add readme
Browse files
app.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import json
|
2 |
from pathlib import Path
|
3 |
import gradio as gr
|
@@ -9,6 +10,13 @@ from datatrove.io import DataFolder, get_datafolder
|
|
9 |
from datatrove.utils.stats import MetricStatsDict
|
10 |
|
11 |
BASE_DATA_FOLDER = get_datafolder("s3://fineweb-stats/summary/")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
|
14 |
def find_folders(base_folder, path):
|
@@ -32,10 +40,41 @@ def find_stats_folders(base_folder: DataFolder):
|
|
32 |
|
33 |
|
34 |
RUNS = sorted(find_stats_folders(BASE_DATA_FOLDER))
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
|
41 |
def load_stats(path, stat_name, group_by):
|
@@ -48,23 +87,29 @@ def load_stats(path, stat_name, group_by):
|
|
48 |
return MetricStatsDict() + MetricStatsDict(init=json_stat)
|
49 |
|
50 |
|
51 |
-
def prepare_non_grouped_data(stats: MetricStatsDict):
|
52 |
-
|
53 |
stats_rounded = defaultdict(lambda: 0)
|
54 |
for key, value in stats.items():
|
55 |
stats_rounded[float(key)] += value.total
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
return stats_rounded
|
60 |
|
61 |
|
62 |
-
def prepare_grouped_data(stats: MetricStatsDict, top_k
|
|
|
|
|
63 |
means = {key: value.mean for key, value in stats.items()}
|
64 |
|
65 |
-
#
|
66 |
-
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
|
70 |
import math
|
@@ -72,7 +117,9 @@ import plotly.graph_objects as go
|
|
72 |
from plotly.offline import plot
|
73 |
|
74 |
|
75 |
-
def plot_scatter(
|
|
|
|
|
76 |
fig = go.Figure()
|
77 |
|
78 |
colors = iter(
|
@@ -82,6 +129,10 @@ def plot_scatter(histograms: dict[str, dict[float, float]], stat_name: str):
|
|
82 |
"rgba(44, 160, 44, 0.5)",
|
83 |
"rgba(214, 39, 40, 0.5)",
|
84 |
"rgba(148, 103, 189, 0.5)",
|
|
|
|
|
|
|
|
|
85 |
]
|
86 |
)
|
87 |
|
@@ -97,12 +148,15 @@ def plot_scatter(histograms: dict[str, dict[float, float]], stat_name: str):
|
|
97 |
go.Scatter(x=x, y=y, mode="lines", name=name, line=dict(color=next(colors)))
|
98 |
)
|
99 |
|
|
|
|
|
|
|
100 |
fig.update_layout(
|
101 |
title=f"Line Plots for {stat_name}",
|
102 |
xaxis_title=stat_name,
|
103 |
-
yaxis_title=
|
104 |
-
xaxis_type=
|
105 |
-
width=
|
106 |
height=600,
|
107 |
)
|
108 |
|
@@ -121,23 +175,31 @@ def plot_bars(histograms: dict[str, dict[float, float]], stat_name: str):
|
|
121 |
fig.update_layout(
|
122 |
title=f"Bar Plots for {stat_name}",
|
123 |
xaxis_title=stat_name,
|
124 |
-
yaxis_title="
|
125 |
autosize=True,
|
126 |
-
width=
|
127 |
height=600,
|
128 |
)
|
129 |
|
130 |
return fig
|
131 |
|
132 |
|
133 |
-
def update_graph(
|
|
|
|
|
134 |
if len(multiselect_crawls) <= 0 or not stat_name or not grouping:
|
135 |
return None
|
136 |
# Placeholder for logic to rerender the graph based on the inputs
|
137 |
prepare_fc = (
|
138 |
-
prepare_non_grouped_data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
)
|
140 |
-
graph_fc = plot_scatter if grouping == "histogram" else plot_bars
|
141 |
|
142 |
print("Loading stats")
|
143 |
histograms = {
|
@@ -159,19 +221,54 @@ with gr.Blocks() as demo:
