regex + folder definition + export
Browse files
app.py
CHANGED
@@ -1,15 +1,22 @@
|
|
|
|
|
|
1 |
from functools import partial
|
2 |
import json
|
3 |
from pathlib import Path
|
|
|
|
|
|
|
4 |
import gradio as gr
|
5 |
|
6 |
from collections import defaultdict
|
7 |
-
import fsspec.config
|
8 |
-
import math
|
9 |
from datatrove.io import DataFolder, get_datafolder
|
|
|
10 |
from datatrove.utils.stats import MetricStatsDict
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
BASE_DATA_FOLDER = get_datafolder("s3://fineweb-stats/summary/")
|
13 |
LOG_SCALE_STATS = {
|
14 |
"length",
|
15 |
"n_lines",
|
@@ -18,35 +25,10 @@ LOG_SCALE_STATS = {
|
|
18 |
"avg_words_per_line",
|
19 |
"pages_with_lorem_ipsum",
|
20 |
}
|
21 |
-
colors = list(
|
22 |
-
[
|
23 |
-
"rgba(31, 119, 180, 0.5)",
|
24 |
-
"rgba(255, 127, 14, 0.5)",
|
25 |
-
"rgba(44, 160, 44, 0.5)",
|
26 |
-
"rgba(214, 39, 40, 0.5)",
|
27 |
-
"rgba(148, 103, 189, 0.5)",
|
28 |
-
"rgba(227, 119, 194, 0.5)",
|
29 |
-
"rgba(127, 127, 127, 0.5)",
|
30 |
-
"rgba(188, 189, 34, 0.5)",
|
31 |
-
"rgba(23, 190, 207, 0.5)",
|
32 |
-
"rgba(255, 193, 7, 0.5)",
|
33 |
-
"rgba(40, 167, 69, 0.5)",
|
34 |
-
"rgba(23, 162, 184, 0.5)",
|
35 |
-
"rgba(108, 117, 125, 0.5)",
|
36 |
-
"rgba(0, 123, 255, 0.5)",
|
37 |
-
"rgba(220, 53, 69, 0.5)",
|
38 |
-
"rgba(255, 159, 67, 0.5)",
|
39 |
-
"rgba(255, 87, 34, 0.5)",
|
40 |
-
"rgba(41, 182, 246, 0.5)",
|
41 |
-
"rgba(142, 36, 170, 0.5)",
|
42 |
-
"rgba(0, 188, 212, 0.5)",
|
43 |
-
"rgba(255, 235, 59, 0.5)",
|
44 |
-
"rgba(156, 39, 176, 0.5)",
|
45 |
-
]
|
46 |
-
)
|
47 |
|
48 |
|
49 |
def find_folders(base_folder, path):
|
|
|
50 |
return sorted(
|
51 |
[
|
52 |
folder["name"]
|
@@ -56,9 +38,10 @@ def find_folders(base_folder, path):
|
|
56 |
)
|
57 |
|
58 |
|
59 |
-
def find_stats_folders(base_folder:
|
|
|
60 |
# First find all stats-merged.json using globing for stats-merged.json
|
61 |
-
stats_merged =
|
62 |
|
63 |
# Then for each of stats.merged take the all but last two parts of the path (grouping/stat_name)
|
64 |
stats_folders = [str(Path(x).parent.parent.parent) for x in stats_merged]
|
@@ -66,14 +49,25 @@ def find_stats_folders(base_folder: DataFolder):
|
|
66 |
return sorted(list(set(stats_folders)))
|
67 |
|
68 |
|
69 |
-
|
|
|
|
|
70 |
|
71 |
|
72 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
GROUPS = [
|
74 |
-
[Path(x).name for x in find_folders(
|
75 |
]
|
76 |
-
# DO the intersection
|
77 |
if len(GROUPS) == 0:
|
78 |
return gr.update(choices=[], value=None)
|
79 |
|
@@ -84,13 +78,13 @@ def fetch_groups(runs, old_groups):
|
|
84 |
value = value[0] if value else None
|
85 |
|
86 |
# now take the intersection of all grups
|
87 |
-
return gr.update(choices=list(new_choices), value=value)
|
88 |
|
89 |
|
90 |
-
def fetch_stats(
|
91 |
STATS = [
|
92 |
-
[Path(x).name for x in find_folders(
|
93 |
-
for run in
|
94 |
]
|
95 |
if len(STATS) == 0:
|
96 |
return gr.update(choices=[], value=None)
|
@@ -101,21 +95,21 @@ def fetch_stats(runs, group, old_stats):
|
|
101 |
value = list(set.intersection(new_possibles_choices, {old_stats}))
|
102 |
value = value[0] if value else None
|
103 |
|
104 |
-
