File size: 88,244 Bytes
77ba698
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 23,
   "id": "138889b92720ce2e",
   "metadata": {
    "ExecuteTime": {
     "end_time": "2024-04-30T13:28:07.130909Z",
     "start_time": "2024-04-30T13:28:06.470042Z"
    },
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>runname</th>\n",
       "      <th>seed</th>\n",
       "      <th>steps</th>\n",
       "      <th>agg_score</th>\n",
       "      <th>commonsense_qa/acc</th>\n",
       "      <th>commonsense_qa/acc_norm</th>\n",
       "      <th>hellaswag/acc</th>\n",
       "      <th>hellaswag/acc_norm</th>\n",
       "      <th>openbookqa/acc</th>\n",
       "      <th>openbookqa/acc_norm</th>\n",
       "      <th>...</th>\n",
       "      <th>siqa/acc</th>\n",
       "      <th>siqa/acc_norm</th>\n",
       "      <th>winogrande/acc</th>\n",
       "      <th>winogrande/acc_norm</th>\n",
       "      <th>sciq/acc</th>\n",
       "      <th>sciq/acc_norm</th>\n",
       "      <th>arc/acc</th>\n",
       "      <th>arc/acc_norm</th>\n",
       "      <th>mmlu/acc</th>\n",
       "      <th>mmlu/acc_norm</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>deduped_removed_cross</td>\n",
       "      <td>5</td>\n",
       "      <td>0</td>\n",
       "      <td>0.330893</td>\n",
       "      <td>0.186</td>\n",
       "      <td>0.233</td>\n",
       "      <td>0.272</td>\n",
       "      <td>0.258</td>\n",
       "      <td>0.166</td>\n",
       "      <td>0.286</td>\n",
       "      <td>...</td>\n",
       "      <td>0.367</td>\n",
       "      <td>0.362</td>\n",
       "      <td>0.516</td>\n",
       "      <td>0.497</td>\n",
       "      <td>0.208</td>\n",
       "      <td>0.202</td>\n",
       "      <td>0.2195</td>\n",
       "      <td>0.2510</td>\n",
       "      <td>0.230294</td>\n",
       "      <td>0.250147</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>deduped_removed_cross</td>\n",
       "      <td>5</td>\n",
       "      <td>1000</td>\n",
       "      <td>0.354090</td>\n",
       "      <td>0.253</td>\n",
       "      <td>0.257</td>\n",
       "      <td>0.290</td>\n",
       "      <td>0.278</td>\n",
       "      <td>0.124</td>\n",
       "      <td>0.264</td>\n",
       "      <td>...</td>\n",
       "      <td>0.368</td>\n",
       "      <td>0.389</td>\n",
       "      <td>0.509</td>\n",
       "      <td>0.491</td>\n",
       "      <td>0.582</td>\n",
       "      <td>0.516</td>\n",
       "      <td>0.2825</td>\n",
       "      <td>0.2955</td>\n",
       "      <td>0.239520</td>\n",
       "      <td>0.253223</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>deduped_removed_cross</td>\n",
       "      <td>5</td>\n",
       "      <td>2000</td>\n",
       "      <td>0.373601</td>\n",
       "      <td>0.274</td>\n",
       "      <td>0.290</td>\n",
       "      <td>0.313</td>\n",
       "      <td>0.312</td>\n",
       "      <td>0.116</td>\n",
       "      <td>0.258</td>\n",
       "      <td>...</td>\n",
       "      <td>0.367</td>\n",
       "      <td>0.397</td>\n",
       "      <td>0.516</td>\n",
       "      <td>0.505</td>\n",
       "      <td>0.686</td>\n",
       "      <td>0.582</td>\n",
       "      <td>0.3090</td>\n",
       "      <td>0.3200</td>\n",
       "      <td>0.247320</td>\n",
       "      <td>0.262812</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>deduped_removed_cross</td>\n",
       "      <td>5</td>\n",
       "      <td>3000</td>\n",
       "      <td>0.383122</td>\n",
       "      <td>0.306</td>\n",
       "      <td>0.292</td>\n",
       "      <td>0.323</td>\n",
       "      <td>0.335</td>\n",
       "      <td>0.150</td>\n",
       "      <td>0.278</td>\n",
       "      <td>...</td>\n",
       "      <td>0.371</td>\n",
       "      <td>0.401</td>\n",
       "      <td>0.513</td>\n",
       "      <td>0.500</td>\n",
       "      <td>0.712</td>\n",
       "      <td>0.611</td>\n",
       "      <td>0.3075</td>\n",
       "      <td>0.3415</td>\n",
       "      <td>0.248568</td>\n",
       "      <td>0.263474</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>deduped_removed_cross</td>\n",
       "      <td>5</td>\n",
       "      <td>4000</td>\n",
       "      <td>0.390222</td>\n",
       "      <td>0.300</td>\n",
       "      <td>0.292</td>\n",
       "      <td>0.324</td>\n",
       "      <td>0.351</td>\n",
       "      <td>0.144</td>\n",
       "      <td>0.278</td>\n",
       "      <td>...</td>\n",
       "      <td>0.386</td>\n",
       "      <td>0.395</td>\n",
       "      <td>0.511</td>\n",
       "      <td>0.511</td>\n",
       "      <td>0.750</td>\n",
       "      <td>0.658</td>\n",
       "      <td>0.3260</td>\n",
       "      <td>0.3445</td>\n",
       "      <td>0.259246</td>\n",
       "      <td>0.273276</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>5</th>\n",
       "      <td>deduped_removed_cross</td>\n",
       "      <td>5</td>\n",
       "      <td>5000</td>\n",
       "      <td>0.400239</td>\n",
       "      <td>0.322</td>\n",
       "      <td>0.308</td>\n",
       "      <td>0.325</td>\n",
       "      <td>0.364</td>\n",
       "      <td>0.172</td>\n",
       "      <td>0.298</td>\n",
       "      <td>...</td>\n",
       "      <td>0.382</td>\n",
       "      <td>0.398</td>\n",
       "      <td>0.518</td>\n",
       "      <td>0.522</td>\n",
       "      <td>0.751</td>\n",
       "      <td>0.661</td>\n",
       "      <td>0.3470</td>\n",
       "      <td>0.3545</td>\n",
       "      <td>0.258485</td>\n",
       "      <td>0.271414</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>6</th>\n",
       "      <td>deduped_removed_cross</td>\n",
       "      <td>5</td>\n",
       "      <td>6000</td>\n",
       "      <td>0.401484</td>\n",
       "      <td>0.315</td>\n",
       "      <td>0.314</td>\n",
       "      <td>0.341</td>\n",
       "      <td>0.372</td>\n",
       "      <td>0.162</td>\n",
       "      <td>0.314</td>\n",
       "      <td>...</td>\n",
       "      <td>0.377</td>\n",
       "      <td>0.390</td>\n",
       "      <td>0.498</td>\n",
       "      <td>0.492</td>\n",
       "      <td>0.776</td>\n",
       "      <td>0.669</td>\n",
       "      <td>0.3530</td>\n",
       "      <td>0.3565</td>\n",
       "      <td>0.261842</td>\n",
       "      <td>0.276371</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>7</th>\n",
       "      <td>deduped_removed_cross</td>\n",
       "      <td>5</td>\n",
       "      <td>7000</td>\n",
       "      <td>0.403533</td>\n",
       "      <td>0.324</td>\n",
       "      <td>0.315</td>\n",
       "      <td>0.350</td>\n",
       "      <td>0.386</td>\n",
       "      <td>0.188</td>\n",
       "      <td>0.298</td>\n",
       "      <td>...</td>\n",
       "      <td>0.376</td>\n",
       "      <td>0.384</td>\n",
       "      <td>0.518</td>\n",
       "      <td>0.521</td>\n",
       "      <td>0.769</td>\n",
       "      <td>0.672</td>\n",
       "      <td>0.3625</td>\n",
       "      <td>0.3585</td>\n",
       "      <td>0.265558</td>\n",
       "      <td>0.274768</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>8</th>\n",
       "      <td>deduped_removed_cross</td>\n",
       "      <td>5</td>\n",
       "      <td>8000</td>\n",
       "      <td>0.411774</td>\n",
       "      <td>0.344</td>\n",
       "      <td>0.313</td>\n",
       "      <td>0.352</td>\n",
       "      <td>0.409</td>\n",
       "      <td>0.170</td>\n",
       "      <td>0.310</td>\n",
       "      <td>...</td>\n",
       "      <td>0.374</td>\n",
       "      <td>0.391</td>\n",
       "      <td>0.530</td>\n",
       "      <td>0.521</td>\n",
       "      <td>0.781</td>\n",
       "      <td>0.677</td>\n",
       "      <td>0.3530</td>\n",
       "      <td>0.3615</td>\n",
       "      <td>0.267141</td>\n",
       "      <td>0.283691</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>9</th>\n",
       "      <td>deduped_removed_cross</td>\n",
       "      <td>5</td>\n",
       "      <td>9000</td>\n",
       "      <td>0.410993</td>\n",
       "      <td>0.335</td>\n",
       "      <td>0.322</td>\n",
       "      <td>0.361</td>\n",
       "      <td>0.404</td>\n",
       "      <td>0.182</td>\n",
       "      <td>0.294</td>\n",
       "      <td>...</td>\n",
       "      <td>0.374</td>\n",
       "      <td>0.391</td>\n",
       "      <td>0.526</td>\n",
       "      <td>0.514</td>\n",
       "      <td>0.769</td>\n",
       "      <td>0.672</td>\n",
       "      <td>0.3630</td>\n",
       "      <td>0.3715</td>\n",
       "      <td>0.266464</td>\n",
       "      <td>0.284446</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>10</th>\n",
       "      <td>deduped_removed_cross</td>\n",
       "      <td>5</td>\n",
       "      <td>10000</td>\n",
       "      <td>0.417883</td>\n",
       "      <td>0.330</td>\n",
       "      <td>0.320</td>\n",
       "      <td>0.370</td>\n",
       "      <td>0.417</td>\n",
       "      <td>0.192</td>\n",
       "      <td>0.324</td>\n",
       "      <td>...</td>\n",
       "      <td>0.389</td>\n",
       "      <td>0.389</td>\n",
       "      <td>0.518</td>\n",
       "      <td>0.524</td>\n",
       "      <td>0.785</td>\n",
       "      <td>0.682</td>\n",
       "      <td>0.3735</td>\n",
       "      <td>0.3745</td>\n",
       "      <td>0.268085</td>\n",
       "      <td>0.283562</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>11</th>\n",
       "      <td>deduped_removed_cross</td>\n",
       "      <td>5</td>\n",
       "      <td>11000</td>\n",
       "      <td>0.422325</td>\n",
       "      <td>0.332</td>\n",
       "      <td>0.328</td>\n",
       "      <td>0.366</td>\n",
       "      <td>0.426</td>\n",
       "      <td>0.188</td>\n",
       "      <td>0.320</td>\n",
       "      <td>...</td>\n",
       "      <td>0.398</td>\n",
       "      <td>0.397</td>\n",
       "      <td>0.535</td>\n",
       "      <td>0.529</td>\n",
       "      <td>0.801</td>\n",
       "      <td>0.695</td>\n",
       "      <td>0.3775</td>\n",
       "      <td>0.3800</td>\n",
       "      <td>0.267457</td>\n",
       "      <td>0.285596</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>12</th>\n",
       "      <td>deduped_removed_cross</td>\n",
       "      <td>5</td>\n",
       "      <td>12000</td>\n",
       "      <td>0.420167</td>\n",
       "      <td>0.348</td>\n",