|
|
159 |
label="Multiselect for crawls",
|
160 |
multiselect=True,
|
161 |
)
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
)
|
|
|
169 |
# Define the dropdown for grouping
|
170 |
grouping_dropdown = gr.Dropdown(
|
171 |
-
choices=
|
172 |
label="Grouping",
|
173 |
multiselect=False,
|
174 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
update_button = gr.Button("Update Graph", variant="primary")
|
176 |
with gr.Row():
|
177 |
# Define the graph output
|
@@ -179,10 +276,47 @@ with gr.Blocks() as demo:
|
|
179 |
|
180 |
update_button.click(
|
181 |
fn=update_graph,
|
182 |
-
inputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
outputs=graph_output,
|
184 |
)
|
185 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
186 |
|
187 |
# Launch the application
|
188 |
if __name__ == "__main__":
|
|
|
1 |
+
from functools import partial
|
2 |
import json
|
3 |
from pathlib import Path
|
4 |
import gradio as gr
|
|
|
10 |
from datatrove.utils.stats import MetricStatsDict
|
11 |
|
12 |
BASE_DATA_FOLDER = get_datafolder("s3://fineweb-stats/summary/")
|
13 |
+
LOG_SCALE_STATS = {
|
14 |
+
"length",
|
15 |
+
"n_lines",
|
16 |
+
"n_docs",
|
17 |
+
"avg_words_per_line",
|
18 |
+
"pages_with_lorem_ipsum",
|
19 |
+
}
|
20 |
|
21 |
|
22 |
def find_folders(base_folder, path):
|
|
|
40 |
|
41 |
|
42 |
RUNS = sorted(find_stats_folders(BASE_DATA_FOLDER))
|
43 |
+
|
44 |
+
|
45 |
+
def fetch_groups(runs, old_groups):
|
46 |
+
GROUPS = [
|
47 |
+
[Path(x).name for x in find_folders(BASE_DATA_FOLDER, run)] for run in runs
|
48 |
+
]
|
49 |
+
# DO the intersection
|
50 |
+
if len(GROUPS) == 0:
|
51 |
+
return gr.update(choices=[], value=None)
|
52 |
+
|
53 |
+
new_choices = set.intersection(*(set(g) for g in GROUPS))
|
54 |
+
value = None
|
55 |
+
if old_groups:
|
56 |
+
value = list(set.intersection(new_choices, {old_groups}))
|
57 |
+
value = value[0] if value else None
|
58 |
+
|
59 |
+
# now take the intersection of all grups
|
60 |
+
return gr.update(choices=list(new_choices), value=value)
|
61 |
+
|
62 |
+
|
63 |
+
def fetch_stats(runs, group, old_stats):
|
64 |
+
STATS = [
|
65 |
+
[Path(x).name for x in find_folders(BASE_DATA_FOLDER, f"{run}/{group}")]
|
66 |
+
for run in runs
|
67 |
+
]
|
68 |
+
if len(STATS) == 0:
|
69 |
+
return gr.update(choices=[], value=None)
|
70 |
+
|
71 |
+
new_possibles_choices = set.intersection(*(set(s) for s in STATS))
|
72 |
+
value = None
|
73 |
+
if old_stats:
|
74 |
+
value = list(set.intersection(new_possibles_choices, {old_stats}))
|
75 |
+
value = value[0] if value else None
|
76 |
+
|
77 |
+
return gr.update(choices=list(new_possibles_choices), value=value)
|
78 |
|
79 |
|
80 |
def load_stats(path, stat_name, group_by):
|
|
|
87 |
return MetricStatsDict() + MetricStatsDict(init=json_stat)
|
88 |
|
89 |
|
90 |
+
def prepare_non_grouped_data(stats: MetricStatsDict, normalization):
|
|
|
91 |
stats_rounded = defaultdict(lambda: 0)
|
92 |
for key, value in stats.items():
|
93 |
stats_rounded[float(key)] += value.total
|
94 |
+
if normalization:
|
95 |
+
normalizer = sum(stats_rounded.values())
