Spaces:
Running
Running
File size: 13,463 Bytes
2d9c70c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 |
import ast
from collections import defaultdict
from functools import partial
import itertools
import os
import re
from concurrent.futures import ThreadPoolExecutor
import numpy as np
from datetime import datetime
import gradio as gr
import huggingface_hub
import pandas as pd
import plotly.graph_objects as go
from huggingface_hub.file_download import repo_folder_name
from huggingface_hub.hf_api import RepoFile
from huggingface_hub.utils import EntryNotFoundError
FALLBACK_TOKEN_NAME = "HF_TOKEN"
def is_arary_like(x):
return isinstance(x, list) or isinstance(x, tuple) or isinstance(x, np.ndarray)
def get_task_type(df):
if all(isinstance(pred, str) for pred in df['predictions'].iloc[0]):
return "generative"
if all(is_arary_like(pred) and all(isinstance(item, float) for item in pred) for pred in df['predictions'].iloc[0]):
return "multiple_choice"
return "mixed"
def fix_df(df):
# For some reason some metrics and predictions are stored as strings
for col in ["predictions", "metrics", "choices", "gold", "gold_index"]:
df[col] = [ast.literal_eval(x) if isinstance(x, str) else x for x in df[col].values]
return df
def get_run_name_seed(run_name):
if "-seed-" not in run_name:
return run_name, 5
run_name, seed = run_name.split("-seed-")
return run_name, int(seed)
def fetch_repo_structure(repo_name, oauth_token: gr.OAuthToken | None = None):
token = os.environ.get(FALLBACK_TOKEN_NAME)
if oauth_token:
token = oauth_token.token
files = list(huggingface_hub.list_repo_tree(repo_name, "details", recursive=False, token=token))
runs = {file.path.split('/')[-1] for file in files if isinstance(file, huggingface_hub.hf_api.RepoFolder)}
if not runs:
return {}, gr.update(choices=[], value=None)
def process_run(run):
run_files = list(huggingface_hub.list_repo_tree(repo_name, f"details/{run}", recursive=False, token=token))
return run, [file.path.split('/')[-1] for file in run_files if isinstance(file, huggingface_hub.hf_api.RepoFolder)]
with ThreadPoolExecutor() as executor:
results = list(executor.map(process_run, runs))
checkpoints_dict = dict(results)
return checkpoints_dict, gr.update(choices=list(checkpoints_dict), value=None)
def update_checkpoints(selected_runs, checkpoints):
if not selected_runs:
return gr.update(choices=[], value=None)
common_checkpoints = set(checkpoints[selected_runs[0]])
for run in selected_runs[1:]:
common_checkpoints.intersection_update(set(checkpoints[run]))
common_checkpoints = sorted(list(common_checkpoints))
return gr.update(choices=common_checkpoints, value=common_checkpoints[0] if common_checkpoints else None)
def select_runs_by_regex(runs, current_selected, regex_to_select):
comp_re = re.compile(regex_to_select)
return list(sorted(set((current_selected if current_selected else []) +
[run for run in runs if comp_re.fullmatch(run)])))
def select_runs_by_language(runs, current_selected, language):
if language:
return select_runs_by_regex(runs, current_selected, f".*-{language}-.*")
return current_selected
def fetch_available_tasks(repo_name, runs_to_fetch, checkpoint) -> dict[str, dict[str, str]]:
token = os.environ.get(FALLBACK_TOKEN_NAME)
all_tasks = defaultdict(lambda: defaultdict(dict))
for run in runs_to_fetch:
try:
files = huggingface_hub.list_repo_tree(repo_name, f"details/{run}/{checkpoint}", token=token)
parquet_files = [f.path.split('/')[-1] for f in files if f.path.endswith('.parquet')]
for full_filename in parquet_files:
task_name, date_str = full_filename.replace('.parquet', '').rsplit('_', 1)
date = datetime.strptime(date_str, '%Y-%m-%dT%H-%M-%S.%f')
if run not in all_tasks[task_name] or date > all_tasks[task_name][run]['date']:
all_tasks[task_name][run] = {'filename': full_filename, 'date': date}
except EntryNotFoundError:
print(f"Checkpoint not found for run: {run}")
available_tasks = {
task: {run: info['filename'] for run, info in runs.items()}
for task, runs in all_tasks.items()
if set(runs.keys()) == set(runs_to_fetch)
}
return available_tasks
def fetch_run_results(repo_name, runs_to_fetch, checkpoint,
oauth_token: gr.OAuthToken | None = None, progress=gr.Progress()):
task_runs_dict = fetch_available_tasks(repo_name, runs_to_fetch, checkpoint)
task_names = list(task_runs_dict.keys())
return gr.update(choices=task_names, value=task_names[0] if task_names else None), task_runs_dict
def filter_with_metric(df, selected_runs, metric_name):
if df is None or not selected_runs or not metric_name:
return None
kept_metrics = [f"metric_{metric_name}_{run_name}" for run_name in selected_runs]
other_metrics = [col for col in df.columns if col.startswith(f"metric_") and col not in kept_metrics]
df = df.drop(columns=other_metrics)
widths = get_column_widths(df)
df = consize_runname_metric(df, selected_runs, metric_name)
return gr.update(value=df, column_widths=widths)
def get_column_widths(df):
column_widths = []
for col in df.columns:
if col == "full_prompt":
column_widths.append("300px")
elif col in ["choices", "gold"]:
column_widths.append("250px")
elif col.startswith("metric_"):
column_widths.append("100px")
else:
column_widths.append("200px") # Default width for other columns
return column_widths
def consize_runname_metric(df, run_names, metric_name):
"""
Turns metric columns (metric_{metric}_{run_name}) into {metric}_i
"""
# Initialize the new column with empty strings
for idx, run_name in enumerate(run_names):
original_column = f"metric_{metric_name}_{run_name}"
if original_column in df.columns:
# Append the run name and metric value to the concise column
df[f"{metric_name}_{idx}"] = df[original_column]
df = df.drop(columns=[original_column])
return df
def load_task_data(repo_name, runs_to_fetch, checkpoint, task_name, tasks_files, progress=gr.Progress()):
token = os.environ.get(FALLBACK_TOKEN_NAME)
if not runs_to_fetch or not task_name:
return None, None, None
def fetch_run_file(run_to_fetch):
file_path = f"details/{run_to_fetch}/{checkpoint}/{tasks_files[task_name][run_to_fetch]}"
try:
cached_path = huggingface_hub.hf_hub_download(repo_name, file_path, token=token)
df = pd.read_parquet(cached_path)
return df, run_to_fetch
except EntryNotFoundError:
print(f"File not found: {file_path}")
return None, run_to_fetch
with ThreadPoolExecutor() as pool:
results = list(progress.tqdm(pool.map(fetch_run_file, runs_to_fetch), total=len(runs_to_fetch),
desc="Fetching run data..."))
dfs = [fix_df(df) for df, _ in results if df is not None]
run_names = [run for _, run in results if run is not None]
if not dfs:
return None, None, gr.update(choices=[], value=None)
task_type = get_task_type(dfs[0])
def prepare_df(df, run_name, task_type):
def get_choice_predictions(df, task_type):
# For some evals it's string for other it's list
predictions = df['predictions']
if task_type == "generative":
return predictions
if task_type == "multiple_choice":
n_choices = len(df['choices'])
return df['choices'][np.argmax([pred[0] for pred in predictions[:n_choices]])]
if task_type == "mixed":
return predictions[0]
return predictions
prepared_df = pd.DataFrame({
'full_prompt': df['full_prompt'],
f'{run_name}': df.apply(partial(get_choice_predictions, task_type=task_type), axis=1)
})
# For some reason some metrics are stored as strings
metrics = df['metrics']
# Assume all metrics are the same
for metric_key in metrics[0].keys():
prepared_df[f'metric_{metric_key}_{run_name}'] = [metric[metric_key] for metric in metrics]
return prepared_df.set_index('full_prompt')
def get_gold_label(df, task_type):
if task_type == "generative":
return df['gold']
return [df['choices'][idx] for idx in df['gold_index']]