       "      <td>0.324</td>\n",
       "      <td>0.364</td>\n",
       "      <td>0.434</td>\n",
       "      <td>0.194</td>\n",
       "      <td>0.306</td>\n",
       "      <td>...</td>\n",
       "      <td>0.377</td>\n",
       "      <td>0.392</td>\n",
       "      <td>0.541</td>\n",
       "      <td>0.527</td>\n",
       "      <td>0.790</td>\n",
       "      <td>0.690</td>\n",
       "      <td>0.3680</td>\n",
       "      <td>0.3755</td>\n",
       "      <td>0.267547</td>\n",
       "      <td>0.285836</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>13</th>\n",
       "      <td>deduped_removed_cross</td>\n",
       "      <td>5</td>\n",
       "      <td>13000</td>\n",
       "      <td>0.422913</td>\n",
       "      <td>0.346</td>\n",
       "      <td>0.330</td>\n",
       "      <td>0.372</td>\n",
       "      <td>0.438</td>\n",
       "      <td>0.190</td>\n",
       "      <td>0.320</td>\n",
       "      <td>...</td>\n",
       "      <td>0.392</td>\n",
       "      <td>0.396</td>\n",
       "      <td>0.540</td>\n",
       "      <td>0.522</td>\n",
       "      <td>0.802</td>\n",
       "      <td>0.707</td>\n",
       "      <td>0.3760</td>\n",
       "      <td>0.3845</td>\n",
       "      <td>0.271108</td>\n",
       "      <td>0.287802</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>14</th>\n",
       "      <td>deduped_removed_cross</td>\n",
       "      <td>5</td>\n",
       "      <td>13500</td>\n",
       "      <td>0.421868</td>\n",
       "      <td>0.345</td>\n",
       "      <td>0.322</td>\n",
       "      <td>0.370</td>\n",
       "      <td>0.431</td>\n",
       "      <td>0.202</td>\n",
       "      <td>0.330</td>\n",
       "      <td>...</td>\n",
       "      <td>0.387</td>\n",
       "      <td>0.392</td>\n",
       "      <td>0.540</td>\n",
       "      <td>0.516</td>\n",
       "      <td>0.797</td>\n",
       "      <td>0.700</td>\n",
       "      <td>0.3790</td>\n",
       "      <td>0.3870</td>\n",
       "      <td>0.269510</td>\n",
       "      <td>0.287944</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>15</th>\n",
       "      <td>deduped_removed_cross</td>\n",
       "      <td>6</td>\n",
       "      <td>0</td>\n",
       "      <td>0.330893</td>\n",
       "      <td>0.186</td>\n",
       "      <td>0.233</td>\n",
       "      <td>0.272</td>\n",
       "      <td>0.258</td>\n",
       "      <td>0.166</td>\n",
       "      <td>0.286</td>\n",
       "      <td>...</td>\n",
       "      <td>0.367</td>\n",
       "      <td>0.362</td>\n",
       "      <td>0.516</td>\n",
       "      <td>0.497</td>\n",
       "      <td>0.208</td>\n",
       "      <td>0.202</td>\n",
       "      <td>0.2195</td>\n",
       "      <td>0.2510</td>\n",
       "      <td>0.230294</td>\n",
       "      <td>0.250147</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>16</th>\n",
       "      <td>deduped_removed_cross</td>\n",
       "      <td>6</td>\n",
       "      <td>1000</td>\n",
       "      <td>0.360039</td>\n",
       "      <td>0.236</td>\n",
       "      <td>0.259</td>\n",
       "      <td>0.283</td>\n",
       "      <td>0.277</td>\n",
       "      <td>0.130</td>\n",
       "      <td>0.274</td>\n",
       "      <td>...</td>\n",
       "      <td>0.354</td>\n",
       "      <td>0.386</td>\n",
       "      <td>0.509</td>\n",
       "      <td>0.507</td>\n",
       "      <td>0.559</td>\n",
       "      <td>0.500</td>\n",
       "      <td>0.2590</td>\n",
       "      <td>0.2970</td>\n",
       "      <td>0.243455</td>\n",
       "      <td>0.254311</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>17</th>\n",
       "      <td>deduped_removed_cross</td>\n",
       "      <td>6</td>\n",
       "      <td>2000</td>\n",
       "      <td>0.371564</td>\n",
       "      <td>0.270</td>\n",
       "      <td>0.283</td>\n",
       "      <td>0.303</td>\n",
       "      <td>0.305</td>\n",
       "      <td>0.132</td>\n",
       "      <td>0.280</td>\n",
       "      <td>...</td>\n",
       "      <td>0.377</td>\n",
       "      <td>0.392</td>\n",
       "      <td>0.522</td>\n",
       "      <td>0.504</td>\n",
       "      <td>0.665</td>\n",
       "      <td>0.566</td>\n",
       "      <td>0.3040</td>\n",
       "      <td>0.3135</td>\n",
       "      <td>0.249051</td>\n",
       "      <td>0.255010</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>18</th>\n",
       "      <td>deduped_removed_cross</td>\n",
       "      <td>6</td>\n",
       "      <td>3000</td>\n",
       "      <td>0.383770</td>\n",
       "      <td>0.283</td>\n",
       "      <td>0.286</td>\n",
       "      <td>0.323</td>\n",
       "      <td>0.320</td>\n",
       "      <td>0.156</td>\n",
       "      <td>0.296</td>\n",
       "      <td>...</td>\n",
       "      <td>0.375</td>\n",
       "      <td>0.394</td>\n",
       "      <td>0.503</td>\n",
       "      <td>0.497</td>\n",
       "      <td>0.721</td>\n",
       "      <td>0.626</td>\n",
       "      <td>0.3140</td>\n",
       "      <td>0.3410</td>\n",
       "      <td>0.254015</td>\n",
       "      <td>0.266158</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>19</th>\n",
       "      <td>deduped_removed_cross</td>\n",
       "      <td>6</td>\n",
       "      <td>4000</td>\n",
       "      <td>0.391082</td>\n",
       "      <td>0.293</td>\n",
       "      <td>0.298</td>\n",
       "      <td>0.339</td>\n",
       "      <td>0.361</td>\n",
       "      <td>0.160</td>\n",
       "      <td>0.292</td>\n",
       "      <td>...</td>\n",
       "      <td>0.380</td>\n",
       "      <td>0.399</td>\n",
       "      <td>0.505</td>\n",
       "      <td>0.494</td>\n",
       "      <td>0.719</td>\n",
       "      <td>0.615</td>\n",
       "      <td>0.3375</td>\n",
       "      <td>0.3375</td>\n",
       "      <td>0.256696</td>\n",
       "      <td>0.268152</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>20</th>\n",
       "      <td>deduped_removed_cross</td>\n",
       "      <td>6</td>\n",
       "      <td>5000</td>\n",
       "      <td>0.399130</td>\n",
       "      <td>0.309</td>\n",
       "      <td>0.311</td>\n",
       "      <td>0.343</td>\n",
       "      <td>0.376</td>\n",
       "      <td>0.160</td>\n",
       "      <td>0.286</td>\n",
       "      <td>...</td>\n",
       "      <td>0.392</td>\n",
       "      <td>0.401</td>\n",
       "      <td>0.525</td>\n",
       "      <td>0.512</td>\n",
       "      <td>0.733</td>\n",
       "      <td>0.639</td>\n",
       "      <td>0.3390</td>\n",
       "      <td>0.3580</td>\n",
       "      <td>0.257450</td>\n",
       "      <td>0.271040</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>21</th>\n",
       "      <td>deduped_removed_cross</td>\n",
       "      <td>6</td>\n",
       "      <td>6000</td>\n",
       "      <td>0.402792</td>\n",
       "      <td>0.326</td>\n",
       "      <td>0.318</td>\n",
       "      <td>0.353</td>\n",
       "      <td>0.387</td>\n",
       "      <td>0.176</td>\n",
       "      <td>0.284</td>\n",
       "      <td>...</td>\n",
       "      <td>0.376</td>\n",
       "      <td>0.405</td>\n",
       "      <td>0.522</td>\n",
       "      <td>0.514</td>\n",
       "      <td>0.753</td>\n",
       "      <td>0.664</td>\n",
       "      <td>0.3450</td>\n",
       "      <td>0.3645</td>\n",
       "      <td>0.262549</td>\n",
       "      <td>0.273836</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>22</th>\n",
       "      <td>deduped_removed_cross</td>\n",
       "      <td>6</td>\n",
       "      <td>7000</td>\n",
       "      <td>0.408846</td>\n",
       "      <td>0.319</td>\n",
       "      <td>0.319</td>\n",
       "      <td>0.356</td>\n",
       "      <td>0.407</td>\n",
       "      <td>0.172</td>\n",
       "      <td>0.300</td>\n",
       "      <td>...</td>\n",
       "      <td>0.386</td>\n",
       "      <td>0.399</td>\n",
       "      <td>0.521</td>\n",
       "      <td>0.521</td>\n",
       "      <td>0.764</td>\n",
       "      <td>0.662</td>\n",
       "      <td>0.3585</td>\n",
       "      <td>0.3625</td>\n",
       "      <td>0.262740</td>\n",
       "      <td>0.276266</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>23</th>\n",
       "      <td>deduped_removed_cross</td>\n",
       "      <td>6</td>\n",
       "      <td>8000</td>\n",
       "      <td>0.411429</td>\n",
       "      <td>0.314</td>\n",
       "      <td>0.323</td>\n",
       "      <td>0.361</td>\n",
       "      <td>0.412</td>\n",
       "      <td>0.168</td>\n",
       "      <td>0.286</td>\n",
       "      <td>...</td>\n",
       "      <td>0.395</td>\n",
       "      <td>0.404</td>\n",
       "      <td>0.533</td>\n",
       "      <td>0.511</td>\n",
       "      <td>0.754</td>\n",
       "      <td>0.646</td>\n",
       "      <td>0.3555</td>\n",
       "      <td>0.3690</td>\n",
       "      <td>0.263875</td>\n",
       "      <td>0.278433</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>24</th>\n",
       "      <td>deduped_removed_cross</td>\n",
       "      <td>6</td>\n",
       "      <td>9000</td>\n",
       "      <td>0.417279</td>\n",
       "      <td>0.337</td>\n",
       "      <td>0.329</td>\n",
       "      <td>0.367</td>\n",
       "      <td>0.421</td>\n",
       "      <td>0.176</td>\n",
       "      <td>0.294</td>\n",
       "      <td>...</td>\n",
       "      <td>0.407</td>\n",
       "      <td>0.403</td>\n",
       "      <td>0.532</td>\n",
       "      <td>0.526</td>\n",
       "      <td>0.775</td>\n",
       "      <td>0.666</td>\n",
       "      <td>0.3605</td>\n",
       "      <td>0.3730</td>\n",
       "      <td>0.265119</td>\n",
       "      <td>0.283235</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>25</th>\n",
       "      <td>deduped_removed_cross</td>\n",
       "      <td>6</td>\n",
       "      <td>10000</td>\n",
       "      <td>0.421399</td>\n",
       "      <td>0.339</td>\n",
       "      <td>0.322</td>\n",
       "      <td>0.376</td>\n",
       "      <td>0.426</td>\n",
       "      <td>0.174</td>\n",
       "      <td>0.320</td>\n",
       "      <td>...</td>\n",
       "      <td>0.397</td>\n",
       "      <td>0.401</td>\n",
       "      <td>0.542</td>\n",
       "      <td>0.532</td>\n",
       "      <td>0.764</td>\n",
       "      <td>0.673</td>\n",
       "      <td>0.3675</td>\n",
       "      <td>0.3840</td>\n",