|
96 |
+
stats_rounded = {k: v / normalizer for k, v in stats_rounded.items()}
|
97 |
return stats_rounded
|
98 |
|
99 |
|
100 |
+
def prepare_grouped_data(stats: MetricStatsDict, top_k, direction):
|
101 |
+
import heapq
|
102 |
+
|
103 |
means = {key: value.mean for key, value in stats.items()}
|
104 |
|
105 |
+
# Use heap to get top_k keys
|
106 |
+
if direction == "Top":
|
107 |
+
keys = heapq.nlargest(top_k, means, key=means.get)
|
108 |
+
else:
|
109 |
+
keys = heapq.nsmallest(top_k, means, key=means.get)
|
110 |
+
print(keys)
|
111 |
+
|
112 |
+
return {key: means[key] for key in keys}
|
113 |
|
114 |
|
115 |
import math
|
|
|
117 |
from plotly.offline import plot
|
118 |
|
119 |
|
120 |
+
def plot_scatter(
|
121 |
+
histograms: dict[str, dict[float, float]], stat_name: str, normalization: bool
|
122 |
+
):
|
123 |
fig = go.Figure()
|
124 |
|
125 |
colors = iter(
|
|
|
129 |
"rgba(44, 160, 44, 0.5)",
|
130 |
"rgba(214, 39, 40, 0.5)",
|
131 |
"rgba(148, 103, 189, 0.5)",
|
132 |
+
"rgba(227, 119, 194, 0.5)",
|
133 |
+
"rgba(127, 127, 127, 0.5)",
|
134 |
+
"rgba(188, 189, 34, 0.5)",
|
135 |
+
"rgba(23, 190, 207, 0.5)",
|
136 |
]
|
137 |
)
|
138 |
|
|
|
148 |
go.Scatter(x=x, y=y, mode="lines", name=name, line=dict(color=next(colors)))
|
149 |
)
|
150 |
|
151 |
+
xaxis_scale = "log" if stat_name in LOG_SCALE_STATS else "linear"
|
152 |
+
yaxis_title = "Frequency" if normalization else "Total"
|
153 |
+
|
154 |
fig.update_layout(
|
155 |
title=f"Line Plots for {stat_name}",
|
156 |
xaxis_title=stat_name,
|
157 |
+
yaxis_title=yaxis_title,
|
158 |
+
xaxis_type=xaxis_scale,
|
159 |
+
width=1200,
|
160 |
height=600,
|
161 |
)
|
162 |
|
|
|
175 |
fig.update_layout(
|
176 |
title=f"Bar Plots for {stat_name}",
|
177 |
xaxis_title=stat_name,
|
178 |
+
yaxis_title="Mean value",
|
179 |
autosize=True,
|
180 |
+
width=1200,
|
181 |
height=600,
|
182 |
)
|
183 |
|
184 |
return fig
|
185 |
|
186 |
|
187 |
+
def update_graph(
|
188 |
+
multiselect_crawls, stat_name, grouping, normalization, top_k, direction
|
189 |
+
):
|
190 |
if len(multiselect_crawls) <= 0 or not stat_name or not grouping:
|
191 |
return None
|
192 |
# Placeholder for logic to rerender the graph based on the inputs
|
193 |
prepare_fc = (
|
194 |
+
partial(prepare_non_grouped_data, normalization=normalization)
|
195 |
+
if grouping == "histogram"
|
196 |
+
else partial(prepare_grouped_data, top_k=top_k, direction=direction)
|
197 |
+
)
|
198 |
+
graph_fc = (
|
199 |
+
partial(plot_scatter, normalization=normalization)
|
200 |
+
if grouping == "histogram"
|
201 |
+
else plot_bars
|
202 |
)
|
|
|
203 |
|
204 |
print("Loading stats")
|
205 |
histograms = {
|
|
|
221 |
label="Multiselect for crawls",
|
222 |
multiselect=True,
|
223 |
)
|
224 |
+
# add a readme description
|
225 |
+
readme_description = gr.Markdown(
|
226 |
+
label="Readme",
|
227 |
+
value="""
|
228 |
+
Explaination of the tool:
|
229 |
+
|
230 |
+
Groupings:
|
231 |
+
- histogram: creates a line plot of values with their occurences. If normalization is on, the values are frequencies summing to 1.
