|
312 |
with gr.Column(scale=1):
|
313 |
-
regex_select = gr.Text(label="Regex
|
314 |
-
regex_button = gr.Button("
|
315 |
with gr.Row():
|
316 |
datasets_selected = gr.Dropdown(
|
317 |
choices=[],
|
@@ -323,15 +332,28 @@ with gr.Blocks() as demo:
|
|
323 |
readme_description = gr.Markdown(
|
324 |
label="Readme",
|
325 |
value="""
|
326 |
-
|
|
|
|
|
|
|
|
|
|
|
327 |
|
328 |
-
Groupings:
|
329 |
-
- histogram
|
330 |
-
|
|
|
331 |
* k: the number of groups to show
|
332 |
-
* Top/Bottom: the top/bottom k
|
333 |
-
-
|
334 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
335 |
)
|
336 |
with gr.Column(scale=1):
|
337 |
# Define the dropdown for grouping
|
@@ -340,19 +362,39 @@ Groupings:
|
|
340 |
label="Grouping",
|
341 |
multiselect=False,
|
342 |
)
|
343 |
-
# Define the dropdown for
|
344 |
-
|
345 |
choices=[],
|
346 |
-
label="
|
347 |
multiselect=False,
|
348 |
)
|
349 |
|
350 |
-
with gr.Row(visible=False) as histogram_choices:
|
351 |
-
normalization_checkbox = gr.Checkbox(
|
352 |
-
label="Normalize",
|
353 |
-
value=False, # Default value
|
354 |
-
)
|
355 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
356 |
with gr.Row(visible=False) as group_choices:
|
357 |
with gr.Column(scale=2):
|
358 |
group_regex = gr.Text(
|
@@ -374,19 +416,13 @@ Groupings:
|
|
374 |
"Most frequent (n_docs)",
|
375 |
],
|
376 |
value="Most frequent (n_docs)",
|
377 |
-
|
378 |
-
|
379 |
-
update_button = gr.Button("Update Graph", variant="primary")
|
380 |
-
with gr.Row():
|
381 |
-
export_data_button = gr.Button("Export data", visible=False)
|
382 |
-
export_data_json = gr.File(visible=False)
|
383 |
-
|
384 |
-
with gr.Row():
|
385 |
# Define the graph output
|
|
|
386 |
graph_output = gr.Plot(label="Graph")
|
387 |
|
388 |
with gr.Row():
|
389 |
-
reverse_search_headline = gr.Markdown(value="# Reverse
|
390 |
|
391 |
with gr.Row():
|
392 |
with gr.Column(scale=1):
|
@@ -396,8 +432,8 @@ Groupings:
|
|
396 |
label="Grouping",
|
397 |
multiselect=False,
|
398 |
)
|
399 |
-
# Define the dropdown for
|
400 |
-
|
401 |
choices=[],
|
402 |
label="Stat name",
|
403 |
multiselect=False,
|
@@ -411,9 +447,8 @@ Groupings:
|
|
411 |
reverse_search_results = gr.Textbox(
|
412 |
label="Found datasets",
|
413 |
lines=10,
|
414 |
-
placeholder="Found datasets containing the group/
|
415 |
)
|
416 |
-
|
417 |
|
418 |
|
419 |
update_button.click(
|
@@ -421,22 +456,39 @@ Groupings:
|
|
421 |
inputs=[
|
422 |
base_folder,
|
423 |
datasets_selected,
|
424 |
-
|
425 |
grouping_dropdown,
|
|
|
|
|
|
|
426 |
normalization_checkbox,
|
427 |
top_select,
|
428 |
direction_checkbox,
|
429 |
group_regex,
|
430 |
],
|
431 |
-
outputs=[graph_output, exported_data,
|
432 |
)
|
433 |
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
438 |
)
|
439 |
|
|
|
|
|
440 |
datasets_selected.change(
|
441 |
fn=fetch_groups,
|
442 |
inputs=[base_folder, datasets_selected, grouping_dropdown],
|
@@ -444,20 +496,20 @@ Groupings:
|
|
444 |
)
|
445 |
|
446 |
grouping_dropdown.select(
|
447 |
-
fn=
|
448 |
-
inputs=[base_folder, datasets_selected, grouping_dropdown,
|
449 |
-
outputs=
|
450 |
)
|
451 |
|
452 |
reverse_grouping_dropdown.select(