       "      <td>0.272474</td>\n",
       "      <td>0.286190</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>26</th>\n",
       "      <td>deduped_removed_cross</td>\n",
       "      <td>6</td>\n",
       "      <td>11000</td>\n",
       "      <td>0.421204</td>\n",
       "      <td>0.349</td>\n",
       "      <td>0.337</td>\n",
       "      <td>0.378</td>\n",
       "      <td>0.428</td>\n",
       "      <td>0.188</td>\n",
       "      <td>0.314</td>\n",
       "      <td>...</td>\n",
       "      <td>0.403</td>\n",
       "      <td>0.398</td>\n",
       "      <td>0.530</td>\n",
       "      <td>0.516</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>0.3690</td>\n",
       "      <td>0.3780</td>\n",
       "      <td>0.269131</td>\n",
       "      <td>0.288633</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>27</th>\n",
       "      <td>deduped_removed_cross</td>\n",
       "      <td>6</td>\n",
       "      <td>12000</td>\n",
       "      <td>0.421667</td>\n",
       "      <td>0.342</td>\n",
       "      <td>0.326</td>\n",
       "      <td>0.383</td>\n",
       "      <td>0.434</td>\n",
       "      <td>0.174</td>\n",
       "      <td>0.310</td>\n",
       "      <td>...</td>\n",
       "      <td>0.399</td>\n",
       "      <td>0.396</td>\n",
       "      <td>0.538</td>\n",
       "      <td>0.525</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>0.3660</td>\n",
       "      <td>0.3810</td>\n",
       "      <td>0.270691</td>\n",
       "      <td>0.287333</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>28</th>\n",
       "      <td>deduped_removed_cross</td>\n",
       "      <td>6</td>\n",
       "      <td>13000</td>\n",
       "      <td>0.424979</td>\n",
       "      <td>0.349</td>\n",
       "      <td>0.336</td>\n",
       "      <td>0.383</td>\n",
       "      <td>0.440</td>\n",
       "      <td>0.178</td>\n",
       "      <td>0.314</td>\n",
       "      <td>...</td>\n",
       "      <td>0.401</td>\n",
       "      <td>0.392</td>\n",
       "      <td>0.535</td>\n",
       "      <td>0.526</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>0.3785</td>\n",
       "      <td>0.3905</td>\n",
       "      <td>0.268910</td>\n",
       "      <td>0.289335</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>29</th>\n",
       "      <td>deduped_removed_cross</td>\n",
       "      <td>6</td>\n",
       "      <td>13500</td>\n",
       "      <td>0.425356</td>\n",
       "      <td>0.347</td>\n",
       "      <td>0.333</td>\n",
       "      <td>0.386</td>\n",
       "      <td>0.444</td>\n",
       "      <td>0.186</td>\n",
       "      <td>0.322</td>\n",
       "      <td>...</td>\n",
       "      <td>0.406</td>\n",
       "      <td>0.392</td>\n",
       "      <td>0.543</td>\n",
       "      <td>0.527</td>\n",
       "      <td>0.783</td>\n",
       "      <td>0.682</td>\n",
       "      <td>0.3745</td>\n",
       "      <td>0.3890</td>\n",
       "      <td>0.270869</td>\n",
       "      <td>0.289845</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>30</th>\n",
       "      <td>cross_minhash_dump_CC-MAIN-2013-48</td>\n",
       "      <td>6</td>\n",
       "      <td>0</td>\n",
       "      <td>0.331018</td>\n",
       "      <td>0.186</td>\n",
       "      <td>0.233</td>\n",
       "      <td>0.272</td>\n",
       "      <td>0.258</td>\n",
       "      <td>0.166</td>\n",
       "      <td>0.286</td>\n",
       "      <td>...</td>\n",
       "      <td>0.367</td>\n",
       "      <td>0.362</td>\n",
       "      <td>0.515</td>\n",
       "      <td>0.497</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>0.2195</td>\n",
       "      <td>0.2520</td>\n",
       "      <td>0.230228</td>\n",
       "      <td>0.250147</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>31</th>\n",
       "      <td>cross_minhash_dump_CC-MAIN-2013-48</td>\n",
       "      <td>6</td>\n",
       "      <td>1000</td>\n",
       "      <td>0.349494</td>\n",
       "      <td>0.217</td>\n",
       "      <td>0.248</td>\n",
       "      <td>0.288</td>\n",
       "      <td>0.286</td>\n",
       "      <td>0.104</td>\n",
       "      <td>0.244</td>\n",
       "      <td>...</td>\n",
       "      <td>0.366</td>\n",
       "      <td>0.380</td>\n",
       "      <td>0.499</td>\n",
       "      <td>0.492</td>\n",
       "      <td>0.546</td>\n",
       "      <td>0.484</td>\n",
       "      <td>0.2565</td>\n",
       "      <td>0.2780</td>\n",
       "      <td>0.239651</td>\n",
       "      <td>0.253956</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>32</th>\n",
       "      <td>cross_minhash_dump_CC-MAIN-2013-48</td>\n",
       "      <td>6</td>\n",
       "      <td>2000</td>\n",
       "      <td>0.367893</td>\n",
       "      <td>0.245</td>\n",
       "      <td>0.280</td>\n",
       "      <td>0.298</td>\n",
       "      <td>0.288</td>\n",
       "      <td>0.128</td>\n",
       "      <td>0.280</td>\n",
       "      <td>...</td>\n",
       "      <td>0.366</td>\n",
       "      <td>0.383</td>\n",
       "      <td>0.519</td>\n",
       "      <td>0.499</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>0.2845</td>\n",
       "      <td>0.3115</td>\n",
       "      <td>0.239715</td>\n",
       "      <td>0.253644</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>33</th>\n",
       "      <td>cross_minhash_dump_CC-MAIN-2013-48</td>\n",
       "      <td>6</td>\n",
       "      <td>3000</td>\n",
       "      <td>0.379114</td>\n",
       "      <td>0.269</td>\n",
       "      <td>0.291</td>\n",
       "      <td>0.304</td>\n",
       "      <td>0.328</td>\n",
       "      <td>0.138</td>\n",
       "      <td>0.266</td>\n",
       "      <td>...</td>\n",
       "      <td>0.362</td>\n",
       "      <td>0.394</td>\n",
       "      <td>0.519</td>\n",
       "      <td>0.504</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>0.3035</td>\n",
       "      <td>0.3335</td>\n",
       "      <td>0.250551</td>\n",
       "      <td>0.262409</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>34</th>\n",
       "      <td>cross_minhash_dump_CC-MAIN-2013-48</td>\n",
       "      <td>6</td>\n",
       "      <td>4000</td>\n",
       "      <td>0.383025</td>\n",
       "      <td>0.277</td>\n",
       "      <td>0.289</td>\n",
       "      <td>0.311</td>\n",
       "      <td>0.338</td>\n",
       "      <td>0.132</td>\n",
       "      <td>0.280</td>\n",
       "      <td>...</td>\n",
       "      <td>0.361</td>\n",
       "      <td>0.393</td>\n",
       "      <td>0.502</td>\n",
       "      <td>0.496</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>0.3105</td>\n",
       "      <td>0.3375</td>\n",
       "      <td>0.249887</td>\n",
       "      <td>0.263702</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>35</th>\n",
       "      <td>cross_minhash_dump_CC-MAIN-2013-48</td>\n",
       "      <td>6</td>\n",
       "      <td>5000</td>\n",
       "      <td>0.387223</td>\n",
       "      <td>0.290</td>\n",
       "      <td>0.306</td>\n",
       "      <td>0.327</td>\n",
       "      <td>0.356</td>\n",
       "      <td>0.138</td>\n",
       "      <td>0.276</td>\n",
       "      <td>...</td>\n",
       "      <td>0.365</td>\n",
       "      <td>0.389</td>\n",
       "      <td>0.515</td>\n",
       "      <td>0.511</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>0.3190</td>\n",
       "      <td>0.3380</td>\n",
       "      <td>0.252621</td>\n",
       "      <td>0.266785</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>36</th>\n",
       "      <td>cross_minhash_dump_CC-MAIN-2013-48</td>\n",
       "      <td>6</td>\n",
       "      <td>6000</td>\n",
       "      <td>0.394011</td>\n",
       "      <td>0.303</td>\n",
       "      <td>0.305</td>\n",
       "      <td>0.332</td>\n",
       "      <td>0.356</td>\n",
       "      <td>0.142</td>\n",
       "      <td>0.288</td>\n",
       "      <td>...</td>\n",
       "      <td>0.375</td>\n",
       "      <td>0.397</td>\n",
       "      <td>0.540</td>\n",
       "      <td>0.521</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>0.3280</td>\n",
       "      <td>0.3515</td>\n",
       "      <td>0.252255</td>\n",
       "      <td>0.265589</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>37</th>\n",
       "      <td>cross_minhash_dump_CC-MAIN-2013-48</td>\n",
       "      <td>6</td>\n",
       "      <td>7000</td>\n",
       "      <td>0.398090</td>\n",
       "      <td>0.316</td>\n",
       "      <td>0.305</td>\n",
       "      <td>0.337</td>\n",
       "      <td>0.359</td>\n",
       "      <td>0.142</td>\n",
       "      <td>0.302</td>\n",
       "      <td>...</td>\n",
       "      <td>0.372</td>\n",
       "      <td>0.401</td>\n",
       "      <td>0.531</td>\n",
       "      <td>0.510</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>0.3320</td>\n",
       "      <td>0.3550</td>\n",
       "      <td>0.250146</td>\n",
       "      <td>0.267719</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>38</th>\n",
       "      <td>cross_minhash_dump_CC-MAIN-2013-48</td>\n",
       "      <td>6</td>\n",
       "      <td>8000</td>\n",
       "      <td>0.398513</td>\n",
       "      <td>0.326</td>\n",
       "      <td>0.315</td>\n",
       "      <td>0.339</td>\n",
       "      <td>0.372</td>\n",
       "      <td>0.150</td>\n",
       "      <td>0.288</td>\n",
       "      <td>...</td>\n",
       "      <td>0.372</td>\n",
       "      <td>0.396</td>\n",
       "      <td>0.532</td>\n",
       "      <td>0.508</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>0.3365</td>\n",
       "      <td>0.3630</td>\n",
       "      <td>0.258433</td>\n",
       "      <td>0.274100</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>39</th>\n",
       "      <td>cross_minhash_dump_CC-MAIN-2013-48</td>\n",
       "      <td>6</td>\n",
       "      <td>9000</td>\n",
       "      <td>0.397494</td>\n",
       "      <td>0.310</td>\n",
       "      <td>0.314</td>\n",
       "      <td>0.345</td>\n",
       "      <td>0.374</td>\n",
       "      <td>0.140</td>\n",
       "      <td>0.274</td>\n",
       "      <td>...</td>\n",
       "      <td>0.364</td>\n",
       "      <td>0.392</td>\n",
       "      <td>0.529</td>\n",
       "      <td>0.506</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>0.3445</td>\n",
       "      <td>0.3610</td>\n",