# Prepare the first DataFrame with choices and gold
combined_df = dfs[0][['full_prompt', 'choices']].set_index('full_prompt')
combined_df['gold'] = dfs[0].apply(lambda row: get_gold_label(row, task_type), axis=1).values
# Join all prepared DataFrames
for df, run_name in zip(dfs, run_names):
prepared_df = prepare_df(df, run_name, task_type)
combined_df = combined_df.join(prepared_df, how='outer', )
available_metrics = list(set("_".join(col.split('_')[1:-1]) for col in combined_df.columns if col.startswith("metric_")))
combined_df = combined_df.reset_index()
return combined_df, filter_with_metric(combined_df, runs_to_fetch, available_metrics[0]), gr.update(choices=available_metrics, value=available_metrics[0])
def render_results_table(df: pd.DataFrame):
if df is None or df.empty:
return None
# Select a subset of 100 examples
df_subset = df.sample(n=min(100, len(df)), random_state=42)
# Prepare the data for display
display_data = []
for _, row in df_subset.iterrows():
example_data = {
'text': row['example'],
'choices': row['choices'],
'gold_index': row['gold_index'],
}
for run in df['run'].unique():
run_data = df[(df['run'] == run) & (df['example'] == row['example'])]
if not run_data.empty:
example_data[f'{run}_prediction'] = run_data['predictions'].values[0]
example_data[f'{run}_score'] = run_data['metrics'].values[0]
display_data.append(example_data)
return pd.DataFrame(display_data)
with gr.Blocks() as demo:
runs_checkpoints = gr.State({})
results_df_full = gr.State(None)
tasks_files = gr.State({})
login_button = gr.LoginButton(visible=False)
repo = gr.Textbox(label="HF Repo", value="HuggingFaceFW-Dev/multiligual-ablation-logs-dev", visible=True)
with gr.Column():
gr.Markdown("# FineWeb experiments results explorer")
with gr.Row():
with gr.Column():
select_by_regex_text = gr.Textbox(label="Regex to select runs",
value="ind_minhash(-CC-MAIN-|_)\\d{4}-\\d{2}-seed.*")
select_by_regex_button = gr.Button("Select matching runs")
with gr.Column():
select_by_language = gr.Dropdown(choices=["ar", "fr", "ru", "hi", "th", "tr", "zh", "sw", "te"],
interactive=True, label="Select by language",
info="Choose a language to prefill the regex")
selected_runs = gr.Dropdown(choices=[], interactive=True, multiselect=True, label="Selected runs")
checkpoint = gr.Dropdown(choices=[], interactive=True, label="Checkpoint")
fetch_res = gr.Button("Fetch results")
task_name = gr.Dropdown(choices=[], interactive=True, label="Task name")
metric_name = gr.Dropdown(choices=[], interactive=True, label="Metric")
results_df = gr.Dataframe(interactive=False, wrap=True)
# Run selection
gr.on(
triggers=[repo.change],
fn=fetch_repo_structure, inputs=[repo], outputs=[runs_checkpoints, selected_runs],
)
gr.on(
triggers=[select_by_regex_button.click],
fn=select_runs_by_regex,
inputs=[runs_checkpoints, selected_runs, select_by_regex_text], outputs=[selected_runs]
)
gr.on(
triggers=[select_by_language.change],
fn=select_runs_by_language,
inputs=[runs_checkpoints, selected_runs, select_by_language], outputs=[selected_runs]
)
# Update checkpoints based on selected runs
gr.on(
triggers=[selected_runs.change],
fn=update_checkpoints,
inputs=[selected_runs, runs_checkpoints],
outputs=[checkpoint]
)
# Fetch available tasks
gr.on(
triggers=[fetch_res.click],
fn=fetch_run_results,
inputs=[repo, selected_runs, checkpoint],
outputs=[task_name, tasks_files]
)
# Update results when task name or metric changes
gr.on(
triggers=[task_name.change],
fn=load_task_data,
inputs=[repo, selected_runs, checkpoint, task_name, tasks_files],
outputs=[results_df_full, results_df, metric_name]
)
gr.on(
triggers=[metric_name.change],
fn=filter_with_metric,
inputs=[results_df_full, selected_runs, metric_name],
outputs=[results_df]
)
demo.load(fn=fetch_repo_structure, inputs=[repo], outputs=[runs_checkpoints, selected_runs])
demo.launch() |