|
453 |
-
fn=partial(
|
454 |
-
inputs=[base_folder, datasets, reverse_grouping_dropdown,
|
455 |
-
outputs=
|
456 |
)
|
457 |
|
458 |
reverse_search_button.click(
|
459 |
fn=reverse_search,
|
460 |
-
inputs=[base_folder, datasets, reverse_grouping_dropdown,
|
461 |
outputs=reverse_search_results,
|
462 |
)
|
463 |
|
@@ -478,7 +530,9 @@ Groupings:
|
|
478 |
if not regex:
|
479 |
return
|
480 |
new_dsts = {run for run in all_runs if re.search(regex, run)}
|
481 |
-
|
|
|
|
|
482 |
return gr.update(value=list(dst_union))
|
483 |
|
484 |
regex_button.click(
|
@@ -490,19 +544,19 @@ Groupings:
|
|
490 |
def update_grouping_options(grouping):
|
491 |
if grouping == "histogram":
|
492 |
return {
|
493 |
-
|
494 |
group_choices: gr.Column(visible=False),
|
495 |
}
|
496 |
else:
|
497 |
return {
|
498 |
-
|
499 |
group_choices: gr.Column(visible=True),
|
500 |
}
|
501 |
|
502 |
grouping_dropdown.select(
|
503 |
fn=update_grouping_options,
|
504 |
inputs=[grouping_dropdown],
|
505 |
-
outputs=[
|
506 |
)
|
507 |
|
508 |
|
|
|
5 |
import os
|
6 |
from pathlib import Path
|
7 |
import re
|
8 |
+
import heapq
|
9 |
import tempfile
|
10 |
from typing import Literal
|
11 |
import gradio as gr
|
12 |
|
13 |
from collections import defaultdict
|
14 |
+
from datatrove.io import get_datafolder
|
15 |
import plotly.graph_objects as go
|
16 |
+
from datatrove.utils.stats import MetricStats, MetricStatsDict
|
17 |
import plotly.express as px
|
18 |
+
import tenacity
|
19 |
|
20 |
import gradio as gr
|
21 |
PARTITION_OPTIONS = Literal[ "Top", "Bottom", "Most frequent (n_docs)"]
|
22 |
+
METRICS_LOCATION_DEFAULT = os.getenv("METRICS_LOCATION_DEFAULT", "s3://fineweb-stats/summary/")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
|
25 |
def find_folders(base_folder, path):
|
|
|
35 |
)
|
36 |
|
37 |
|
38 |
+
def find_metrics_folders(base_folder: str):
|
39 |
base_data_folder = get_datafolder(base_folder)
|
40 |
+
# First find all metric.json using globing for metric.json
|
41 |
+
metrics_merged = base_data_folder.glob("**/metric.json")
|
42 |
|
43 |
+
# Then for each of metrics.merged take the all but last two parts of the path (grouping/metric_name)
|
44 |
+
metrics_folders = [str(Path(x).parent.parent.parent) for x in metrics_merged]
|
45 |
# Finally get the unique paths
|
46 |
+
return sorted(list(set(metrics_folders)))
|
47 |
|
48 |
|
49 |
def fetch_datasets(base_folder: str):
|
50 |
+
datasets = sorted(find_metrics_folders(base_folder))
|
51 |
return datasets, gr.update(choices=datasets, value=None), fetch_groups(base_folder, datasets, None, "union")
|
52 |
|
53 |
|
54 |
+
def export_data(exported_data: MetricStatsDict, metric_name: str):
|
55 |
if not exported_data:
|
56 |
return None
|
57 |
# Assuming exported_data is a dictionary where the key is the dataset name and the value is the data to be exported
|
58 |
+
with tempfile.NamedTemporaryFile(mode="w", delete=False, prefix=metric_name, suffix=".json") as temp:
|
59 |
+
json.dump({
|
60 |
+
name: dt.to_dict()
|
61 |
+
for name, dt in exported_data.items()
|
62 |
+
}, temp)
|
63 |
temp_path = temp.name
|
64 |
return gr.update(visible=True, value=temp_path)