       "      <td>0.258927</td>\n",
       "      <td>0.271955</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>40</th>\n",
       "      <td>cross_minhash_dump_CC-MAIN-2013-48</td>\n",
       "      <td>6</td>\n",
       "      <td>10000</td>\n",
       "      <td>0.402640</td>\n",
       "      <td>0.321</td>\n",
       "      <td>0.327</td>\n",
       "      <td>0.347</td>\n",
       "      <td>0.383</td>\n",
       "      <td>0.156</td>\n",
       "      <td>0.280</td>\n",
       "      <td>...</td>\n",
       "      <td>0.376</td>\n",
       "      <td>0.397</td>\n",
       "      <td>0.529</td>\n",
       "      <td>0.513</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>0.3445</td>\n",
       "      <td>0.3650</td>\n",
       "      <td>0.258294</td>\n",
       "      <td>0.272123</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>41</th>\n",
       "      <td>cross_minhash_dump_CC-MAIN-2013-48</td>\n",
       "      <td>6</td>\n",
       "      <td>11000</td>\n",
       "      <td>0.402599</td>\n",
       "      <td>0.318</td>\n",
       "      <td>0.322</td>\n",
       "      <td>0.348</td>\n",
       "      <td>0.381</td>\n",
       "      <td>0.160</td>\n",
       "      <td>0.284</td>\n",
       "      <td>...</td>\n",
       "      <td>0.367</td>\n",
       "      <td>0.387</td>\n",
       "      <td>0.538</td>\n",
       "      <td>0.516</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>0.3490</td>\n",
       "      <td>0.3660</td>\n",
       "      <td>0.259610</td>\n",
       "      <td>0.276792</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>42</th>\n",
       "      <td>cross_minhash_dump_CC-MAIN-2013-48</td>\n",
       "      <td>6</td>\n",
       "      <td>12000</td>\n",
       "      <td>0.407442</td>\n",
       "      <td>0.328</td>\n",
       "      <td>0.319</td>\n",
       "      <td>0.349</td>\n",
       "      <td>0.395</td>\n",
       "      <td>0.162</td>\n",
       "      <td>0.290</td>\n",
       "      <td>...</td>\n",
       "      <td>0.367</td>\n",
       "      <td>0.407</td>\n",
       "      <td>0.528</td>\n",
       "      <td>0.510</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>0.3510</td>\n",
       "      <td>0.3700</td>\n",
       "      <td>0.260350</td>\n",
       "      <td>0.279535</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>43</th>\n",
       "      <td>cross_minhash_dump_CC-MAIN-2013-48</td>\n",
       "      <td>6</td>\n",
       "      <td>13000</td>\n",
       "      <td>0.405577</td>\n",
       "      <td>0.324</td>\n",
       "      <td>0.318</td>\n",
       "      <td>0.350</td>\n",
       "      <td>0.385</td>\n",
       "      <td>0.158</td>\n",
       "      <td>0.290</td>\n",
       "      <td>...</td>\n",
       "      <td>0.373</td>\n",
       "      <td>0.396</td>\n",
       "      <td>0.538</td>\n",
       "      <td>0.510</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>0.3540</td>\n",
       "      <td>0.3730</td>\n",
       "      <td>0.258481</td>\n",
       "      <td>0.274616</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>44</th>\n",
       "      <td>cross_minhash_dump_CC-MAIN-2013-48</td>\n",
       "      <td>6</td>\n",
       "      <td>13500</td>\n",
       "      <td>0.405000</td>\n",
       "      <td>0.320</td>\n",
       "      <td>0.312</td>\n",
       "      <td>0.354</td>\n",
       "      <td>0.393</td>\n",
       "      <td>0.152</td>\n",
       "      <td>0.288</td>\n",
       "      <td>...</td>\n",
       "      <td>0.367</td>\n",
       "      <td>0.396</td>\n",
       "      <td>0.528</td>\n",
       "      <td>0.513</td>\n",
       "      <td>0.785</td>\n",
       "      <td>0.675</td>\n",
       "      <td>0.3590</td>\n",
       "      <td>0.3660</td>\n",
       "      <td>0.260174</td>\n",
       "      <td>0.278002</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>45 rows × 22 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "                               runname  seed  steps  agg_score  \\\n",
       "0                deduped_removed_cross     5      0   0.330893   \n",
       "1                deduped_removed_cross     5   1000   0.354090   \n",
       "2                deduped_removed_cross     5   2000   0.373601   \n",
       "3                deduped_removed_cross     5   3000   0.383122   \n",
       "4                deduped_removed_cross     5   4000   0.390222   \n",
       "5                deduped_removed_cross     5   5000   0.400239   \n",
       "6                deduped_removed_cross     5   6000   0.401484   \n",
       "7                deduped_removed_cross     5   7000   0.403533   \n",
       "8                deduped_removed_cross     5   8000   0.411774   \n",
       "9                deduped_removed_cross     5   9000   0.410993   \n",
       "10               deduped_removed_cross     5  10000   0.417883   \n",
       "11               deduped_removed_cross     5  11000   0.422325   \n",
       "12               deduped_removed_cross     5  12000   0.420167   \n",
       "13               deduped_removed_cross     5  13000   0.422913   \n",
       "14               deduped_removed_cross     5  13500   0.421868   \n",
       "15               deduped_removed_cross     6      0   0.330893   \n",
       "16               deduped_removed_cross     6   1000   0.360039   \n",
       "17               deduped_removed_cross     6   2000   0.371564   \n",
       "18               deduped_removed_cross     6   3000   0.383770   \n",
       "19               deduped_removed_cross     6   4000   0.391082   \n",
       "20               deduped_removed_cross     6   5000   0.399130   \n",
       "21               deduped_removed_cross     6   6000   0.402792   \n",
       "22               deduped_removed_cross     6   7000   0.408846   \n",
       "23               deduped_removed_cross     6   8000   0.411429   \n",
       "24               deduped_removed_cross     6   9000   0.417279   \n",
       "25               deduped_removed_cross     6  10000   0.421399   \n",
       "26               deduped_removed_cross     6  11000   0.421204   \n",
       "27               deduped_removed_cross     6  12000   0.421667   \n",
       "28               deduped_removed_cross     6  13000   0.424979   \n",
       "29               deduped_removed_cross     6  13500   0.425356   \n",
       "30  cross_minhash_dump_CC-MAIN-2013-48     6      0   0.331018   \n",
       "31  cross_minhash_dump_CC-MAIN-2013-48     6   1000   0.349494   \n",
       "32  cross_minhash_dump_CC-MAIN-2013-48     6   2000   0.367893   \n",
       "33  cross_minhash_dump_CC-MAIN-2013-48     6   3000   0.379114   \n",
       "34  cross_minhash_dump_CC-MAIN-2013-48     6   4000   0.383025   \n",
       "35  cross_minhash_dump_CC-MAIN-2013-48     6   5000   0.387223   \n",
       "36  cross_minhash_dump_CC-MAIN-2013-48     6   6000   0.394011   \n",
       "37  cross_minhash_dump_CC-MAIN-2013-48     6   7000   0.398090   \n",
       "38  cross_minhash_dump_CC-MAIN-2013-48     6   8000   0.398513   \n",
       "39  cross_minhash_dump_CC-MAIN-2013-48     6   9000   0.397494   \n",
       "40  cross_minhash_dump_CC-MAIN-2013-48     6  10000   0.402640   \n",
       "41  cross_minhash_dump_CC-MAIN-2013-48     6  11000   0.402599   \n",
       "42  cross_minhash_dump_CC-MAIN-2013-48     6  12000   0.407442   \n",
       "43  cross_minhash_dump_CC-MAIN-2013-48     6  13000   0.405577   \n",
       "44  cross_minhash_dump_CC-MAIN-2013-48     6  13500   0.405000   \n",
       "\n",
       "    commonsense_qa/acc  commonsense_qa/acc_norm  hellaswag/acc  \\\n",
       "0                0.186                    0.233          0.272   \n",
       "1                0.253                    0.257          0.290   \n",
       "2                0.274                    0.290          0.313   \n",
       "3                0.306                    0.292          0.323   \n",
       "4                0.300                    0.292          0.324   \n",
       "5                0.322                    0.308          0.325   \n",
       "6                0.315                    0.314          0.341   \n",
       "7                0.324                    0.315          0.350   \n",
       "8                0.344                    0.313          0.352   \n",
       "9                0.335                    0.322          0.361   \n",
       "10               0.330                    0.320          0.370   \n",
       "11               0.332                    0.328          0.366   \n",
       "12               0.348                    0.324          0.364   \n",
       "13               0.346                    0.330          0.372   \n",
       "14               0.345                    0.322          0.370   \n",
       "15               0.186                    0.233          0.272   \n",
       "16               0.236                    0.259          0.283   \n",
       "17               0.270                    0.283          0.303   \n",
       "18               0.283                    0.286          0.323   \n",
       "19               0.293                    0.298          0.339   \n",
       "20               0.309                    0.311          0.343   \n",
       "21               0.326                    0.318          0.353   \n",
       "22               0.319                    0.319          0.356   \n",
       "23               0.314                    0.323          0.361   \n",
       "24               0.337                    0.329          0.367   \n",
       "25               0.339                    0.322          0.376   \n",
       "26               0.349                    0.337          0.378   \n",
       "27               0.342                    0.326          0.383   \n",
       "28               0.349                    0.336          0.383   \n",
       "29               0.347                    0.333          0.386   \n",
       "30               0.186                    0.233          0.272   \n",
       "31               0.217                    0.248          0.288   \n",
       "32               0.245                    0.280          0.298   \n",
       "33               0.269                    0.291          0.304   \n",
       "34               0.277                    0.289          0.311   \n",
       "35               0.290                    0.306          0.327   \n",