return gr.update(choices=list(new_possibles_choices), value=value)
|
105 |
|
106 |
|
107 |
-
def load_stats(path, stat_name, group_by):
|
108 |
-
|
|
|
109 |
f"{path}/{group_by}/{stat_name}/stats-merged.json",
|
110 |
-
filecache={"cache_storage": "/tmp/files"},
|
111 |
) as f:
|
112 |
json_stat = json.load(f)
|
113 |
# No idea why this is necessary, but it is, otheriwse the Metric StatsDict is malforme
|
114 |
return MetricStatsDict() + MetricStatsDict(init=json_stat)
|
115 |
|
116 |
|
117 |
-
def prepare_non_grouped_data(
|
118 |
-
stats = load_stats(
|
119 |
stats_rounded = defaultdict(lambda: 0)
|
120 |
for key, value in stats.items():
|
121 |
stats_rounded[float(key)] += value.total
|
@@ -125,10 +119,10 @@ def prepare_non_grouped_data(path, stat_name, grouping, normalization):
|
|
125 |
return stats_rounded
|
126 |
|
127 |
|
128 |
-
def prepare_grouped_data(
|
129 |
import heapq
|
130 |
|
131 |
-
stats = load_stats(
|
132 |
|
133 |
means = {key: value.mean for key, value in stats.items()}
|
134 |
|
@@ -136,13 +130,7 @@ def prepare_grouped_data(path, stat_name, grouping, top_k, direction):
|
|
136 |
if direction == "Top":
|
137 |
keys = heapq.nlargest(top_k, means, key=means.get)
|
138 |
elif direction == "Most frequent (n_docs)":
|
139 |
-
|
140 |
-
totals = {key: value.total for key, value in n_docs.items()}
|
141 |
-
keys = heapq.nlargest(top_k, totals, key=totals.get)
|
142 |
-
|
143 |
-
elif direction == "Most frequent (length)":
|
144 |
-
n_docs = load_stats(path, "length", grouping)
|
145 |
-
totals = {key: value.total for key, value in n_docs.items()}
|
146 |
keys = heapq.nlargest(top_k, totals, key=totals.get)
|
147 |
else:
|
148 |
keys = heapq.nsmallest(top_k, means, key=means.get)
|
@@ -150,17 +138,29 @@ def prepare_grouped_data(path, stat_name, grouping, top_k, direction):
|
|
150 |
return [(key, means[key]) for key in keys]
|
151 |
|
152 |
|
153 |
-
|
154 |
-
|
155 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
|
157 |
|
158 |
def plot_scatter(
|
159 |
-
histograms: dict[str, dict[float, float]],
|
|
|
|
|
|
|
160 |
):
|
161 |
fig = go.Figure()
|
162 |
|
163 |
-
for i, (name, histogram) in enumerate(histograms.items()):
|
164 |
if all(isinstance(k, str) for k in histogram.keys()):
|
165 |
x = [k for k, v in sorted(histogram.items(), key=lambda item: item[1])]
|
166 |
else:
|
@@ -174,7 +174,7 @@ def plot_scatter(
|
|
174 |
y=y,
|
175 |
mode="lines",
|
176 |
name=name,
|
177 |
-
|
178 |
)
|
179 |
)
|
180 |
|
@@ -194,14 +194,18 @@ def plot_scatter(
|
|
194 |
return fig
|
195 |
|
196 |
|
197 |
-
def plot_bars(
|
|
|
|
|
|
|
|
|
198 |
fig = go.Figure()
|
199 |
|
200 |
-
for i, (name, histogram) in enumerate(histograms.items()):
|
201 |
x = [k for k, v in histogram]
|
202 |
y = [v for k, v in histogram]
|
203 |
|
204 |
-
fig.add_trace(go.Bar(x=x, y=y, name=name,
|
205 |
|
206 |
fig.update_layout(
|
207 |
title=f"Bar Plots for {stat_name}",
|
@@ -217,9 +221,16 @@ def plot_bars(histograms: dict[str, list[tuple[str, float]]], stat_name: str):
|
|
217 |
|
218 |
|
219 |
def update_graph(
|
220 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
221 |
):
|
222 |
-
if len(
|
223 |
return None
|
224 |
# Placeholder for logic to rerender the graph based on the inputs
|