|
65 |
|
|
|
75 |
|
76 |
if type == "intersection":
|
77 |
new_choices = set.intersection(*(set(g) for g in GROUPS))
|
78 |
+
else:
|
79 |
new_choices = set.union(*(set(g) for g in GROUPS))
|
80 |
value = None
|
81 |
if old_groups:
|
|
|
86 |
return gr.update(choices=sorted(list(new_choices)), value=value)
|
87 |
|
88 |
|
89 |
+
def fetch_metrics(base_folder, datasets, group, old_metrics, type="intersection"):
|
90 |
with ThreadPoolExecutor() as executor:
|
91 |
+
metrics = list(executor.map(lambda run: [Path(x).name for x in find_folders(base_folder, f"{run}/{group}")], datasets))
|
92 |
+
if len(metrics) == 0:
|
93 |
return gr.update(choices=[], value=None)
|
94 |
|
95 |
if type == "intersection":
|
96 |
+
new_possibles_choices = set.intersection(*(set(s) for s in metrics))
|
97 |
+
else:
|
98 |
+
new_possibles_choices = set.union(*(set(s) for s in metrics))
|
99 |
value = None
|
100 |
+
if old_metrics:
|
101 |
+
value = list(set.intersection(new_possibles_choices, {old_metrics}))
|
102 |
value = value[0] if value else None
|
103 |
|
104 |
return gr.update(choices=sorted(list(new_possibles_choices)), value=value)
|
105 |
|
106 |
|
107 |
+
def reverse_search(base_folder, possible_datasets, grouping, metric_name):
|
108 |
with ThreadPoolExecutor() as executor:
|
109 |
+
found_datasets = list(executor.map(lambda dataset: dataset if metric_exists(base_folder, dataset, metric_name, grouping) else None, possible_datasets))
|
110 |
found_datasets = [dataset for dataset in found_datasets if dataset is not None]
|
111 |
return "\n".join(found_datasets)
|
112 |
|
|
|
117 |
|
118 |
|
119 |
|
120 |
+
def metric_exists(base_folder, path, metric_name, group_by):
|
121 |
base_folder = get_datafolder(base_folder)
|
122 |
+
return base_folder.exists(f"{path}/{group_by}/{metric_name}/metric.json")
|
123 |
|
124 |
+
@tenacity.retry(stop=tenacity.stop_after_attempt(5))
|
125 |
+
def load_metrics(base_folder, path, metric_name, group_by):
|
126 |
base_folder = get_datafolder(base_folder)
|
127 |
with base_folder.open(
|
128 |
+
f"{path}/{group_by}/{metric_name}/metric.json",
|
129 |
) as f:
|
130 |
+
json_metric = json.load(f)
|
131 |
+
# No idea why this is necessary, but it is, otheriwse the Metric StatsDict is malformed
|
132 |
+
return MetricStatsDict.from_dict(json_metric)
|
133 |
|
134 |
|
135 |
+
def prepare_for_non_grouped_plotting(metric, normalization, rounding):
|
136 |
+
metrics_rounded = defaultdict(lambda: 0)
|
137 |
+
for key, value in metric.items():
|
138 |
+
metrics_rounded[round(float(key), rounding)] += value.total
|
|
|
139 |
if normalization:
|
140 |
+
normalizer = sum(metrics_rounded.values())
|
141 |
+
metrics_rounded = {k: v / normalizer for k, v in metrics_rounded.items()}
|
142 |
# check that the sum of the values is 1
|
143 |
+
summed = sum(metrics_rounded.values())
|
144 |
+
assert abs(summed - 1) < 0.01, summed
|
145 |
+
return metrics_rounded
|
146 |
|
147 |
|
148 |
+
def load_data(dataset_path, base_folder, grouping, metric_name):
|
149 |
+
metrics = load_metrics(base_folder, dataset_path, metric_name, grouping)
|
150 |
+
return metrics
|
|
|
|
|
|
|
|
|
151 |
|
152 |
+