       "36               0.303                    0.305          0.332   \n",
       "37               0.316                    0.305          0.337   \n",
       "38               0.326                    0.315          0.339   \n",
       "39               0.310                    0.314          0.345   \n",
       "40               0.321                    0.327          0.347   \n",
       "41               0.318                    0.322          0.348   \n",
       "42               0.328                    0.319          0.349   \n",
       "43               0.324                    0.318          0.350   \n",
       "44               0.320                    0.312          0.354   \n",
       "\n",
       "    hellaswag/acc_norm  openbookqa/acc  openbookqa/acc_norm  ...  siqa/acc  \\\n",
       "0                0.258           0.166                0.286  ...     0.367   \n",
       "1                0.278           0.124                0.264  ...     0.368   \n",
       "2                0.312           0.116                0.258  ...     0.367   \n",
       "3                0.335           0.150                0.278  ...     0.371   \n",
       "4                0.351           0.144                0.278  ...     0.386   \n",
       "5                0.364           0.172                0.298  ...     0.382   \n",
       "6                0.372           0.162                0.314  ...     0.377   \n",
       "7                0.386           0.188                0.298  ...     0.376   \n",
       "8                0.409           0.170                0.310  ...     0.374   \n",
       "9                0.404           0.182                0.294  ...     0.374   \n",
       "10               0.417           0.192                0.324  ...     0.389   \n",
       "11               0.426           0.188                0.320  ...     0.398   \n",
       "12               0.434           0.194                0.306  ...     0.377   \n",
       "13               0.438           0.190                0.320  ...     0.392   \n",
       "14               0.431           0.202                0.330  ...     0.387   \n",
       "15               0.258           0.166                0.286  ...     0.367   \n",
       "16               0.277           0.130                0.274  ...     0.354   \n",
       "17               0.305           0.132                0.280  ...     0.377   \n",
       "18               0.320           0.156                0.296  ...     0.375   \n",
       "19               0.361           0.160                0.292  ...     0.380   \n",
       "20               0.376           0.160                0.286  ...     0.392   \n",
       "21               0.387           0.176                0.284  ...     0.376   \n",
       "22               0.407           0.172                0.300  ...     0.386   \n",
       "23               0.412           0.168                0.286  ...     0.395   \n",
       "24               0.421           0.176                0.294  ...     0.407   \n",
       "25               0.426           0.174                0.320  ...     0.397   \n",
       "26               0.428           0.188                0.314  ...     0.403   \n",
       "27               0.434           0.174                0.310  ...     0.399   \n",
       "28               0.440           0.178                0.314  ...     0.401   \n",
       "29               0.444           0.186                0.322  ...     0.406   \n",
       "30               0.258           0.166                0.286  ...     0.367   \n",
       "31               0.286           0.104                0.244  ...     0.366   \n",
       "32               0.288           0.128                0.280  ...     0.366   \n",
       "33               0.328           0.138                0.266  ...     0.362   \n",
       "34               0.338           0.132                0.280  ...     0.361   \n",
       "35               0.356           0.138                0.276  ...     0.365   \n",
       "36               0.356           0.142                0.288  ...     0.375   \n",
       "37               0.359           0.142                0.302  ...     0.372   \n",
       "38               0.372           0.150                0.288  ...     0.372   \n",
       "39               0.374           0.140                0.274  ...     0.364   \n",
       "40               0.383           0.156                0.280  ...     0.376   \n",
       "41               0.381           0.160                0.284  ...     0.367   \n",
       "42               0.395           0.162                0.290  ...     0.367   \n",
       "43               0.385           0.158                0.290  ...     0.373   \n",
       "44               0.393           0.152                0.288  ...     0.367   \n",
       "\n",
       "    siqa/acc_norm  winogrande/acc  winogrande/acc_norm  sciq/acc  \\\n",
       "0           0.362           0.516                0.497     0.208   \n",
       "1           0.389           0.509                0.491     0.582   \n",
       "2           0.397           0.516                0.505     0.686   \n",
       "3           0.401           0.513                0.500     0.712   \n",
       "4           0.395           0.511                0.511     0.750   \n",
       "5           0.398           0.518                0.522     0.751   \n",
       "6           0.390           0.498                0.492     0.776   \n",
       "7           0.384           0.518                0.521     0.769   \n",
       "8           0.391           0.530                0.521     0.781   \n",
       "9           0.391           0.526                0.514     0.769   \n",
       "10          0.389           0.518                0.524     0.785   \n",
       "11          0.397           0.535                0.529     0.801   \n",
       "12          0.392           0.541                0.527     0.790   \n",
       "13          0.396           0.540                0.522     0.802   \n",
       "14          0.392           0.540                0.516     0.797   \n",
       "15          0.362           0.516                0.497     0.208   \n",
       "16          0.386           0.509                0.507     0.559   \n",
       "17          0.392           0.522                0.504     0.665   \n",
       "18          0.394           0.503                0.497     0.721   \n",
       "19          0.399           0.505                0.494     0.719   \n",
       "20          0.401           0.525                0.512     0.733   \n",
       "21          0.405           0.522                0.514     0.753   \n",
       "22          0.399           0.521                0.521     0.764   \n",
       "23          0.404           0.533                0.511     0.754   \n",
       "24          0.403           0.532                0.526     0.775   \n",
       "25          0.401           0.542                0.532     0.764   \n",
       "26          0.398           0.530                0.516       NaN   \n",
       "27          0.396           0.538                0.525       NaN   \n",
       "28          0.392           0.535                0.526       NaN   \n",
       "29          0.392           0.543                0.527     0.783   \n",
       "30          0.362           0.515                0.497       NaN   \n",
       "31          0.380           0.499                0.492     0.546   \n",
       "32          0.383           0.519                0.499       NaN   \n",
       "33          0.394           0.519                0.504       NaN   \n",
       "34          0.393           0.502                0.496       NaN   \n",
       "35          0.389           0.515                0.511       NaN   \n",
       "36          0.397           0.540                0.521       NaN   \n",
       "37          0.401           0.531                0.510       NaN   \n",
       "38          0.396           0.532                0.508       NaN   \n",
       "39          0.392           0.529                0.506       NaN   \n",
       "40          0.397           0.529                0.513       NaN   \n",
       "41          0.387           0.538                0.516       NaN   \n",
       "42          0.407           0.528                0.510       NaN   \n",
       "43          0.396           0.538                0.510       NaN   \n",
       "44          0.396           0.528                0.513     0.785   \n",
       "\n",
       "    sciq/acc_norm  arc/acc  arc/acc_norm  mmlu/acc  mmlu/acc_norm  \n",
       "0           0.202   0.2195        0.2510  0.230294       0.250147  \n",
       "1           0.516   0.2825        0.2955  0.239520       0.253223  \n",
       "2           0.582   0.3090        0.3200  0.247320       0.262812  \n",
       "3           0.611   0.3075        0.3415  0.248568       0.263474  \n",
       "4           0.658   0.3260        0.3445  0.259246       0.273276  \n",
       "5           0.661   0.3470        0.3545  0.258485       0.271414  \n",
       "6           0.669   0.3530        0.3565  0.261842       0.276371  \n",
       "7           0.672   0.3625        0.3585  0.265558       0.274768  \n",
       "8           0.677   0.3530        0.3615  0.267141       0.283691  \n",
       "9           0.672   0.3630        0.3715  0.266464       0.284446  \n",
       "10          0.682   0.3735        0.3745  0.268085       0.283562  \n",
       "11          0.695   0.3775        0.3800  0.267457       0.285596  \n",
       "12          0.690   0.3680        0.3755  0.267547       0.285836  \n",
       "13          0.707   0.3760        0.3845  0.271108       0.287802  \n",
       "14          0.700   0.3790        0.3870  0.269510       0.287944  \n",
       "15          0.202   0.2195        0.2510  0.230294       0.250147  \n",
       "16          0.500   0.2590        0.2970  0.243455       0.254311  \n",
       "17          0.566   0.3040        0.3135  0.249051       0.255010  \n",
       "18          0.626   0.3140        0.3410  0.254015       0.266158  \n",
       "19          0.615   0.3375        0.3375  0.256696       0.268152  \n",
       "20          0.639   0.3390        0.3580  0.257450       0.271040  \n",
       "21          0.664   0.3450        0.3645  0.262549       0.273836  \n",
       "22          0.662   0.3585        0.3625  0.262740       0.276266  \n",
