added cumsum and %
Browse files
app.py
CHANGED
@@ -10,6 +10,7 @@ from pathlib import Path
|
|
10 |
from typing import Literal
|
11 |
|
12 |
import gradio as gr
|
|
|
13 |
import plotly.express as px
|
14 |
import plotly.graph_objects as go
|
15 |
import tenacity
|
@@ -197,6 +198,8 @@ def plot_scatter(
|
|
197 |
log_scale_y: bool,
|
198 |
normalization: bool,
|
199 |
rounding: int,
|
|
|
|
|
200 |
progress: gr.Progress,
|
201 |
):
|
202 |
fig = go.Figure()
|
@@ -207,6 +210,10 @@ def plot_scatter(
|
|
207 |
histogram_prepared = prepare_for_non_grouped_plotting(histogram, normalization, rounding)
|
208 |
x = sorted(histogram_prepared.keys())
|
209 |
y = [histogram_prepared[k] for k in x]
|
|
|
|
|
|
|
|
|
210 |
|
211 |
fig.add_trace(
|
212 |
go.Scatter(
|
@@ -274,6 +281,7 @@ def plot_bars(
|
|
274 |
|
275 |
return fig
|
276 |
|
|
|
277 |
def get_desc(data):
|
278 |
res = {name: list(dt.to_dict().keys()) for name, dt in data.items()}
|
279 |
return "\n".join([
|
@@ -293,6 +301,8 @@ def update_graph(
|
|
293 |
top_k,
|
294 |
direction,
|
295 |
regex,
|
|
|
|
|
296 |
progress=gr.Progress(),
|
297 |
):
|
298 |
if len(datasets) <= 0 or not metric_name or not grouping:
|
@@ -313,15 +323,16 @@ def update_graph(
|
|
313 |
|
314 |
data = {path: result for path, result in zip(datasets, data)}
|
315 |
return plot_data(data, metric_name, normalization, rounding, grouping, top_k, direction, regex, log_scale_x,
|
316 |
-
log_scale_y, progress), data, export_data(data, metric_name), get_desc(data)
|
317 |
|
318 |
|
319 |
def plot_data(data, metric_name, normalization, rounding, grouping, top_k, direction, regex, log_scale_x, log_scale_y,
|
|
|
320 |
progress=gr.Progress()):
|
321 |
if rounding is None or top_k is None:
|
322 |
return None
|
323 |
graph_fc = (
|
324 |
-
partial(plot_scatter, normalization=normalization, rounding=rounding)
|
325 |
if grouping == "histogram"
|
326 |
else partial(plot_bars, top_k=top_k, direction=direction, regex=regex, rounding=rounding)
|
327 |
)
|
@@ -399,6 +410,14 @@ The data might not be 100% representative, due to the sampling and optimistic me
|
|
399 |
|
400 |
with gr.Row():
|
401 |
with gr.Column(scale=1):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
402 |
log_scale_x_checkbox = gr.Checkbox(
|
403 |
label="Log scale x",
|
404 |
value=False,
|
@@ -491,28 +510,33 @@ The data might not be 100% representative, due to the sampling and optimistic me
|
|
491 |
top_select,
|
492 |
direction_checkbox,
|
493 |
group_regex,
|
|
|
|
|
494 |
],
|
495 |
outputs=[graph_output, exported_data, export_data_json, min_max_hist_data],
|
496 |
)
|
497 |
|
498 |
-
|
499 |
-
|
500 |
-
|
501 |
-
|
502 |
-
|
503 |
-
|
504 |
-
|
505 |
-
|
506 |
-
|
507 |
-
|
508 |
-
|
509 |
-
|
510 |
-
|
511 |
-
|
512 |
-
|
513 |
-
|
514 |
-
|
515 |
-
|
|
|
|
|
|
|
516 |
|
517 |
datasets_selected.change(
|
518 |
fn=fetch_groups,
|
|
|
10 |
from typing import Literal
|
11 |
|
12 |
import gradio as gr
|
13 |
+
import numpy as np
|
14 |
import plotly.express as px
|
15 |
import plotly.graph_objects as go
|
16 |
import tenacity
|
|
|
198 |
log_scale_y: bool,
|
199 |