def prepare_for_group_plotting(metric, top_k, direction: PARTITION_OPTIONS, regex: str | None, rounding: int):
|
153 |
+
regex_compiled = re.compile(regex) if regex else None
|
154 |
+
metric = {key: value for key, value in metric.items() if not regex or regex_compiled.match(key)}
|
155 |
+
means = {key: round(float(value.mean), rounding) for key, value in metric.items()}
|
156 |
# Use heap to get top_k keys
|
157 |
if direction == "Top":
|
158 |
keys = heapq.nlargest(top_k, means, key=means.get)
|
159 |
elif direction == "Most frequent (n_docs)":
|
160 |
+
totals = {key: int(value.n) for key, value in metric.items()}
|
161 |
keys = heapq.nlargest(top_k, totals, key=totals.get)
|
162 |
else:
|
163 |
keys = heapq.nsmallest(top_k, means, key=means.get)
|
|
|
177 |
return f"rgba({r}, {g}, {b}, {alpha})"
|
178 |
|
179 |
|
|
|
|
|
180 |
def plot_scatter(
|
181 |
+
data: dict[str, dict[float, float]],
|
182 |
+
metric_name: str,
|
183 |
+
log_scale_x: bool,
|
184 |
+
log_scale_y: bool,
|
185 |
normalization: bool,
|
186 |
+
rounding: int,
|
187 |
progress: gr.Progress,
|
188 |
):
|
189 |
fig = go.Figure()
|
190 |
|
191 |
+
# First sort the histograms, by their name
|
192 |
+
data = {name: histogram for name, histogram in sorted(data.items())}
|
193 |
+
for i, (name, histogram) in enumerate(progress.tqdm(data.items(), total=len(data), desc="Plotting...")):
|
194 |
+
histogram_prepared = prepare_for_non_grouped_plotting(histogram, normalization, rounding)
|
195 |
+
x = sorted(histogram_prepared.keys())
|
196 |
+
y = [histogram_prepared[k] for k in x]
|
|
|
197 |
|
198 |
fig.add_trace(
|
199 |
go.Scatter(
|
|
|
205 |
)
|
206 |
)
|
207 |
|
|
|
208 |
yaxis_title = "Frequency" if normalization else "Total"
|
209 |
|
210 |
fig.update_layout(
|
211 |
+
title=f"Line Plots for {metric_name}",
|
212 |
+
xaxis_title=metric_name,
|
213 |
yaxis_title=yaxis_title,
|
214 |
+
xaxis_type="log" if log_scale_x and len(x) > 1 else None,
|
215 |
+
yaxis_type="log" if log_scale_y and len(y) > 1 else None,
|
216 |
width=1200,
|
217 |
height=600,
|
218 |
showlegend=True,
|
|
|
222 |
|
223 |
|
224 |
def plot_bars(
|
225 |
+
data: dict[str, list[dict[str, float]]],
|
226 |
+
metric_name: str,
|
227 |
+
top_k: int,
|
228 |
+
direction: PARTITION_OPTIONS,
|
229 |
+
regex: str | None,
|
230 |
+
rounding: int,
|
231 |
+
log_scale_x: bool,
|
232 |
+
log_scale_y: bool,
|
233 |
progress: gr.Progress,
|
234 |
):
|
235 |
fig = go.Figure()
|
236 |
+
x = []
|
237 |
+
y = []
|
238 |
|
239 |
+
for i, (name, histogram) in enumerate(progress.tqdm(data.items(), total=len(data), desc="Plotting...")):
|
240 |
+
histogram_prepared = prepare_for_group_plotting(histogram, top_k, direction, regex, rounding)
|
241 |
+
x, y = zip(*histogram_prepared)
|
242 |
|
243 |
fig.add_trace(go.Bar(x=x, y=y, name=name, marker=dict(color=set_alpha(px.colors.qualitative.Plotly[i % len(px.colors.qualitative.Plotly)], 0.5))))
|
244 |
+
|
245 |
|
246 |
fig.update_layout(
|
247 |
+
title=f"Bar Plots for {metric_name}",
|
248 |
+
xaxis_title=metric_name,
|
249 |
+
yaxis_title="Avg. value",
|
250 |
+
xaxis_type="log" if log_scale_x and len(x) > 1 else None,
|
251 |
+