       "23          0.646   0.3555        0.3690  0.263875       0.278433  \n",
       "24          0.666   0.3605        0.3730  0.265119       0.283235  \n",
       "25          0.673   0.3675        0.3840  0.272474       0.286190  \n",
       "26            NaN   0.3690        0.3780  0.269131       0.288633  \n",
       "27            NaN   0.3660        0.3810  0.270691       0.287333  \n",
       "28            NaN   0.3785        0.3905  0.268910       0.289335  \n",
       "29          0.682   0.3745        0.3890  0.270869       0.289845  \n",
       "30            NaN   0.2195        0.2520  0.230228       0.250147  \n",
       "31          0.484   0.2565        0.2780  0.239651       0.253956  \n",
       "32            NaN   0.2845        0.3115  0.239715       0.253644  \n",
       "33            NaN   0.3035        0.3335  0.250551       0.262409  \n",
       "34            NaN   0.3105        0.3375  0.249887       0.263702  \n",
       "35            NaN   0.3190        0.3380  0.252621       0.266785  \n",
       "36            NaN   0.3280        0.3515  0.252255       0.265589  \n",
       "37            NaN   0.3320        0.3550  0.250146       0.267719  \n",
       "38            NaN   0.3365        0.3630  0.258433       0.274100  \n",
       "39            NaN   0.3445        0.3610  0.258927       0.271955  \n",
       "40            NaN   0.3445        0.3650  0.258294       0.272123  \n",
       "41            NaN   0.3490        0.3660  0.259610       0.276792  \n",
       "42            NaN   0.3510        0.3700  0.260350       0.279535  \n",
       "43            NaN   0.3540        0.3730  0.258481       0.274616  \n",
       "44          0.675   0.3590        0.3660  0.260174       0.278002  \n",
       "\n",
       "[45 rows x 22 columns]"
      ]
     },
     "execution_count": 23,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "import pandas as pd\n",
    "from matplotlib.figure import Figure\n",
    "\n",
    "df = pd.read_csv(\"../src_data/removed_data_cross_dedup.csv\")\n",
    "df"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "id": "b610f43caefdf01",
   "metadata": {
    "ExecuteTime": {
     "end_time": "2024-04-30T13:29:05.776714Z",
     "start_time": "2024-04-30T13:29:05.774546Z"
    },
    "collapsed": false
   },
   "outputs": [],
   "source": [
    "runs_mapping = {\n",
    "    \"deduped_removed_cross\": \"Originally removed data\",\n",
    "    \"cross_minhash_dump_CC-MAIN-2013-48\": \"Originally kept data\",\n",
    "}"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 25,
   "id": "18b2dde6",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Index(['runname', 'seed', 'steps', 'agg_score', 'commonsense_qa/acc',\n",
       "       'commonsense_qa/acc_norm', 'hellaswag/acc', 'hellaswag/acc_norm',\n",
       "       'openbookqa/acc', 'openbookqa/acc_norm', 'piqa/acc', 'piqa/acc_norm',\n",
       "       'siqa/acc', 'siqa/acc_norm', 'winogrande/acc', 'winogrande/acc_norm',\n",
       "       'sciq/acc', 'sciq/acc_norm', 'arc/acc', 'arc/acc_norm', 'mmlu/acc',\n",
       "       'mmlu/acc_norm'],\n",
       "      dtype='object')"
      ]
     },
     "execution_count": 25,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df.columns"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 27,
   "id": "initial_id",
   "metadata": {
    "ExecuteTime": {
     "end_time": "2024-04-30T13:31:10.740797Z",
     "start_time": "2024-04-30T13:31:10.661359Z"
    },
    "collapsed": true
   },
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "No artists with labels found to put in legend.  Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n"
     ]
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHHCAYAAABTMjf2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABMi0lEQVR4nO3de3zP9f//8ft7Y+9tZhvGNowxxzn2mfg4JUyLUio5lSF0ksRHReSQYyX0ccihQj4VRfoocmhRkZJjyqGcfbAh2Zjz9vz90W+vr7dt7M0O5nW7Xi67XLyf7+fr9Xq8Xq/36/2+e72e79fbYYwxAgAAsCGPvC4AAAAgrxCEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEctHq1avlcDi0YMGCvC7luvbv3y+Hw6HZs2ff0PQOh0PDhg3L1pqudvfdd+vuu++2Ht9szbi+tNfw6tWrb2j6YcOGyeFwZG9RyFRCQoLatm2rYsWKyeFwaOLEiXldUo4JDw/X/ffff9ssJyfc7PF7uyII3SSHw5GlP154wM2ZOnVqvgi527dv17Bhw7R///68LkV9+/bV8uXLNXDgQM2dO1f33ntvXpd0U26lbZvbRo8erc8//zzPlr906dIc/89tXimQ1wXkd3PnznV5/MEHH2jlypXp2qtWraodO3bkZmk3pWzZsjp37pwKFix4Q9OfO3dOBQrw8kL2mTp1qoKCgtS1a9e8LuWatm/fruHDh+vuu+9WeHh4ntbyzTff6MEHH1T//v3ztI7scitt29w2evRotW3bVm3atMmT5S9dulRTpky5LcMQn1Q36fHHH3d5/OOPP2rlypXp2iXliyB0+fJlpaamysvLS97e3jc8n5uZ9laWnJysQoUK5XUZQKauPIaPHTumwMDAbJv3+fPn5eXlJQ8PLibg9sGrOQ+kpqZq1KhRKl26tLy9vdW8eXPt3r07Xb+ffvpJ9957rwICAuTr66smTZpo7dq1WVrGsWPH1L17dwUHB8vb21u1atXSnDlzXPqkjakZN26cJk6cqIiICDmdTm3fvj3T8TaffvqpIiMj5e3trerVq2vRokXq2rVruv+dXT1GKG1syO7du9W1a1cFBgYqICBA3bp109mzZ12mnTVrlpo1a6YSJUrI6XQqMjJS77zzTpbW++r5OBwObd68Od1zo0ePlqenpw4fPpzp9Gk1b9++XZ06dVKRIkXUqFEj6/n//Oc/ioqKko+Pj4oWLaoOHTro0KFDLvO4++67Vb16df3yyy9q0qSJfH19VaFCBWuc2Lfffqt69erJx8dHlStX1tdff52ujs2bN6tly5by9/eXn5+fmjdvrh9//NF6fsOGDXI4HOn2ryQtX75cDodDX375pdV2+PBhPfHEEwoODpbT6VS1atX0/vvvp5v2f//7n9q0aaNChQqpRIkS6tu3ry5cuJDp9rramjVrdOedd8rb21sRERGaPn16hv2ysr/Dw8P122+/6dtvv7UuN6eNDzt58qT69++vGjVqyM/PT/7+/mrZsqW2bt2apTovX76sESNGWK//8PBwvfLKK+nWNbNxb+Hh4dZZqtmzZ+vRRx+VJDVt2jTdpfG08SUrVqxQ7dq15e3trcjISH322Wfp5nvq1Cm98MILCgsLk9PpVIUKFfT6668rNTXV6pPZMTx16lQ5HA4ZYzRlyhSrjjR79+7Vo48+qqJFi8rX11f//Oc/tWTJEpflp40nmTdvngYPHqxSpUrJ19dXSUlJ6tq1q/z8/HTw4EHdf//98vPzU6lSpTRlyhRJ0rZt29SsWTMVKlRIZcuW1UcffeQy70uXLmn48OGqWLGivL29VaxYMTVq1EgrV67MdD9db9umWbNmjerWrStvb2+VL19eH3zwwQ1tW3fMmTNHBQoU0Isvvmi1ZeX9O+09ZufOnWrXrp38/f1VrFgx9enTR+fPn7f6ORwOJScna86cOdZ6X+/MaFaP3++//16PPvqoypQpI6fTqbCwMPXt21fnzp2z+nTt2tXat1cO+Ugzbtw4NWjQQMWKFZOPj4+ioqLyxVhYi0G26tWrl8lss65atcpIMnfccYeJiooyEyZMMMOGDTO+vr6mbt26Ln3j4uKMl5eXqV+/vnnrrbfMhAkTTM2aNY2Xl5f56aefrlnD2bNnTdWqVU3BggVN3759zb///W/TuHFjI8lMnDjR6rdv3z4jyURGRpry5cubsWPHmgkTJpgDBw5Yz82aNcvq/+WXXxqHw2Fq1qxpxo8fb1599VVTpEgRU716dVO2bFmXGiSZoUOHWo+HDh1qrfvDDz9spk6danr06GEkmZdeesll2jvvvNN07drVTJgwwUyaNMncc889RpKZPHmyS78mTZqYJk2apFuftJqTkpKMj4+P+de//pVuG0VGRppmzZpdczum1RwZGWkefPBBM3XqVDNlyhRjjDEjR440DofDtG/f3kydOtUMHz7cBAUFmfDwcPPXX3+51FiyZEkTFhZmXnzxRTNp0iQTGRlpPD09zbx580xISIgZNmyYmThxoilVqpQJCAgwSUlJ1vS//vqrKVSokAkNDTUjRowwY8eONeXKlTNOp9P8+OOPVr/y5cubVq1apVuHbt26mSJFipiLFy8aY4yJj483pUuXNmFhYea1114z77zzjnnggQeMJDNhwgRrurNnz5pKlSoZb29v89JLL5mJEyeaqKgoU7NmTSPJrFq16prb7pdffjE+Pj6mTJkyZsyYMWbEiBEmODjYmv5KWdnfixYtMqVLlzZVqlQxc+fONXPnzjUrVqwwxhjz888/m4iICDNgwAAzffp089prr1nb8vDhw9es0xhjunTpYiSZtm3bmilTppjY2FgjybRp08al39Wv6TRly5Y1Xbp0McYYs2fPHvP8888bSeaVV16xao2Pj7f6VqpUyQQGBpoBAwaY8ePHmxo1ahgPDw9rfYwxJjk52dSsWdMUK1bMvPLKK2batGkmNjbWOBwO06dPH6tfZsfwt99+a+bOnWskmRYtWlh1GPP3ayA4ONgULlzYDBo0yIwfP97UqlXLeHh4mM8++8yad9r7VWRkpKldu7YZP368GTNmjElOTjZdunQx3t7eJjIy0jz99NNmypQppkGDBtbxV7JkSev1Xq1aNePp6Wn27t1rzfuVV14xDofD9OzZ08ycOdO89dZbpmPHjmbs2LGZ7qesbNvKlSub4OBg88orr5jJkyebf/zjH8bhcJhff/3V7W2bmbJly5r77rvPejx9+nTjcDjMoEGDrLasvn+nvcfUqFHDtG7d2kyePNk8/vjjRpLp3Lmz1W/u3LnG6XSaxo0bW+v9ww8/ZFqjO8dv7969TatWrczo0aPN9OnTTffu3Y2np6dp27at1eeHH34wLVq0MJKs5ae9nowxpnTp0ubZZ581kydPNuPHjzd169Y1ksyXX3553e15KyAIZbOsBKGqVauaCxcuWO1vv/22kWS2bdtmjDEmNTXVVKxY0cTExJjU1FSr39mzZ025cuVMixYtrlnDxIkTjSTzn//8x2q7ePGiqV+/vvHz87M+aNPeRP39/c2xY8dc5pFREKpRo4YpXbq0OX36tNW2evVqIynLQeiJJ55w6ffQQw+ZYsWKubSdPXs23TrFxMSY8uXLu7RdLwgZY0zHjh1NyZIlTUpKitW2adOmdP0yklZzx44dXdr3799vPD09zahRo1zat23bZgoUKODS3qRJEyPJfPTRR1bbzp07jSTj4eHhEmaWL1+erq42bdoYLy8vs2fPHqvtyJEjpnDhwuauu+6y2gYOHGgKFixoTp48abVduHDBBAYGumzz7t27m9DQUHPixAmX2jt06GACAgKsbZ/2Gvrkk0+sPsnJyaZChQpZCkJt2rQx3t7e5sCBA1bb9u3bjaenZ7rjI6v7u1q1ai77O8358+dd9q8xf78WnE6nee21165Z55YtW4wk06NHD5f2/v37G0nmm2++sdqyEoSMMebTTz/NdBuVLVvWSDILFy602hITE01oaKi54447rLYRI0aYQoUKmd9//91l+gEDBhhPT09z8OBBaz0zO4bTau7Vq5dL2wsvvGAkme+//95qO336tClXrpwJDw+3tmXa+1X58uXT7aO08Dh69Gir7a+//jI+Pj7G4XCYefPmWe1pr/crt12tWrVcwkRWZWXbfvfdd1bbsWPHjNPpdPnPUFa3bWauDEJvv/22cTgcZsSIEdbz7rx/p73HPPDAAy7LePbZZ40ks3XrVqutUKFCLq+za3Hn+M3o+BszZoxxOBwux++1PtuunsfFixdN9erVr/ufzVsFl8byQLdu3eTl5WU9bty4saS/T1dL0pYtW/THH3+oU6dO+vPPP3XixAmdOHFCycnJat68ub777rtrnsJdunSpQkJC1LFjR6utYMGCev7553XmzBl9++23Lv0feeQRFS9e/Jo1HzlyRNu2bVNsbKz8/Pys9iZNmqhGjRpZXvenn37a5XHjxo31559/KikpyWrz8fGx/p2YmKgTJ06oSZMm2rt3rxITE7O8LEmKjY3VkSNHtGrVKqvtww8/lI+Pjx555JEbqvmzzz5Tamqq2rVrZ+2bEydOKCQkRBUrVnRZliT5+fmpQ4cO1uPKlSsrMDBQVatWVb169az2tH+nvQ5SUlK0YsUKtWnTRuXLl7f6hYaGqlOnTlqzZo213dq3b69Lly65XGJZsWKFTp06pfbt20uSjDFauHChWrduLWOMS+0xMTFKTEzUpk2bJP39GgoNDVXbtm2t+fn6+urJJ5+87vZKSUnR8uXL1aZNG5UpU8Zqr1q1qmJiYtL1v9n97XQ6rTErKSkp+vPPP+Xn56fKlStb65OZpUuXSpL69evn0v6vf/1LktJdLsoOJUuW1EMPPWQ99vf3V2xsrDZv3qz4+HhJf1+Cbty4sYoUKeKyn6Kjo5WSkqLvvvvOZZ5ZOYbTLF26VHXr1nW5zOvn56cnn3xS+/fv1/bt2136d+nSxWUfXalHjx7WvwMDA1W5cmUVKlRI7dq1s9rTXu9pr+u0vr/99pv++OOPLNWcVZGRkdb7qSQVL15clStXdlm2u9s2M2+88Yb69Omj119/XYMHD7bab+T9u1evXi6Pe/fuLen/Xp/ucuf4vXLfJicn68SJE2rQoIGMMRkOK8jIlfP466+/lJiYqMaNG1/3+LtVMFg6D1z54SBJRYoUkfT3C0iS9ebQpUuXTOeRmJhoTXe1AwcOqGLFiukGNFatWtV6/krlypW7bs1p01SoUCHdcxUqVMjyC/5a6+7v7y9JWrt2rYYOHap169alGz+UmJiogICALC1Lklq0aKHQ0FB9+OGHat68uVJTU/Xxxx/rwQcfVOHChbM0j6u3zx9//CFjjCpWrJhh/6u/aVe6dOl0984JCAhQWFhYujbp/14Hx48f19mzZ1W5cuV0y6hatapSU1N16NAhVatWTbVq1VKVKlU0f/58de/eXZI0f/58BQUFqVmzZtb8Tp06pRkzZmjGjBkZ1n7s2DFJf+/vChUqpKs7o1qudvz4cZ07dy7D7VO5cuV0b+43u79TU1P19ttva+rUqdq3b59SUlKs54oVK3bNaQ8cOCAPD490r+uQkBAFBgamO1ayQ0bbtVKlSpL+HvMTEhKiP/74Q7/88kum4SZtP6XJyjGc5sCBAy4BPM2V7w/Vq1e/7ry9vb3T1RcQEJDp6z3tdS1Jr732mh588EFVqlRJ1atX17333qvOnTurZs2aWV6PjFz9/iL9/R5z5bLd3bYZ+fbbb7VkyRK9/PLLLuOC0uYvuff+ffWxEhERIQ8Pjxu+TYA7x+/Bgwc1ZMgQLV682GU7pdWZFV9++aVGjhypLVu2uIxDyi/3DCMI5QFPT88M240xkmT9b+HNN99U7dq1M+x75VmZm5XZ//ZywvXWfc+ePWrevLmqVKmi8ePHKywsTF5eXlq6dKkmTJjg9mBGT09PderUSTNnztTUqVO1du1aHTlyJMNv9WXm6u2Tmpoqh8Ohr776KsP1uXrfZLbO19sW7mrfvr1GjRqlEydOqHDhwlq8eLE6duxo3cYgbds9/vjjmb5J3+wHkbuyY3+PHj1ar776qp544gmNGDFCRYsWlYeHh1544YUsv15u5g37yuCVXVJTU9WiRQu99NJLGT6fFpzS5OQxnNm8b+Z1fdddd2nPnj3673//qxUrVujdd9/VhAkTNG3aNJezTO7KyrLd3bYZqVatmk6dOqW5c+fqqaeecgmL2fH+nVsBIiUlRS1atNDJkyf18ssvq0qVKipUqJAOHz6srl27Zun4+f777/XAAw/orrvu0tSpUxUaGqqCBQtq1qxZ6QbJ36oIQregiIgISX+fMo+OjnZ7+rJly+qXX35Ramqqy1mhnTt3Ws/fyDwlZfjttozabtQXX3yhCxcuaPHixS7/u7v6cpM7YmNj9dZbb+mLL77QV199peLFi2d4iSarIiIiZIxRuXLlsvSmeaOKFy8uX19f7dq1K91zO3fulIeHh8tZpfbt22v48OFauHChgoODlZSU5HJJrnjx4ipcuLBSUlKu+7oqW7asfv31VxljXN6UM6olo7p9fHwyvOxx9fTu7O/MPhwWLFigpk2b6r333nNpP3XqlIKCgq5Za9myZZWamqo//vjDOiMi/X1H5lOnTrkcK0WKFNGpU6dcpr948aKOHj2apTrT7N69O912/f333yXJ+vZlRESEzpw5c0PH//WULVs209dU2vO5oWjRourWrZu6deumM2fO6K677tKwYcOuGYSyIyBkx7YNCgrSggUL1KhRIzVv3lxr1qxRyZIlrflL7r1///HHHy5havfu3UpNTXX5Nq47657V