225 |
prepare_fc = (
|
@@ -233,25 +244,48 @@ def update_graph(
|
|
233 |
else plot_bars
|
234 |
)
|
235 |
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
240 |
|
241 |
-
|
242 |
-
return graph_fc(histograms, stat_name)
|
243 |
|
244 |
|
245 |
# Create the Gradio interface
|
246 |
with gr.Blocks() as demo:
|
|
|
|
|
247 |
with gr.Row():
|
248 |
with gr.Column(scale=2):
|
249 |
# Define the multiselect for crawls
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
255 |
# add a readme description
|
256 |
readme_description = gr.Markdown(
|
257 |
label="Readme",
|
@@ -283,6 +317,7 @@ Groupings:
|
|
283 |
label="Stat name",
|
284 |
multiselect=False,
|
285 |
)
|
|
|
286 |
with gr.Row(visible=False) as histogram_choices:
|
287 |
normalization_checkbox = gr.Checkbox(
|
288 |
label="Normalize",
|
@@ -301,11 +336,15 @@ Groupings:
|
|
301 |
"Top",
|
302 |
"Bottom",
|
303 |
"Most frequent (n_docs)",
|
304 |
-
"Most frequent (length)",
|
305 |
],
|
|
|
306 |
)
|
307 |
|
308 |
update_button = gr.Button("Update Graph", variant="primary")
|
|
|
|
|
|
|
|
|
309 |
with gr.Row():
|
310 |
# Define the graph output
|
311 |
graph_output = gr.Plot(label="Graph")
|
@@ -313,28 +352,54 @@ Groupings:
|
|
313 |
update_button.click(
|
314 |
fn=update_graph,
|
315 |
inputs=[
|
316 |
-
|
|
|
317 |
stat_name_dropdown,
|
318 |
grouping_dropdown,
|
319 |
normalization_checkbox,
|
320 |
top_select,
|
321 |
direction_checkbox,
|
322 |
],
|
323 |
-
outputs=graph_output,
|
|
|
|
|
|
|
|
|
|
|
|
|
324 |
)
|
325 |
|
326 |
-
|
327 |
fn=fetch_groups,
|
328 |
-
inputs=[
|
329 |
outputs=grouping_dropdown,
|
330 |
)
|
331 |
|
332 |
grouping_dropdown.select(
|
333 |
fn=fetch_stats,
|
334 |
-
inputs=[
|
335 |
outputs=stat_name_dropdown,
|
336 |
)
|
337 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
338 |
def update_grouping_options(grouping):
|
339 |
if grouping == "histogram":
|
340 |
return {
|
|
|
1 |
+
from concurrent.futures import ThreadPoolExecutor
|
2 |
+
import enum
|
3 |
from functools import partial
|
4 |
import json
|
5 |
from pathlib import Path
|
6 |
+
import re
|
7 |
+
import tempfile
|
8 |
+
from typing import Literal
|
9 |
import gradio as gr
|
10 |
|
11 |
from collections import defaultdict
|
|
|
|
|
12 |
from datatrove.io import DataFolder, get_datafolder
|
13 |
+
import plotly.graph_objects as go
|
14 |
from datatrove.utils.stats import MetricStatsDict
|
15 |
+
import plotly.express as px
|
16 |
+
|
17 |
+
import gradio as gr
|
18 |
+
PARTITION_OPTIONS = Literal[ "Top", "Bottom", "Most frequent (n_docs)"]
|
19 |
|
|
|
20 |
LOG_SCALE_STATS = {
|
21 |
"length",
|
22 |
"n_lines",
|
|
|
25 |
"avg_words_per_line",
|
26 |
"pages_with_lorem_ipsum",
|
27 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
|
30 |
def find_folders(base_folder, path):
|
31 |
+
base_folder = get_datafolder(base_folder)
|
32 |
return sorted(
|
33 |
[
|
34 |
folder["name"]
|
|
|
38 |
)
|
39 |
|
40 |
|
41 |
+
def find_stats_folders(base_folder: str):
|
42 |
+
base_data_folder = get_datafolder(base_folder)
|
43 |
# First find all stats-merged.json using globing for stats-merged.json
|
44 |
+
stats_merged = base_data_folder.glob("**/stats-merged.json")