yaxis_type="log" if log_scale_y and len(y) > 1 else None,
|
252 |
autosize=True,
|
253 |
width=1200,
|
254 |
height=600,
|
|
|
261 |
def update_graph(
|
262 |
base_folder,
|
263 |
datasets,
|
264 |
+
metric_name,
|
265 |
grouping,
|
266 |
+
log_scale_x,
|
267 |
+
log_scale_y,
|
268 |
+
rounding,
|
269 |
normalization,
|
270 |
top_k,
|
271 |
direction,
|
272 |
regex,
|
273 |
progress=gr.Progress(),
|
274 |
):
|
275 |
+
if len(datasets) <= 0 or not metric_name or not grouping:
|
276 |
return None
|
277 |
# Placeholder for logic to rerender the graph based on the inputs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
278 |
|
279 |
with ThreadPoolExecutor() as pool:
|
280 |
data = list(
|
281 |
progress.tqdm(
|
282 |
pool.map(
|
283 |
+
partial(load_data, base_folder=base_folder, metric_name=metric_name, grouping=grouping),
|
284 |
datasets,
|
285 |
),
|
286 |
total=len(datasets),
|
|
|
288 |
)
|
289 |
)
|
290 |
|
291 |
+
data = {path: result for path, result in zip(datasets, data)}
|
292 |
+
return plot_data(data, metric_name, normalization, rounding, grouping, top_k, direction, regex, log_scale_x, log_scale_y, progress), data, export_data(data, metric_name)
|
293 |
+
|
294 |
+
def plot_data(data, metric_name, normalization, rounding, grouping, top_k, direction, regex, log_scale_x, log_scale_y, progress=gr.Progress()):
|
295 |
+
if rounding is None or top_k is None:
|
296 |
+
return None
|
297 |
+
graph_fc = (
|
298 |
+
partial(plot_scatter, normalization=normalization, rounding=rounding)
|
299 |
+
if grouping == "histogram"
|
300 |
+
else partial(plot_bars, top_k=top_k, direction=direction, regex=regex, rounding=rounding)
|
301 |
+
)
|
302 |
+
return graph_fc(data=data, metric_name=metric_name, progress=progress, log_scale_x=log_scale_x, log_scale_y=log_scale_y)
|
303 |
|
|
|
304 |
|
305 |
|
306 |
# Create the Gradio interface
|
307 |
with gr.Blocks() as demo:
|
308 |
datasets = gr.State([])
|
309 |
exported_data = gr.State([])
|
310 |
+
metrics_headline = gr.Markdown(value="# Metrics Exploration")
|
311 |
with gr.Row():
|
312 |
with gr.Column(scale=2):
|
|
|
313 |
with gr.Row():
|
314 |
with gr.Column(scale=1):
|
315 |
base_folder = gr.Textbox(
|
316 |
+
label="Metrics Location",
|
317 |
+
value=METRICS_LOCATION_DEFAULT,
|
318 |
)
|
319 |
datasets_refetch = gr.Button("Fetch Datasets")
|
320 |
|
321 |
with gr.Column(scale=1):
|
322 |
+
regex_select = gr.Text(label="Regex filter", value=".*")
|
323 |
+
regex_button = gr.Button("Search")
|
324 |
with gr.Row():
|
325 |
datasets_selected = gr.Dropdown(
|
326 |
choices=[],
|
|
|
332 |
readme_description = gr.Markdown(
|
333 |
label="Readme",
|
334 |
value="""
|
335 |
+
## How to use:
|
336 |
+
1) Specify Metrics location (Stats block `output_folder` without the last path segment) and click "Fetch Datasets"
|
337 |
+
2) Select datasets you are interested in using the dropdown or regex filter
|
338 |
+
3) Specify Grouping (global average/value/fqdn/suffix) and Metric name
|
339 |
+
4) Click "Update Graph"
|
340 |
+
|
341 |
|
342 |
+
## Groupings:
|
343 |
+
- **histogram**: Creates a line plot of values with their frequencies. If normalization is on, the frequencies sum to 1.