43fbtm36/fffNWfOHMXGxlrtGX17L7PlL1y4UN7e3lq+fLmcTqfVPmvWrCzXm9cYI3QLioqKUkREhMaNG6czZ86ke/748ePXnL5Vq1aKj4/X/PnzrbbLly9r0qRJ8vPzU5MmTdyuqWTJkqpevbo++OADl5q+/fZbbdu2ze35ZSbtf3RX/g8uMTHxpg6qmjVrqmbNmnr33Xe1cOFCdejQ4aZu9vjwww/L09NTw4cPT3f2xhijP//884bnfSVPT0/dc889+u9//+tyijwhIUEfffSRGjVqZF1OlP6+tFGjRg3Nnz9f8+fPV2hoqO666y6X+T3yyCNauHChfv3113TLu/J11apVKx05csTlK7Bnz57N9JLa1XXHxMTo888/18GDB632HTt2aPny5en6Slnb34UKFUoXRNLmcfV++PTTT695a4Q0rVq1kqR0Pz0xfvx4SdJ9991ntUVERKQbPzJjxox0Z4TS7jOVUa3S3+PtFi1aZD1OSkrSBx98oNq1ayskJESS1K5dO61bty7d9kqb7+XLl6+7bplp1aqV1q9fr3Xr1lltycnJmjFjhsLDwxUZGXnD886qq48RPz8/VahQ4bq3Z7jets2K7Nq2pUuX1tdff61z586pRYsW1jrdyPt32lfT00yaNEmS1LJlS6sts9d/RrJ6/GZ0/Blj9Pbbb6ebZ2bb3tPTUw6Hw+U42L9/f57eBdtdnBG6BXl4eOjdd99Vy5YtVa1aNXXr1k2lSpXS4cOHtWrVKvn7++uLL77IdPonn3xS06dPV9euXbVx40aFh4drwYIFWrt2rSZOnJjlsTFXGz16tB588EE1bNhQ3bp1019//aXJkyerevXqGR7wN+Kee+6Rl5eXWrduraeeekpnzpzRzJkzVaJEiXT/83ZHbGysdXdddy6LZSQiIkIjR47UwIEDtX//frVp00aFCxfWvn37tGjRIj355JPZdiffkSNHauXKlWrUqJGeffZZFShQQNOnT9eFCxf0xhtvpOvfvn17DRkyRN7e3urevXu6cWJjx47VqlWrVK9ePfXs2VORkZE6efKkNm3apK+//lonT56UJPXs2VOTJ09WbGysNm7cqNDQUM2dO1e+vr5Zqnv48OFatmyZGjdurGeffdYK4tWqVdMvv/xi9XNnf0dFRemdd97RyJEjVaFCBZUoUULNmjXT/fffr9dee03dunVTgwYNtG3bNn344YcuA8wzU6tWLXXp0kUzZszQqVOn1KRJE61fv15z5sxRmzZt1LRpU6tvjx499PTTT+uRRx5RixYttHXrVi1fvjzdWafatWvL09NTr7/+uhITE+V0Oq37JEl/X3rp3r27fv75ZwUHB+v9999XQkKCS/h78cUXtXjxYt1///3q2rWroqKilJycrG3btmnBggXav3//dc92ZWbAgAH6+OOP1bJlSz3//PMqWrSo5syZo3379mnhwoW5crPEyMhI3X333YqKilLRokW1YcMGLViwQM8999w1p7vets2K7Ny2FSpU0IoVK3T33XcrJiZG33zzjfz9/d1+/963b58eeOAB3XvvvVq3bp3+85//qFOnTqpVq5bVJyoqSl9//bXGjx+vkiVLqly5chmO9ZKyfvxWqVJFERER6t+/vw4fPix/f38tXLgw3VihtOVL0vPPP6+YmBh5enqqQ4cOuu+++zR+/Hjde++96tSpk44dO6YpU6aoQoUKLsf6LS13v6R2+8vK1+c//fRTl/aMvvZtjDGbN282Dz/8sClWrJhxOp2mbNmypl27diYuLu66dSQkJJhu3bqZoKAg4+XlZWrUqJFu/mnLffPNN9NNn1lN8+bNM1WqVDFOp9NUr17dLF682DzyyCOmSpUqLv2Uydfnjx8/7tJv1qxZRpLZt2+f1bZ48WJTs2ZN4+3tbcLDw83rr79u3n///XT9svL1+TRHjx41np6eplKlShlur4xkVnOahQsXmkaNGplChQqZQoUKmSpVqphevXqZXbt2udRYrVq1dNNefS+SNMrg686bNm0yMTExxs/Pz/j6+pqmTZtmeg+RP/74w0gyksyaNWsy7JOQkGB69eplwsLCTMGCBU1ISIhp3ry5mTFjhku/AwcOmAceeMD4+vqaoKAg06dPH7Ns2bIsfX3eGGO+/fZbExUVZby8vEz58uXNtGnTrG16pazu7/j4eHPfffeZwoULG0nWvj9//rz517/+ZUJDQ42Pj49p2LChWbduXbrXR2YuXbpkhg8fbsqVK2cKFixowsLCzMCBA8358+dd+qWkpJiXX37ZBAUFGV9fXxMTE2N2796d7uvzxhgzc+ZMU758eet2AWnbK22/L1++3NSsWdM4nU5TpUqVdO8Jxvz9lfaBAweaChUqGC8vLxMUFGQaNGhgxo0bZ90X6lrHsDEZv56M+fuePG3btjWBgYHG29vb1K1bN909XzJ7vzLm76/PFypUKF17Vl/vI0eONHXr1jWBgYHGx8fHVKlSxYwaNcpar2u53rbNqKarXwdZ2baZyWg5P/30k3VLi7Svkmfl/TvteNi+fbtp27atKVy4sClSpIh57rnnzLlz51yWsXPnTnPXXXcZHx8fI+m6X6XP6vG7fft2Ex0dbfz8/ExQUJDp2bOn2bp1a7r30suXL5vevXub4sWLG4fD4XIcv/fee6ZixYrW63nWrFkZHuu3KocxNzgyE/j/ateureLFi1/zrrB57cSJEwoNDdWQIUP06quv5nU5sKnw8HBVr17d5U7fsK9hw4Zp+PDhOn78+A2f4cPNY4wQsuzSpUvprp+vXr1aW7dutX7u4FY1e/ZspaSkqHPnznldCgDgFsIYIWTZ4cOHFR0drccff1wlS5bUzp07NW3aNIWEhKS76eCt4ptvvtH27ds1atQotWnTxna/WA0AuDaCELKsSJEiioqK0rvvvqvjx4+rUKFCuu+++zR27Njr3rgur7z22mv64Ycf1LBhQ+ubGAAApMnTMULfffed3nzzTW3cuFFHjx7VokWL1KZNm2tOs3r1avXr10+//fabwsLCNHjw4Ov+Ci8AAEBG8nSMUHJysmrVqpXuHgqZ2bdvn+677z41bdpUW7Zs0QsvvKAePXpkeD8IAACA67llvjXmcDiue0bo5Zdf1pIlS1xuBtehQwedOnVKy5Yty4UqAQDA7SRfjRFat25duluWx8TE6IUXXsh0mgsXLrjcrTQ1NVUnT55UsWLF8s0PwgEAYHfGGJ0+fVolS5bM1ht/5qsgFB8fr+DgYJe2tN9UOnfuXIY/DjhmzBgNHz48t0oEAAA56NChQypdunS2zS9fBaEbMXDgQPXr1896nJiYqDJlyujQoUMuv9MEAABuXUlJSQoLC7vhn4nKTL4KQiEhIUpISHBpS0hIkL+/f4ZngyTJ6XS6/CJuGn9/f4IQAAD5THYPa8lXd5auX7++4uLiXNpWrlyp+vXr51FFAAAgP8vTIHTmzBlt2bJFW7ZskfT31+O3bNmigwcPSvr7slZsbKzV/+mnn9bevXv10ksvaefOnZo6dao++eQT9e3bNy/KBwAA+VyeBqENGzbojjvu0B133CFJ6tevn+644w4NGTJEknT06FErFElSuXLltGTJEq1cuVK1atXSW2+9pXfffVcxMTF5Uj8AAMjfbpn7COWWpKQkBQQEKDExkTFCAADkopSUFF26dCnT5728vDL9anxOfX7nq8HSAAAg/zHGKD4+XqdOnbpmPw8PD5UrV05eXl65U5gIQgAAIIelhaASJUrI19c3w29+paam6siRIzp69KjKlCmTazc9JggBAIAck5KSYoWgYsWKXbNv8eLFdeTIEV2+fFkFCxbMlfry1dfnAQBA/pI2JsjX1/e6fdMuiaWkpORoTVciCAEAgByXlUtdefEboAQhAABgWwQhAABgWwQhAABgWwQhAACQ47Jy/+a8uMczQQgAAOSYtK/Bnz179rp9L168KEny9PTM0ZquxH2EAABAjvH09FRgYKCOHTsmSde8oeLx48fl6+urAgVyL54QhAAAQI4KCQmRJCsMZcbDwyNX7yotEYQAAEAOczgcCg0NVYkSJW74R1dzCkEIAADkCk9Pz1wd/5MVDJYGAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2ledBaMqUKQoPD5e3t7fq1aun9evXX7P/xIkTVblyZfn4+CgsLEx9+/bV+fPnc6laAABwO8nTIDR//nz169dPQ4cO1aZNm1SrVi3FxMTo2LFjGfb/6KOPNGDAAA0dOlQ7duzQe++9p/nz5+uVV17J5coBAMDtIE+D0Pjx49WzZ09169ZNkZGRmjZtmnx9ffX+++9n2P+HH35Qw4YN1alTJ4WHh+uee+5Rx44dr3sWCQAAICN5FoQuXryojRs3Kjo6+v+K8fBQdHS01q1bl+E0DRo00MaNG63gs3fvXi1dulStWrXKdDkXLlxQUlKSyx8AAIAkFcirBZ84cUIpKSkKDg52aQ8ODtbOnTsznKZTp046ceKEGjVqJGOMLl++rKeffvqal8bGjBmj4cOHZ2vtAADg9pDng6XdsXr1ao0ePVpTp07Vpk2b9Nlnn2nJkiUaMWJEptMMHDhQiYmJ1t+hQ4dysWIAAHAry7MzQkFBQfL09FRCQoJLe0JCgkJCQjKc5tVXX1Xnzp3Vo0cPSVKNGjWUnJysJ598UoMGDZKHR/pc53Q65XQ6s38FAABAvpdnZ4S8vLwUFRWluLg4qy01NVVxcXGqX79+htOcPXs2Xdjx9PSUJBljcq5YAABwW8qzM0KS1K9fP3Xp0kV16tRR3bp1NXHiRCUnJ6tbt26SpNjYWJUqVUpjxoyRJLVu3Vrjx4/XHXfcoXr16mn37t169dVX1bp1aysQAQAAZFWeBqH27dvr+PHjGjJkiOLj41W7dm0tW7bMGkB98OBBlzNAgwcPlsPh0ODBg3X48GEVL15crVu31qhRo/JqFQAAQD7mMDa7ppSUlKSAgAAlJibK398/r8sBAABZkFOf3/nqW2MAAADZiSAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsK8+D0JQpUxQeHi5vb2/Vq1dP69evv2b/U6dOqVevXgoNDZXT6VSlSpW0dOnSXKoWAADcTgrk5cLnz5+vfv36adq0aapXr54mTpyomJgY7dq1SyVKlEjX/+LFi2rRooVKlCihBQsWqFSpUjpw4IACAwNzv3gAAJDvOYwxJq8WXq9ePd15552aPHmyJCk1NVVhYWHq3bu3BgwYkK7/tGnT9Oabb2rnzp0qWLDgDS0zKSlJAQEBSkxMlL+//03VDwAAckdOfX7n2aWxixcvauPGjYqOjv6/Yjw8FB0drXXr1mU4zeLFi1W/fn316tVLwcHBql69ukaPHq2UlJRMl3PhwgUlJSW5/AEAAEh5GIROnDihlJQUBQcHu7QHBwcrPj4+w2n27t2rBQsWKCUlRUuXLtWrr76qt956SyNHjsx0OWPGjFFAQID1FxYWlq3rAQAA8q88HyztjtTUVJUoUUIzZsxQVFSU2rdvr0GDBmnatGmZTjNw4EAlJiZaf4cOHcrFigEAwK0szwZLBwUFydPTUwkJCS7tCQkJCgkJyXCa0NBQFSxYUJ6enlZb1apVFR8fr4sXL8rLyyvdNE6nU06nM3uLBwAAt4UbOiP0/fff6/HHH1f9+vV1+PBhSdLcuXO1Zs2aLM/Dy8tLUVFRiouLs9pSU1MVFxen+vXrZzhNw4YNtXv3bqWmplptv//+u0JDQzMMQQAAANfidhBauHChYmJi5OPjo82bN+vChQuSpMTERI0ePdqtefXr108zZ87UnDlztGPHDj3zzDNKTk5Wt27dJEmxsbEaOHCg1f+ZZ57RyZMn1adPH/3+++9asmSJRo8erV69erm7GgAAAO5fGhs5cqSmTZum2NhYzZs3z2pv2LDhNQctZ6R9+/Y6fvy4hgwZovj4eNWuXVvLli2zBlAfPHhQHh7/l9XCwsK0fPly9e3bVzVr1lSpUqXUp08fvfzyy+6uBgAAgPv3EfL19dX27dsVHh6uwoULa+vWrSpfvrz27t2ryMhInT9/PqdqzRbcRwgAgPznlrmPUEhIiHbv3p2ufc2aNSpfvny2FAUAAJAb3A5CPXv2VJ8+ffTTTz/J4XDoyJEj+vDDD9W/f38988wzOVEjAABAjnB7jNCAAQOUmpqq5s2b6+zZs7rrrrvkdDrVv39/9e7dOydqBAAAyBFujRFKSUnR2rVrVbNmTfn6+mr37t06c+aMIiMj5efnl5N1ZhvGCAEAkP/k1Oe3W2eEPD09dc8992jHjh0KDAxUZGRkthUCAACQ29weI1S9enXt3bs3J2oBAADIVW4HoZEjR6p///768ssvdfToUX7ZHQAA5Ftu30foyhscOhwO69/GGDkcDqWkpGRfdTmAMUIAAOQ/t8QYIUlatWpVti0cAAAgL7kdhJo0aZITdQAAAOQ6t4OQJJ06dUrvvfeeduzYIUmqVq2annjiCQUEBGRrcQAAADnJ7cHSGzZsUEREhCZMmKCTJ0/q5MmTGj9+vCIiIrRp06acqBEAACBHuD1YunHjxqpQoYJmzpypAgX+PqF0+fJl9ejRQ3v37tV3332XI4VmFwZLAwCQ/+TU57fbQcjHx0ebN29WlSpVXNq3b9+uOnXq6OzZs9lWXE4gCAEAkP/cMr8+7+/vr4MHD6ZrP3TokAoXLpwtRQEAAOQGt4NQ+/bt1b17d82fP1+HDh3SoUOHNG/ePPXo0UMdO3bMiRoBAAByhNvfGhs3bpwcDodiY2N1+fJlSVLBggX1zDPPaOzYsdleIAAAQE5xe4xQmrNnz2rPnj2SpIiICPn6+mZrYTmFMUIAAOQ/t8ydpRMTE5WSkqKiRYuqRo0aVvvJkydVoEABwgUAAMg33B4j1KFDB82bNy9d+yeffKIOHTpkS1EAAAC5we0g9NNPP6lp06bp2u+++2799NNP2VIUAABAbnA7CF24cMEaJH2lS5cu6dy5c9lSFAAAQG5wOwjVrVtXM2bMSNc+bdo0RUVFZUtRAAAAucHtwdIjR45UdHS0tm7dqubNm0uS4uLi9PPPP2vFihXZXiAAAEBOcfuMUMOGDbVu3TqFhYXpk08+0RdffKEKFSrol19+UePGjXOiRgAAgBxxw/cRyq+4jxAAAPlPnt9H6PLly0pJSZHT6bTaEhISNG3aNCUnJ+uBBx5Qo0aNsq0wAACAnJblINSzZ095eXlp+vTpkqTTp0/rzjvv1Pnz5xUaGqoJEybov//9r1q1apVjxQIAAGSnLI8RWrt2rR555BHr8QcffKCUlBT98ccf2rp1q/r166c333wzR4oEAADICVkOQocPH1bFihWtx3FxcXrkkUcUEBAgSerSpYt+++237K8QAAAgh2Q5CHl7e7vcMPHHH39UvXr1XJ4/c+ZM9lYHAACQg7IchGrXrq25c+dKkr7//nslJCSoWbNm1vN79uxRyZIls79CAACAHJLlwdJDhgxRy5Yt9cknn+jo0aPq2rWrQkNDrecXLVqkhg0b5kiRAAAAOSHLQahJkybauHGjVqxYoZCQED366KMuz9euXVt169bN9gIBAAByCjdUBAAAt7yc+vx2+yc2AAAAbhcEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFtZ/vp8miJFisjhcKRrdzgc8vb2VoUKFdS1a1d169YtWwoEAADIKW4HoSFDhmjUqFFq2bKldd+g9evXa9myZerVq5f27dunZ555RpcvX1bPnj2zvWAAAIDs4nYQWrNmjUaOHKmnn37apX369OlasWKFFi5cqJo1a+rf//43QQgAANzS3B4jtHz5ckVHR6drb968uZYvXy5JatWqlfbu3Xvz1QEAAOQgt4NQ0aJF9cUXX6Rr/+KLL1S0aFFJUnJysgoXLnzz1QEAAOQgty+Nvfrqq3rmmWe0atUqa4zQzz//rKVLl2ratGmSpJUrV6pJkybZWykAAEA2u6HfGlu7dq0mT56sXbt2SZIqV66s3r17q0GDBtleYHbjt8YAAMh/curzmx9dBQAAt7yc+vx2+9JYUlJShu0Oh0NOp1NeXl43XRQAAEBucDsIBQYGZnhDxTSlS5dW165dNXToUHl4cONqAABw63I7CM2ePVuDBg1S165dXW6oOGfOHA0ePFjHjx/XuHHj5HQ69corr2R7wQAAANnF7SA0Z84cvfXWW2rXrp3V1rp1a9WoUUPTp09XXFycypQpo1GjRhGEAADALc3ta1c//PCD7rjjjnTtd9xxh9atWydJatSokQ4ePHjz1QEAAOQgt4NQWFiY3nvvvXTt7733nsLCwiRJf/75p4oUKXLz1QEAAOQgty+NjRs3To8++qi++uor3XnnnZKkDRs2aOfOnVqwYIGkv2+w2L59++ytFAAAIJvd0H2E9u/fr+nTp7vcUPGpp55SeHh4dteX7biPEAAA+U++uKHir7/+qurVq2fX7HIEQQgAgPwnpz6/b/pGP6dPn9aMGTNUt25d1apVKztqAgAAyBU3HIS+++47denSRaGhoRo3bpyaNWumH3/8MTtrAwAAyFFuDZaOj4/X7Nmz9d577ykpKUnt2rXThQsX9PnnnysyMjKnagQAAMgRWT4j1Lp1a1WuXFm//PKLJk6cqCNHjmjSpEk5WRsAAECOyvIZoa+++krPP/+8nnnmGVWsWDEnawIAAMgVWT4jtGbNGp0+fVpRUVGqV6+eJk+erBMnTuRkbQAAADkqy0Hon//8p2bOnKmjR4/qqaee0rx581SyZEmlpqZq5cqVOn369A0XMWXKFIWHh8vb21v16tXT+vXrszTdvHnz5HA41KZNmxteNgAAsC+3vzVWqFAhPfHEE1qzZo22bdumf/3rXxo7dqxKlCihBx54wO0C5s+fr379+mno0KHatGmTatWqpZiYGB07duya0+3fv1/9+/dX48aN3V4mAACAdJP3EapcubLeeOMN/e9//9PHH398Q/MYP368evbsqW7duikyMlLTpk2Tr6+v3n///UynSUlJ0WOPPabhw4erfPnyN1o+AACwuZu+oaIkeXp6qk2bNlq8eLFb0128eFEbN25UdHT0/xXk4aHo6Gjrl+wz8tprr6lEiRLq3r37dZdx4cIFJSUlufwBAABI2RSEbtSJEyeUkpKi4OBgl/bg4GDFx8dnOM2aNWv03nvvaebMmVlaxpgxYxQQEGD9hYWF3XTdAADg9pCnQchdp0+fVufOnTVz5kwFBQVlaZqBAwcqMTHR+jt06FAOVwkAAPILt+4snd2CgoLk6emphIQEl/aEhASFhISk679nzx7t379frVu3ttpSU1MlSQUKFNCuXbsUERHhMo3T6ZTT6cyB6gEAQH6Xp2eEvLy8FBUVpbi4OKstNTVVcXFxql+/frr+VapU0bZt27Rlyxbr74EHHlDTpk21ZcsWLnsBAAC35OkZIUnq16+funTpojp16qhu3bqaOHGikpOT1a1bN0lSbGysSpUqpTFjxsjb21vVq1d3mT4wMFCS0rUDAABcT54Hofbt2+v48eMaMmSI4uPjVbt2bS1btswaQH3w4EF5eOSroUwAACCfcBhjTF4XkZuSkpIUEBCgxMRE+fv753U5AAAgC3Lq85tTLQAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLZuiSA0ZcoUhYeHy9vbW/Xq1dP69esz7Ttz5kw1btxYRYoUUZEiRRQdHX3N/gAAAJnJ8yA0f/589evXT0OHDtWmTZtUq1YtxcTE6NixYxn2X716tTp27KhVq1Zp3bp1CgsL0z333KPDhw/ncuUAACC/cxhjTF4WUK9ePd15552aPHmyJCk1NVVhYWHq3bu3BgwYcN3pU1JSVKRIEU2ePFmxsbHX7Z+UlKSAgAAlJibK39//pusHAAA5L6c+v/P0jNDFixe1ceNGRUdHW20eHh6Kjo7WunXrsjSPs2fP6tKlSypatGiGz1+4cEFJSUkufwAAAFIeB6ETJ04oJSVFwcHBLu3BwcGKj4/P0jxefvlllSxZ0iVMXWnMmDEKCAiw/sLCwm66bgAAcHvI8zFCN2Ps2LGaN2+eFi1aJG9v7wz7DBw4UImJidbfoUOHcrlKAABwqyqQlwsPCgqSp6enEhISXNoTEhIUEhJyzWnHjRunsWPH6uuvv1bNmjUz7ed0OuV0OrOlXgAAcHvJ0zNCXl5eioqKUlxcnNWWmpqquLg41a9fP9Pp3njjDY0YMULLli1TnTp1cqNUAABwG8rTM0KS1K9fP3Xp0kV16tRR3bp1NXHiRCUnJ6tbt26SpNjYWJUqVUpjxoyRJL3++usaMmSIPvroI4WHh1tjifz8/OTn55dn6wEAAPKfPA9C7du31/HjxzVkyBDFx8erdu3aWrZsmTWA+uDBg/Lw+L8TV++8844uXryotm3busxn6NChGjZsWG6WDgAA8rk8v49QbuM+QgAA5D+35X2EAAAA8hJBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2NYtEYSmTJmi8PBweXt7q169elq/fv01+3/66aeqUqWKvL29VaNGDS1dujSXKgUAALeTPA9C8+fPV79+/TR06FBt2rRJtWrVUkxMjI4dO5Zh/x9++EEdO3ZU9+7dtXnzZrVp00Zt2rTRr7/+msuVAwCA/M5hjDF5WUC9evV05513avLkyZKk1NRUhYWFqXfv3howYEC6/u3bt1dycrK+/PJLq+2f//ynateurWnTpl13eUlJSQoICFBiYqL8/f2zb0UAAECOyanP7zw9I3Tx4kVt3LhR0dHRVpuHh4eio6O1bt26DKdZt26dS39JiomJybQ/AABAZgrk5cJPnDihlJQUBQcHu7QHBwdr586dGU4THx+fYf/4+PgM+1+4cEEXLlywHicmJkr6O1kCAID8Ie1zO7svZOVpEMoNY8aM0fDhw9O1h4WF5UE1AADgZvz5558KCAjItvnlaRAKCgqSp6enEhISXNoTEhIUEhKS4TQhISFu9R84cKD69etnPT516pTKli2rgwcPZuuGhPuSkpIUFhamQ4cOMV7rFsD+uHWwL24d7ItbR2JiosqUKaOiRYtm63zzNAh5eXkpKipKcXFxatOmjaS/B0vHxcXpueeey3Ca+vXrKy4uTi+88ILVtnLlStWvXz/D/k6nU06nM117QEAAL+pbhL+/P/viFsL+uHWwL24d7Itbh4dH9g5vzvNLY/369VOXLl1Up04d1a1bVxMnTlRycrK6desmSYqNjVWpUqU0ZswYSVKfPn3UpEkTvfXWW7rvvvs0b948bdiwQTNmzMjL1QAAAPlQngeh9u3b6/jx4xoyZIji4+NVu3ZtLVu2zBoQffDgQZf016BBA3300UcaPHiwXnnlFVWsWFGff/65qlevnlerAAAA8qk8D0KS9Nxzz2V6KWz16tXp2h599FE9+uijN7Qsp9OpoUOHZni5DLmLfXFrYX/cOtgXtw72xa0jp/ZFnt9QEQAAIK/k+U9sAAAA5BWCEAAAsC2CEAAAsC2CEAAAsK3bMghNmTJF4eHh8vb2Vr169bR+/fpr9v/0009VpUoVeXt7q0aNGlq6dGkuVXr7c2dfzJw5U40bN1aRIkVUpEgRRUdHX3ffwT3uHhtp5s2bJ4fDYd34FDfP3X1x6tQp9erVS6GhoXI6napUqRLvVdnE3X0xceJEVa5cWT4+PgoLC1Pfvn11/vz5XKr29vXdd9+pdevWKlmypBwOhz7//PPrTrN69Wr94x//kNPpVIUKFTR79mz3F2xuM/PmzTNeXl7m/fffN7/99pvp2bOnCQwMNAkJCRn2X7t2rfH09DRvvPGG2b59uxk8eLApWLCg2bZtWy5Xfvtxd1906tTJTJkyxWzevNns2LHDdO3a1QQEBJj//e9/uVz57cnd/ZFm3759plSpUqZx48bmwQcfzJ1ib3Pu7osLFy6YOnXqmFatWpk1a9aYffv2mdWrV5stW7bkcuW3H3f3xYcffmicTqf58MMPzb59+8zy5ctNaGio6du3by5XfvtZunSpGTRokPnss8+MJLNo0aJr9t+7d6/x9fU1/fr1M9u3bzeTJk0ynp6eZtmyZW4t97YLQnXr1jW9evWyHqekpJiSJUuaMWPGZNi/Xbt25r777nNpq1evnnnqqadytE47cHdfXO3y5cumcOHCZs6cOTlVoq3cyP64fPmyadCggXn33XdNly5dCELZxN198c4775jy5cubixcv5laJtuHuvujVq5dp1qyZS1u/fv1Mw4YNc7ROu8lKEHrppZdMtWrVXNrat29vYmJi3FrWbXVp7OLFi9q4caOio6OtNg8PD0VHR2vdunUZTrNu3TqX/pIUExOTaX9kzY3si6udPXtWly5dyvYf2LOjG90fr732mkqUKKHu3bvnRpm2cCP7YvHixapfv7569eql4OBgVa9eXaNHj1ZKSkpulX1bupF90aBBA23cuNG6fLZ3714tXbpUrVq1ypWa8X+y6/P7lrizdHY5ceKEUlJSrJ/nSBMcHKydO3dmOE18fHyG/ePj43OsTju4kX1xtZdfflklS5ZM90KH+25kf6xZs0bvvfeetmzZkgsV2seN7Iu9e/fqm2++0WOPPaalS5dq9+7devbZZ3Xp0iUNHTo0N8q+Ld3IvujUqZNOnDihRo0ayRijy5cv6+mnn9Yrr7ySGyXjCpl9ficlJencuXPy8fHJ0nxuqzNCuH2MHTtW8+bN06JFi+Tt7Z3X5djO6dOn1blzZ82cOVNBQUF5XY7tpaamqkSJEpoxY4aioqLUvn17DRo0SNOmTcvr0mxn9erVGj16tKZOnapNmzbps88+05IlSzRixIi8Lg036LY6IxQUFCRPT08lJCS4tCckJCgkJCTDaUJCQtzqj6y5kX2RZty4cRo7dqy+/vpr1axZMyfLtA1398eePXu0f/9+tW7d2mpLTU2VJBUoUEC7du1SREREzhZ9m7qRYyM0NFQFCxaUp6en1Va1alXFx8fr4sWL8vLyytGab1c3si9effVVde7cWT169JAk1ahRQ8nJyXryySc1aNAglx8JR87K7PPb398/y2eDpNvsjJCXl5eioqIUFxdntaWmpiouLk7169fPcJr69eu79JeklStXZtofWXMj+0KS3njjDY0YMULLli1TnTp1cqNUW3B3f1SpUkXbtm3Tli1brL8HHnhATZs21ZYtWxQWFpab5d9WbuTYaNiwoXbv3m2FUUn6/fffFRoaSgi6CTeyL86ePZsu7KQFVMNPd+aqbPv8dm8c961v3rx5xul0mtmzZ5vt27ebJ5980gQGBpr4+HhjjDGdO3c2AwYMsPqvXbvWFChQwIwbN87s2LHDDB06lK/PZxN398XYsWONl5eXWbBggTl69Kj1d/r06bxahduKu/vjanxrLPu4uy8OHjxoChcubJ577jmza9cu8+WXX5oSJUqYkSNH5tUq3Dbc3RdDhw41hQsXNh9//LHZu3evWbFihYmIiDDt2rXLq1W4bZw+fdps3rzZbN682Ugy48ePN5s3bzYHDhwwxhgzYMAA07lzZ6t/2tfnX3zxRbNjxw4zZcoUvj6fZtKkSaZMmTLGy8vL1K1b1/z444/Wc02aNDFdunRx6f/JJ5+YSpUqGS8vL1OtWjWzZMmSXK749uXOvihbtqyRlO5v6NChuV/4bcrdY+NKBKHs5e6++OGHH0y9evWM0+k05cuXN6NGjTKXL1/O5apvT+7si0uXLplhw4aZiIgI4+3tbcLCwsyzzz5r/vrrr9wv/DazatWqDD8D0rZ/ly5dTJMmTdJNU7t2bePl5WXKly9vZs2a5fZyHcZwLg8AANjTbTVGCAAAwB0EIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIeA2FR4erokTJ2a5/+rVq+VwOHTq1Kkcq+lmzJ49W4GBgXldRjpxcXGqWrWqUlJSJEnDhg1T7dq1rzlN165d1aZNG+vx3XffrRdeeMF6fPW+czgc+vzzz7Ov6Ovo0KGD3nrrrVxbHpCXCEJAHnM4HNf8GzZs2A3N9+eff9aTTz6Z5f4NGjTQ0aNHFRAQcEPLy6pbNdDcqJdeekmDBw92+UHU63n77bc1e/bsLPc/evSoWrZseQPV3ZjBgwdr1KhRSkxMzLVlAnnltvr1eSA/Onr0qPXv+fPna8iQIdq1a5fV5ufnZ/3bGKOUlBQVKHD9Q7d48eJu1eHl5ZXpL24jY2vWrNGePXv0yCOPuDWdu2Ezt/dL9erVFRERof/85z/q1atXri4byG2cEQLyWEhIiPUXEBAgh8NhPd65c6cKFy6sr776SlFRUXI6ndaH74MPPqjg4GD5+fnpzjvv1Ndff+0y34wur7z77rt66KGH5Ovrq4oVK2rx4sXW81dfGks7c7N8+XJVrVpVfn5+uvfee12C2+XLl/X8888rMDBQxYoV08svv6wuXbq4XPa50urVq9WtWzclJiamO+P1119/KTY2VkWKFJGvr69atmypP/74I9Ptdvz4cdWpU0cPPfSQLly4oNTUVI0ZM0blypWTj4+PatWqpQULFqRbv7i4ONWpU0e+vr5q0KCBS+jcunWrmjZtqsKFC8vf319RUVHasGFDpjXMmzdPLVq0kLe3d7rnpk+frrCwMPn6+qpdu3YuZ1euvjR2PVdfGtu2bZuaNWsmHx8fFStWTE8++aTOnDmTbv7jxo1TaGioihUrpl69eunSpUtWn6lTp6pixYry9vZWcHCw2rZt67LM1q1ba968eVmuEcivCEJAPjBgwACNHTtWO3bsUM2aNXXmzBm1atVKcXFx2rx5s+699161bt1aBw8evOZ8hg8frnbt2umXX35Rq1at9Nhjj+nkyZOZ9j979qzGjRunuXPn6rvvvtPBgwfVv39/6/nXX39dH374oWbNmqW1a9cqKSnpmmNZGjRooIkTJ8rf319Hjx7V0aNHrfl17dpVGzZs0OLFi7Vu3ToZY9SqVSuXD+80hw4dUuPGjVW9enUtWLBATqdTY8aM0QcffKBp06bpt99+U9++ffX444/r22+/dZl20KBBeuutt7RhwwYVKFBATzzxhPXcY489ptKlS+vnn3/Wxo0bNWDAABUsWDDT9fn+++9Vp06ddO27d+/WJ598oi+++ELLli3T5s2b9eyzz2Y6H3ckJycrJiZGRYoU0c8//6xPP/1UX3/9tZ577jmXfqtWrdKePXu0atUqzZkzR7Nnz7Yux23YsEHPP/+8XnvtNe3atUvLli3TXXfd5TJ93bp1tX79el24cCFb6gZuWTf3W7EAstOsWbNMQECA9Tjt15g///zz605brVo1M2nSJOtx2bJlzYQJE6zHkszgwYOtx2fOnDGSzFdffeWyrLRf0Z41a5aRZHbv3m1NM2XKFBMcHGw9Dg4ONm+++ab1+PLly6ZMmTLX/JX6q9fRGGN+//13I8msXbvWajtx4oTx8fExn3zyict0O3fuNGFhYeb55583qampxhhjzp8/b3x9fc0PP/zgMt/u3bubjh07uqzf119/bT2/ZMkSI8mcO3fOGGNM4cKFzezZszOt/WoBAQHmgw8+cGkbOnSo8fT0NP/73/+stq+++sp4eHiYo0ePGmP+/hXtK7dRkyZNTJ8+fazHGe27RYsWGWOMmTFjhilSpIg5c+aMy3p4eHiY+Ph4a/5ly5Z1+XX6Rx991LRv394YY8zChQuNv7+/SUpKynTdtm7daiSZ/fv3Z21jAPkUZ4SAfODqsw5nzpxR//79VbVqVQUGBsrPz087duy47hmhmjVrWv8uVKiQ/P39dezYsUz7+/r6KiIiwnocGhpq9U9MTFRCQoLq1q1rPe/p6amoqCi31k2SduzYoQIFCqhevXpWW7FixVS5cmXt2LHDajt37pwaN26shx9+WG+//bYcDoekv8/AnD17Vi1atJCfn5/198EHH2jPnj2ZboPQ0FBJstapX79+6tGjh6KjozV27Nh0017t3LlzGV4WK1OmjEqVKmU9rl+/vlJTU10uw92oHTt2qFatWipUqJDV1rBhw3Tzr1atmssA7iv3XYsWLVS2bFmVL19enTt31ocffqizZ8+6LMfHx0eS0rUDtxuCEJAPXPmhJ0n9+/fXokWLNHr0aH3//ffasmWLatSooYsXL15zPldf5nE4HEpNTXWrvzHGzeqzj9PpVHR0tL788ksdPnzYak8bH7NkyRJt2bLF+tu+fbvLOCHJdZ3SglTaNhg2bJh+++033Xffffrmm28UGRmpRYsWZVpPUFCQ/vrrr2xbv+x0rX1duHBhbdq0SR9//LFCQ0M1ZMgQ1apVy+XWCWmXTN0ddA/kNwQhIB9au3atunbtqoceekg1atRQSEiI9u/fn6s1BAQEKDg4WD///LPVlpKSok2bNl1zOi8vL+ueO2mqVq2qy5cv66effrLa/vzzT+3atUuRkZFWm4eHh+bOnauoqCg1bdpUR44ckSRFRkbK6XTq4MGDqlChgstfWFiYW+tVqVIl9e3bVytWrNDDDz+sWbNmZdr3jjvu0Pbt29O1Hzx40KpNkn788Ud5eHiocuXKbtWSkapVq2rr1q1KTk622tauXev2/AsUKKDo6Gi98cYb+uWXX7R//35988031vO//vqrSpcuraCgoJuuGbiVEYSAfKhixYr67LPPtGXLFm3dulWdOnW65pmdnNK7d2+NGTNG//3vf7Vr1y716dNHf/31l3WmJSPh4eE6c+aM4uLidOLECZ09e1YVK1bUgw8+qJ49e2rNmjXaunWrHn/8cZUqVUoPPvigy/Senp768MMPVatWLTVr1kzx8fEqXLiw+vfvr759+2rOnDnas2ePNm3apEmTJmnOnDlZWpdz587pueee0+rVq3XgwAGtXbtWP//8s6pWrZrpNDExMVqzZk26dm9vb3Xp0kVbt27V999/r+eff17t2rXLlq/BP/bYY9b8f/31V61atUq9e/dW586dFRwcnKV5fPnll/r3v/+tLVu26MCBA/rggw+UmprqEqS+//573XPPPTddL3CrIwgB+dD48eNVpEgRNWjQQK1bt1ZMTIz+8Y9/5HodL7/8sjp27KjY2FjVr19ffn5+iomJyXDcTJoGDRro6aefVvv27VW8eHG98cYbkqRZs2YpKipK999/v+rXry9jjJYuXZrht7YKFCigjz/+WNWqVVOzZs107NgxjRgxQq+++qrGjBmjqlWr6t5779WSJUtUrly5LK2Lp6en/vzzT8XGxqpSpUpq166dWrZsqeHDh2c6zWOPPabffvst3difChUq6OGHH1arVq10zz33qGbNmpo6dWqW6rgeX19fLV++XCdPntSdd96ptm3bqnnz5po8eXKW5xEYGKjPPvtMzZo1U9WqVTVt2jRre0rS+fPn9fnnn6tnz57ZUjNwK3OYvLzgD+C2kpqaqqpVq6pdu3YaMWJEXpeTK1588UUlJSVp+vTpeV1KtnnnnXe0aNEirVixIq9LAXIcZ4QA3LADBw5o5syZ+v3337Vt2zY988wz2rdvnzp16pTXpeWaQYMGqWzZsnlyaTKnFCxYUJMmTcrrMoBcwRkhADfs0KFD6tChg3799VcZY1S9enWNHTs23c35AOBWRRACAAC2xaUxAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgW/8PqN0VEjG6mPUAAAAASUVORK5CYII=",
      "text/plain": [
       "<Figure size 640x480 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "import json\n",
    "import os\n",
    "from matplotlib import pyplot as plt\n",
    "metrics = ['agg_score', 'commonsense_qa/acc_norm', 'hellaswag/acc_norm', 'openbookqa/acc_norm', 'piqa/acc_norm',\n",
    "                   'siqa/acc_norm', 'winogrande/acc_norm', 'arc/acc_norm', 'mmlu/acc_norm']\n",
    "\n",
    "def normalize_runname(runname):\n",
    "    return runname.replace(\"/\", \"_\")\n",
    "\n",
    "grouped = (\n",
    "    df.groupby([\"runname\", \"steps\"])\n",
    "    .agg(\n",
    "        {\n",
    "            key: \"mean\" for key in metrics\n",
    "        }\n",
    "    )\n",
    "    .reset_index()\n",
    ")\n",
    "\n",
    "file_id=\"../assets/data/plots/removed_data_dedup\"\n",
    "files = {}\n",
    "for metric in metrics:\n",
    "    datas = {}\n",
    "    for name, group in grouped.groupby(\"runname\"):\n",
    "        group = group[[\"steps\", metric]].sort_values(by=\"steps\")\n",
    "        group = group.set_index(\"steps\")\n",
    "        rolling_avg = group\n",
    "        # rolling_avg = group.rolling(window=5).mean()\n",
    "        datas[name] = {\n",
    "            \"x\": (rolling_avg.index * 2048 * 1024 * 1e-9).tolist(),\n",
    "            \"y\": rolling_avg[metric].tolist(),\n",
    "            \"label\": runs_mapping[name],\n",
    "        }\n",
    "    # Sort the datata based on the steps\n",
    "    datas = {k: v for k, v in sorted(datas.items(), key=lambda x: -x[1][\"y\"][-1])}\n",
    "    # Create a folder\n",
    "    os.makedirs(f\"{file_id}\", exist_ok=True)\n",
    "    with open(f\"{file_id}/{normalize_runname(metric)}.json\", \"w\") as f:\n",
    "        json.dump({\n",
    "            \"data\": datas,\n",
    "            \"layout\": {\n",
    "                \"title\": {\n",
    "                    \"text\": \"The originally removed data outperforms the kept data\"\n",
    "                },\n",
    "            }\n",
    "        }, f)\n",
    "    files[metric] = {\"file\": f\"{normalize_runname(metric)}.json\"}\n",
    "# Create index\n",
    "with open(f\"{file_id}/index.json\", \"w\") as f:\n",
    "    json.dump({\n",
    "        \"files\": files,\n",
    "        \"settings\": {\n",
    "            \"defaultMetric\": \"agg_score\",\n",
    "            \"slider\":{\"min\":0,\"max\":10,\"default\":0}\n",
    "        }\n",
    "    }, f)\n",
    "        \n",
    "\n",
    "# Add labels and legend\n",
    "plt.xlabel(\"Training tokens (billions)\")\n",
    "plt.ylabel(\"Agg Score\")\n",
    "plt.title(\"The originally removed data outperforms the kept data\")\n",
    "plt.legend()\n",
    "\n",
    "# Show the plot\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "af28ebbd054cdc33",
   "metadata": {
    "ExecuteTime": {
     "end_time": "2024-04-30T12:52:05.836260Z",
     "start_time": "2024-04-30T12:52:05.834381Z"
    },
    "collapsed": false
   },
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.2"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}