|
45 |
|
46 |
# Then for each of stats.merged take the all but last two parts of the path (grouping/stat_name)
|
47 |
stats_folders = [str(Path(x).parent.parent.parent) for x in stats_merged]
|
|
|
49 |
return sorted(list(set(stats_folders)))
|
50 |
|
51 |
|
52 |
+
def fetch_runs(base_folder: str):
|
53 |
+
runs = sorted(find_stats_folders(base_folder))
|
54 |
+
return runs, gr.update(choices=runs, value=None)
|
55 |
|
56 |
|
57 |
+
def export_data(exported_data):
|
58 |
+
if not exported_data:
|
59 |
+
return None
|
60 |
+
# Assuming exported_data is a dictionary where the key is the dataset name and the value is the data to be exported
|
61 |
+
with tempfile.NamedTemporaryFile(mode="w", delete=False, suffix=".json") as temp:
|
62 |
+
json.dump(exported_data, temp)
|
63 |
+
temp_path = temp.name
|
64 |
+
return gr.update(visible=True, value=temp_path)
|
65 |
+
|
66 |
+
|
67 |
+
def fetch_groups(base_folder, datasets, old_groups):
|
68 |
GROUPS = [
|
69 |
+
[Path(x).name for x in find_folders(base_folder, run)] for run in datasets
|
70 |
]
|
|
|
71 |
if len(GROUPS) == 0:
|
72 |
return gr.update(choices=[], value=None)
|
73 |
|
|
|
78 |
value = value[0] if value else None
|
79 |
|
80 |
# now take the intersection of all grups
|
81 |
+
return gr.update(choices=sorted(list(new_choices)), value=value)
|
82 |
|
83 |
|
84 |
+
def fetch_stats(base_folder, datasets, group, old_stats):
|
85 |
STATS = [
|
86 |
+
[Path(x).name for x in find_folders(base_folder, f"{run}/{group}")]
|
87 |
+
for run in datasets
|
88 |
]
|
89 |
if len(STATS) == 0:
|
90 |
return gr.update(choices=[], value=None)
|
|
|
95 |
value = list(set.intersection(new_possibles_choices, {old_stats}))
|
96 |
value = value[0] if value else None
|
97 |
|
98 |
+
return gr.update(choices=sorted(list(new_possibles_choices)), value=value)
|
99 |
|
100 |
|
101 |
+
def load_stats(base_folder, path, stat_name, group_by):
|
102 |
+
base_folder = get_datafolder(base_folder)
|
103 |
+
with base_folder.open(
|
104 |
f"{path}/{group_by}/{stat_name}/stats-merged.json",
|
|
|
105 |
) as f:
|
106 |
json_stat = json.load(f)
|
107 |
# No idea why this is necessary, but it is, otheriwse the Metric StatsDict is malforme
|
108 |
return MetricStatsDict() + MetricStatsDict(init=json_stat)
|
109 |
|
110 |
|
111 |
+
def prepare_non_grouped_data(dataset_path, base_folder, grouping, stat_name, normalization):
|
112 |
+
stats = load_stats(base_folder, dataset_path, stat_name, grouping)
|
113 |
stats_rounded = defaultdict(lambda: 0)
|
114 |
for key, value in stats.items():
|
115 |
stats_rounded[float(key)] += value.total
|
|
|
119 |
return stats_rounded
|
120 |
|
121 |
|
122 |
+
def prepare_grouped_data(dataset_path, base_folder, grouping, stat_name, top_k, direction: PARTITION_OPTIONS):
|
123 |
import heapq
|
124 |
|
125 |
+
stats = load_stats(base_folder, dataset_path, stat_name, grouping)
|
126 |
|
127 |
means = {key: value.mean for key, value in stats.items()}
|
128 |
|
|
|
130 |
if direction == "Top":
|
131 |
keys = heapq.nlargest(top_k, means, key=means.get)
|
132 |
elif direction == "Most frequent (n_docs)":
|
133 |
+
totals = {key: value.n for key, value in stats.items()}