|
344 |
+
* normalize:
|
345 |
+
- **(fqdn/suffix)**: Creates a bar plot of the avg. values of the metric for full qualifed domain name/suffix of domain.
|
346 |
* k: the number of groups to show
|
347 |
+
* Top/Bottom/Most frequent (n_docs): Groups with the top/bottom k values/most prevalant docs are shown
|
348 |
+
- **none**: Shows the average value of given metric
|
349 |
+
|
350 |
+
## Reverse search:
|
351 |
+
To search for datasets containing a grouping and certain metric, use the Reverse search section.
|
352 |
+
Specify the search parameters and click "Search". This will show you found datasets in the "Found datasets" textbox. You can modify the selection after search by removing unwanted lines and clicking "Add to selection".
|
353 |
+
|
354 |
+
## Note:
|
355 |
+
The data might not be 100% representative, due to the sampling and optimistic merging of the metrics (fqdn/suffix).
|
356 |
+
""",
|
357 |
)
|
358 |
with gr.Column(scale=1):
|
359 |
# Define the dropdown for grouping
|
|
|
362 |
label="Grouping",
|
363 |
multiselect=False,
|
364 |
)
|
365 |
+
# Define the dropdown for metric_name
|
366 |
+
metric_name_dropdown = gr.Dropdown(
|
367 |
choices=[],
|
368 |
+
label="Metric name",
|
369 |
multiselect=False,
|
370 |
)
|
371 |
|
|
|
|
|
|
|
|
|
|
|
372 |
|
373 |
+
update_button = gr.Button("Update Graph", variant="primary")
|
374 |
+
|
375 |
+
with gr.Row():
|
376 |
+
with gr.Column(scale=1):
|
377 |
+
log_scale_x_checkbox = gr.Checkbox(
|
378 |
+
label="Log scale x",
|
379 |
+
value=False,
|
380 |
+
)
|
381 |
+
log_scale_y_checkbox = gr.Checkbox(
|
382 |
+
label="Log scale y",
|
383 |
+
value=False,
|
384 |
+
)
|
385 |
+
rounding = gr.Number(
|
386 |
+
label="Rounding",
|
387 |
+
value=2,
|
388 |
+
)
|
389 |
+
normalization_checkbox = gr.Checkbox(
|
390 |
+
label="Normalize",
|
391 |
+
value=True, # Default value
|
392 |
+
visible=False
|
393 |
+
)
|
394 |
+
with gr.Row():
|
395 |
+
# export_data_button = gr.Button("Export data", visible=True, link=export_data_json)
|
396 |
+
export_data_json = gr.File(visible=False)
|
397 |
+
with gr.Column(scale=4):
|
398 |
with gr.Row(visible=False) as group_choices:
|
399 |
with gr.Column(scale=2):
|
400 |
group_regex = gr.Text(
|
|
|
416 |
"Most frequent (n_docs)",
|
417 |
],
|
418 |
value="Most frequent (n_docs)",
|
419 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
420 |
# Define the graph output
|
421 |
+
with gr.Row():
|
422 |
graph_output = gr.Plot(label="Graph")
|
423 |
|
424 |
with gr.Row():
|
425 |
+
reverse_search_headline = gr.Markdown(value="# Reverse metrics search")
|
426 |
|
427 |
with gr.Row():
|
428 |
with gr.Column(scale=1):
|
|
|
432 |
label="Grouping",
|
433 |
multiselect=False,
|
434 |
)
|
435 |
+
# Define the dropdown for metric_name
|
436 |
+
reverse_metric_name_dropdown = gr.Dropdown(
|
437 |
choices=[],
|
438 |
label="Stat name",
|
439 |
multiselect=False,
|
|
|
447 |
reverse_search_results = gr.Textbox(
|
448 |
label="Found datasets",
|