|
232 |
+
- (fqdn/suffix): creates a bar plot of the mean values of the stats for full qualied domain name/suffix of domain
|
233 |
+
* k: the number of groups to show
|
234 |
+
* Top/Bottom: the top/bottom k groups are shown
|
235 |
+
- summary: simply shows the average value of given stat for selected crawls
|
236 |
+
|
237 |
+
|
238 |
+
|
239 |
+
|
240 |
+
""",
|
241 |
)
|
242 |
+
with gr.Column(scale=1):
|
243 |
# Define the dropdown for grouping
|
244 |
grouping_dropdown = gr.Dropdown(
|
245 |
+
choices=[],
|
246 |
label="Grouping",
|
247 |
multiselect=False,
|
248 |
)
|
249 |
+
# Define the dropdown for stat_name
|
250 |
+
stat_name_dropdown = gr.Dropdown(
|
251 |
+
choices=[],
|
252 |
+
label="Stat name",
|
253 |
+
multiselect=False,
|
254 |
+
)
|
255 |
+
with gr.Row(visible=False) as histogram_choices:
|
256 |
+
normalization_checkbox = gr.Checkbox(
|
257 |
+
label="Normalize",
|
258 |
+
value=False, # Default value
|
259 |
+
)
|
260 |
+
|
261 |
+
with gr.Row(visible=False) as group_choices:
|
262 |
+
top_select = gr.Number(
|
263 |
+
label="K",
|
264 |
+
value=100,
|
265 |
+
interactive=True,
|
266 |
+
)
|
267 |
+
direction_checkbox = gr.Radio(
|
268 |
+
label="Partition",
|
269 |
+
choices=["Top", "Bottom"],
|
270 |
+
)
|
271 |
+
|
272 |
update_button = gr.Button("Update Graph", variant="primary")
|
273 |
with gr.Row():
|
274 |
# Define the graph output
|
|
|
276 |
|
277 |
update_button.click(
|
278 |
fn=update_graph,
|
279 |
+
inputs=[
|
280 |
+
multiselect_crawls,
|
281 |
+
stat_name_dropdown,
|
282 |
+
grouping_dropdown,
|
283 |
+
normalization_checkbox,
|
284 |
+
top_select,
|
285 |
+
direction_checkbox,
|
286 |
+
],
|
287 |
outputs=graph_output,
|
288 |
)
|
289 |
|
290 |
+
multiselect_crawls.select(
|
291 |
+
fn=fetch_groups,
|
292 |
+
inputs=[multiselect_crawls, grouping_dropdown],
|
293 |
+
outputs=grouping_dropdown,
|
294 |
+
)
|
295 |
+
|
296 |
+
grouping_dropdown.select(
|
297 |
+
fn=fetch_stats,
|
298 |
+
inputs=[multiselect_crawls, grouping_dropdown, stat_name_dropdown],
|
299 |
+
outputs=stat_name_dropdown,
|
300 |
+
)
|
301 |
+
|
302 |
+
def update_grouping_options(grouping):
|
303 |
+
if grouping == "histogram":
|
304 |
+
return {
|
305 |
+
histogram_choices: gr.Column(visible=True),
|
306 |
+
group_choices: gr.Column(visible=False),
|
307 |
+
}
|
308 |
+
else:
|
309 |
+
return {
|
310 |
+
histogram_choices: gr.Column(visible=False),
|
311 |
+
group_choices: gr.Column(visible=True),
|
312 |
+
}
|
313 |
+
|
314 |
+
grouping_dropdown.select(
|
315 |
+
fn=update_grouping_options,
|
316 |
+
inputs=[grouping_dropdown],
|
317 |
+
outputs=[histogram_choices, group_choices],
|
318 |
+
)
|
319 |
+
|
320 |
|
321 |
# Launch the application
|
322 |
if __name__ == "__main__":
|