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
keys = heapq.nlargest(top_k, totals, key=totals.get)
|
135 |
else:
|
136 |
keys = heapq.nsmallest(top_k, means, key=means.get)
|
|
|
138 |
return [(key, means[key]) for key in keys]
|
139 |
|
140 |
|
141 |
+
def set_alpha(color, alpha):
|
142 |
+
"""
|
143 |
+
Takes a hex color and returns
|
144 |
+
rgba(r, g, b, a)
|
145 |
+
"""
|
146 |
+
if color.startswith('#'):
|
147 |
+
r, g, b = int(color[1:3], 16), int(color[3:5], 16), int(color[5:7], 16)
|
148 |
+
else:
|
149 |
+
r, g, b = 0, 0, 0 # Fallback to black if the color format is not recognized
|
150 |
+
return f"rgba({r}, {g}, {b}, {alpha})"
|
151 |
+
|
152 |
+
|
153 |
|
154 |
|
155 |
def plot_scatter(
|
156 |
+
histograms: dict[str, dict[float, float]],
|
157 |
+
stat_name: str,
|
158 |
+
normalization: bool,
|
159 |
+
progress: gr.Progress,
|
160 |
):
|
161 |
fig = go.Figure()
|
162 |
|
163 |
+
for i, (name, histogram) in enumerate(progress.tqdm(histograms.items(), total=len(histograms), desc="Plotting...")):
|
164 |
if all(isinstance(k, str) for k in histogram.keys()):
|
165 |
x = [k for k, v in sorted(histogram.items(), key=lambda item: item[1])]
|
166 |
else:
|
|
|
174 |
y=y,
|
175 |
mode="lines",
|
176 |
name=name,
|
177 |
+
marker=dict(color=set_alpha(px.colors.qualitative.Plotly[i % len(px.colors.qualitative.Plotly)], 0.5)),
|
178 |
)
|
179 |
)
|
180 |
|
|
|
194 |
return fig
|
195 |
|
196 |
|
197 |
+
def plot_bars(
|
198 |
+
histograms: dict[str, list[tuple[str, float]]],
|
199 |
+
stat_name: str,
|
200 |
+
progress: gr.Progress,
|
201 |
+
):
|
202 |
fig = go.Figure()
|
203 |
|
204 |
+
for i, (name, histogram) in enumerate(progress.tqdm(histograms.items(), total=len(histograms), desc="Plotting...")):
|
205 |
x = [k for k, v in histogram]
|
206 |
y = [v for k, v in histogram]
|
207 |
|
208 |
+
fig.add_trace(go.Bar(x=x, y=y, name=name, marker=dict(color=set_alpha(px.colors.qualitative.Plotly[i % len(px.colors.qualitative.Plotly)], 0.5))))
|
209 |
|
210 |
fig.update_layout(
|
211 |
title=f"Bar Plots for {stat_name}",
|
|
|
221 |
|
222 |
|
223 |
def update_graph(
|
224 |
+
base_folder,
|
225 |
+
datasets,
|
226 |
+
stat_name,
|
227 |
+
grouping,
|
228 |
+
normalization,
|
229 |
+
top_k,
|
230 |
+
direction,
|
231 |
+
progress=gr.Progress(),
|
232 |
):
|
233 |
+
if len(datasets) <= 0 or not stat_name or not grouping:
|
234 |
return None
|
235 |
# Placeholder for logic to rerender the graph based on the inputs
|
236 |
prepare_fc = (
|
|
|
244 |
else plot_bars
|
245 |
)
|
246 |
|
247 |
+
with ThreadPoolExecutor() as pool:
|
248 |
+
data = list(
|
249 |
+
progress.tqdm(
|
250 |
+
pool.map(
|
251 |
+
partial(prepare_fc, base_folder=base_folder, stat_name=stat_name, grouping=grouping),
|
252 |
+
datasets,
|
253 |
+
),
|
254 |
+
total=len(datasets),
|
255 |
+
desc="Loading data...",
|
256 |
+
)
|
257 |
+
)
|
258 |
+
|
259 |
+
histograms = {path: result for path, result in zip(datasets, data)}
|
260 |
|
261 |
+
return graph_fc(histograms=histograms, stat_name=stat_name, progress=progress), histograms, gr.update(visible=True)
|
|
|
262 |
|
263 |
|
264 |
# Create the Gradio interface
|
265 |
with gr.Blocks() as demo:
|
266 |
+
datasets = gr.State([])
|
267 |
+
exported_data = gr.State([])
|
268 |
with gr.Row():
|
269 |
with gr.Column(scale=2):
|
270 |
# Define the multiselect for crawls
|
271 |
+
with gr.Row():
|
272 |
+
with gr.Column(scale=1):
|
273 |
+
stats_folder = gr.Textbox(
|
274 |
+
label="Stats Location",
|
275 |
+
value="s3://fineweb-stats/summary/",
|
276 |
+
)
|
277 |
+
datasets_refetch = gr.Button("Fetch Datasets")
|
278 |
+
|
279 |
+
with gr.Column(scale=1):
|
280 |
+
regex_select = gr.Text(label="Regex select datasets", value=".*")
|
281 |
+
regex_button = gr.Button("Filter")
|
282 |
+
with gr.Row():
|
283 |
+
datasets_selected = gr.Dropdown(
|
284 |
+
choices=[],
|
285 |
+
label="Datasets",
|
286 |
+
multiselect=True,
|
287 |
+
)
|
288 |
+
|
289 |
# add a readme description
|
290 |
readme_description = gr.Markdown(
|
291 |
label="Readme",
|
|
|
317 |
label="Stat name",
|
318 |
multiselect=False,
|
319 |
)
|
320 |
+
|
321 |
with gr.Row(visible=False) as histogram_choices:
|
322 |
normalization_checkbox = gr.Checkbox(
|
323 |
label="Normalize",
|
|
|
336 |
"Top",
|
337 |
"Bottom",
|
338 |
"Most frequent (n_docs)",
|
|
|
339 |
],
|
340 |
+
value="Top",
|
341 |
)
|
342 |
|
343 |
update_button = gr.Button("Update Graph", variant="primary")
|
344 |
+
with gr.Row():
|
345 |
+
export_data_button = gr.Button("Export data", visible=False)
|
346 |
+
export_data_json = gr.File(visible=False)
|
347 |
+
|
348 |
with gr.Row():
|
349 |
# Define the graph output
|
350 |
graph_output = gr.Plot(label="Graph")
|
|
|
352 |
update_button.click(
|
353 |
fn=update_graph,
|
354 |
inputs=[
|
355 |
+
stats_folder,
|
356 |
+
datasets_selected,
|
357 |
stat_name_dropdown,
|
358 |
grouping_dropdown,
|
359 |
normalization_checkbox,
|
360 |
top_select,
|
361 |
direction_checkbox,
|
362 |
],
|
363 |
+
outputs=[graph_output, exported_data, export_data_button],
|
364 |
+
)
|
365 |
+
|
366 |
+
export_data_button.click(
|
367 |
+
fn=export_data,
|
368 |
+
inputs=[exported_data],
|
369 |
+
outputs=export_data_json,
|
370 |
)
|
371 |
|
372 |
+
datasets_selected.select(
|
373 |
fn=fetch_groups,
|
374 |
+
inputs=[stats_folder, datasets_selected, grouping_dropdown],
|
375 |
outputs=grouping_dropdown,
|
376 |
)
|
377 |
|
378 |
grouping_dropdown.select(
|
379 |
fn=fetch_stats,
|
380 |
+
inputs=[stats_folder, datasets_selected, grouping_dropdown, stat_name_dropdown],
|
381 |
outputs=stat_name_dropdown,
|
382 |
)
|
383 |
|
384 |
+
datasets_refetch.click(
|
385 |
+
fn=fetch_runs,
|
386 |
+
inputs=[stats_folder],
|
387 |
+
outputs=[datasets, datasets_selected],
|
388 |
+
)
|
389 |
+
|
390 |
+
def update_datasets_with_regex(regex, selected_runs, all_runs):
|
391 |
+
if not regex:
|
392 |
+
return
|
393 |
+
new_dsts = {run for run in all_runs if re.search(regex, run)}
|
394 |
+
dst_union = new_dsts.union(selected_runs)
|
395 |
+
return gr.update(value=list(dst_union))
|
396 |
+
|
397 |
+
regex_button.click(
|
398 |
+
fn=update_datasets_with_regex,
|
399 |
+
inputs=[regex_select, datasets_selected, datasets],
|
400 |
+
outputs=datasets_selected,
|
401 |
+
)
|
402 |
+
|
403 |
def update_grouping_options(grouping):
|
404 |
if grouping == "histogram":
|
405 |
return {
|