449 |
lines=10,
|
450 |
+
placeholder="Found datasets containing the group/metric name. You can modify the selection after search by removing unwanted lines and clicking Add to selection"
|
451 |
)
|
|
|
452 |
|
453 |
|
454 |
update_button.click(
|
|
|
456 |
inputs=[
|
457 |
base_folder,
|
458 |
datasets_selected,
|
459 |
+
metric_name_dropdown,
|
460 |
grouping_dropdown,
|
461 |
+
log_scale_x_checkbox,
|
462 |
+
log_scale_y_checkbox,
|
463 |
+
rounding,
|
464 |
normalization_checkbox,
|
465 |
top_select,
|
466 |
direction_checkbox,
|
467 |
group_regex,
|
468 |
],
|
469 |
+
outputs=[graph_output, exported_data, export_data_json],
|
470 |
)
|
471 |
|
472 |
+
for inp in [normalization_checkbox, rounding, group_regex, direction_checkbox, top_select, log_scale_x_checkbox, log_scale_y_checkbox]:
|
473 |
+
inp.change(
|
474 |
+
fn=plot_data,
|
475 |
+
inputs=[
|
476 |
+
exported_data,
|
477 |
+
metric_name_dropdown,
|
478 |
+
normalization_checkbox,
|
479 |
+
rounding,
|
480 |
+
grouping_dropdown,
|
481 |
+
top_select,
|
482 |
+
direction_checkbox,
|
483 |
+
group_regex,
|
484 |
+
log_scale_x_checkbox,
|
485 |
+
log_scale_y_checkbox,
|
486 |
+
],
|
487 |
+
outputs=[graph_output],
|
488 |
)
|
489 |
|
490 |
+
|
491 |
+
|
492 |
datasets_selected.change(
|
493 |
fn=fetch_groups,
|
494 |
inputs=[base_folder, datasets_selected, grouping_dropdown],
|
|
|
496 |
)
|
497 |
|
498 |
grouping_dropdown.select(
|
499 |
+
fn=fetch_metrics,
|
500 |
+
inputs=[base_folder, datasets_selected, grouping_dropdown, metric_name_dropdown],
|
501 |
+
outputs=metric_name_dropdown,
|
502 |
)
|
503 |
|
504 |
reverse_grouping_dropdown.select(
|
505 |
+
fn=partial(fetch_metrics, type="union"),
|
506 |
+
inputs=[base_folder, datasets, reverse_grouping_dropdown, reverse_metric_name_dropdown],
|
507 |
+
outputs=reverse_metric_name_dropdown,
|
508 |
)
|
509 |
|
510 |
reverse_search_button.click(
|
511 |
fn=reverse_search,
|
512 |
+
inputs=[base_folder, datasets, reverse_grouping_dropdown, reverse_metric_name_dropdown],
|
513 |
outputs=reverse_search_results,
|
514 |
)
|
515 |
|
|
|
530 |
if not regex:
|
531 |
return
|
532 |
new_dsts = {run for run in all_runs if re.search(regex, run)}
|
533 |
+
if not new_dsts:
|
534 |
+
return gr.update(value=list(selected_runs))
|
535 |
+
dst_union = new_dsts.union(selected_runs or [])
|
536 |
return gr.update(value=list(dst_union))
|
537 |
|
538 |
regex_button.click(
|
|
|
544 |
def update_grouping_options(grouping):
|
545 |
if grouping == "histogram":
|
546 |
return {
|
547 |
+
normalization_checkbox: gr.Column(visible=True),
|
548 |
group_choices: gr.Column(visible=False),
|
549 |
}
|
550 |
else:
|
551 |
return {
|
552 |
+
normalization_checkbox: gr.Column(visible=False),
|
553 |
group_choices: gr.Column(visible=True),
|
554 |
}
|
555 |
|
556 |
grouping_dropdown.select(
|
557 |
fn=update_grouping_options,
|
558 |
inputs=[grouping_dropdown],
|
559 |
+
outputs=[normalization_checkbox, group_choices],
|
560 |
)
|
561 |
|
562 |
|