normalization: bool,
|
200 |
rounding: int,
|
201 |
+
cumsum: bool,
|
202 |
+
perc: bool,
|
203 |
progress: gr.Progress,
|
204 |
):
|
205 |
fig = go.Figure()
|
|
|
210 |
histogram_prepared = prepare_for_non_grouped_plotting(histogram, normalization, rounding)
|
211 |
x = sorted(histogram_prepared.keys())
|
212 |
y = [histogram_prepared[k] for k in x]
|
213 |
+
if cumsum:
|
214 |
+
y = np.cumsum(y).tolist()
|
215 |
+
if perc:
|
216 |
+
y = (np.array(y) * 100).tolist()
|
217 |
|
218 |
fig.add_trace(
|
219 |
go.Scatter(
|
|
|
281 |
|
282 |
return fig
|
283 |
|
284 |
+
|
285 |
def get_desc(data):
|
286 |
res = {name: list(dt.to_dict().keys()) for name, dt in data.items()}
|
287 |
return "\n".join([
|
|
|
301 |
top_k,
|
302 |
direction,
|
303 |
regex,
|
304 |
+
cumsum,
|
305 |
+
perc,
|
306 |
progress=gr.Progress(),
|
307 |
):
|
308 |
if len(datasets) <= 0 or not metric_name or not grouping:
|
|
|
323 |
|
324 |
data = {path: result for path, result in zip(datasets, data)}
|
325 |
return plot_data(data, metric_name, normalization, rounding, grouping, top_k, direction, regex, log_scale_x,
|
326 |
+
log_scale_y, cumsum, perc, progress), data, export_data(data, metric_name), get_desc(data)
|
327 |
|
328 |
|
329 |
def plot_data(data, metric_name, normalization, rounding, grouping, top_k, direction, regex, log_scale_x, log_scale_y,
|
330 |
+
cumsum, perc,
|
331 |
progress=gr.Progress()):
|
332 |
if rounding is None or top_k is None:
|
333 |
return None
|
334 |
graph_fc = (
|
335 |
+
partial(plot_scatter, normalization=normalization, rounding=rounding, cumsum=cumsum, perc=perc)
|
336 |
if grouping == "histogram"
|
337 |
else partial(plot_bars, top_k=top_k, direction=direction, regex=regex, rounding=rounding)
|
338 |
)
|
|
|
410 |
|
411 |
with gr.Row():
|
412 |
with gr.Column(scale=1):
|
413 |
+
cumsum_checkbox = gr.Checkbox(
|
414 |
+
label="Cumsum",
|
415 |
+
value=False,
|
416 |
+
)
|
417 |
+
perc_checkbox = gr.Checkbox(
|
418 |
+
label="%",
|
419 |
+
value=False,
|
420 |
+
)
|
421 |
log_scale_x_checkbox = gr.Checkbox(
|
422 |
label="Log scale x",
|
423 |
value=False,
|
|
|
510 |
top_select,
|
511 |
direction_checkbox,
|
512 |
group_regex,
|
513 |
+
cumsum_checkbox,
|
514 |
+
perc_checkbox
|
515 |
],
|
516 |
outputs=[graph_output, exported_data, export_data_json, min_max_hist_data],
|
517 |
)
|
518 |
|
519 |
+
gr.on(
|
520 |
+
triggers=[normalization_checkbox.change, rounding.change, group_regex.change, direction_checkbox.change,
|
521 |
+
top_select.change, log_scale_x_checkbox.change,
|
522 |
+
log_scale_y_checkbox.change, cumsum_checkbox.change, perc_checkbox.change],
|
523 |
+
fn=plot_data,
|
524 |
+
inputs=[
|
525 |
+
exported_data,
|
526 |
+
metric_name_dropdown,
|
527 |
+
normalization_checkbox,
|
528 |
+
rounding,
|
529 |
+
grouping_dropdown,
|
530 |
+
top_select,
|
531 |
+
direction_checkbox,
|
532 |
+
group_regex,
|
533 |
+
log_scale_x_checkbox,
|
534 |
+
log_scale_y_checkbox,
|
535 |
+
cumsum_checkbox,
|
536 |
+
perc_checkbox
|
537 |
+
],
|
538 |
+
outputs=[graph_output],
|
539 |
+
)
|
540 |
|
541 |
datasets_selected.change(
|
542 |
fn=fetch_groups,
|