File size: 7,934 Bytes
43ec909 2d03fbb 43ec909 3905983 b12fedc a8d12ee 974f318 a8d12ee b12fedc a8d12ee b12fedc a8d12ee 3905983 462133f 0764fdf 3905983 a8d12ee 0764fdf 3905983 0764fdf 3905983 0764fdf 3905983 0764fdf 3905983 0764fdf 75aa635 3905983 0764fdf 3905983 0764fdf 3905983 0764fdf 3905983 0764fdf 3905983 0764fdf 3905983 43ec909 3905983 0764fdf 3905983 aef3a19 0764fdf 43ec909 74b7f00 0764fdf 74b7f00 43ec909 0764fdf 74b7f00 3905983 0764fdf 43ec909 0764fdf 462133f 0764fdf 3905983 75aa635 a8d12ee 3905983 0764fdf 462133f 3905983 0764fdf 3905983 0764fdf 3905983 0764fdf 3905983 a8d12ee 3905983 a8d12ee 3905983 aef3a19 3905983 0764fdf 3905983 b12fedc 3905983 0764fdf 3905983 0764fdf a8d12ee 0764fdf a8d12ee 0764fdf 3905983 a8d12ee 0764fdf a8d12ee 0764fdf a8d12ee 0764fdf 3905983 0764fdf 3905983 0764fdf 2d03fbb 3905983 43ec909 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
import { getColor } from "./colors.mjs"
import { parse } from "papaparse"
import _ from "lodash"
import Plotly from "plotly.js/dist/plotly-basic"
const DATA_FOLDER = "assets/data/clustering";
const BASE_SIZE = 5.5;
// x0, x1, y0, y1
const DEFAULT_XAXIS = {
showticklabels: false,
showgrid: false,
zeroline: false,
title: {
text: "<a href='https://github.com/huggingface/text-clustering' target='_blank' style='color: inherit;'>The 🍷 FineWeb dataset, clustered and annotated with educational score labels</a>",
font: {
size: 16,
style: "italic",
},
},
range: [5, 15.6461]
}
const DEFAULT_YAXIS = {
showticklabels: false,
showgrid: false,
zeroline: false,
range: [0, 8.5],
}
const getLabelHoverFormat = (row, labelIDToName) => {
return `<b>Text</b>: ${row.text}<br><b>Label</b>: ${labelIDToName[row.label] ?? "Unknown"}<br><b>Edu label</b>: ${row.eduScore}`;
};
// Number of annotations to display
const K = 15;
function createLabelOrderMapping(labels) {
const labelCounts = labels.reduce((acc, label) => {
acc[label] = (acc[label] || 0) + 1;
return acc;
}, {});
const sortedLabels = Object.entries(labelCounts)
.sort((a, b) => b[1] - a[1])
.map((entry) => entry[0]);
const labelOrder = {};
sortedLabels.forEach((label, index) => {
labelOrder[label] = index;
});
return labelOrder;
}
const parseAnnotations = async (file) => {
return (await readCSV(file))
.filter((cluster_summary) => {
return parseInt(cluster_summary.cluster_id) != -1;
})
.map((cluster_summary) => {
return {
x: parseFloat(cluster_summary.cluster_position_x),
y: parseFloat(cluster_summary.cluster_position_y),
label: parseInt(cluster_summary.cluster_id),
text: cluster_summary.cluster_summaries,
};
});
};
const addStylingToAnnotations = (annotations) => {
return annotations.map((annotation) => {
return {
showarrow: false,
font: {
size: 14,
color: "black",
weight: "bold",
},
bgcolor: getColor(annotation.label, 0.6),
borderpad: 2, // Add padding around the text
...annotation,
};
});
};
const getRelevantAnnotations = (annotations, x0, x1, y0, y1, k = K) => {
const relevant_annotations = annotations.filter((annotation) => {
return (
annotation.x >= x0 &&
annotation.x <= x1 &&
annotation.y >= y0 &&
annotation.y <= y1
);
});
return relevant_annotations.sort((a, b) => a.ord - b.ord).slice(0, k);
};
const getMinMaxTracesArea = (traces) => {
const x0 = Math.min(...traces.map((trace) => trace.x));
const x1 = Math.max(...traces.map((trace) => trace.x));
const y0 = Math.min(...traces.map((trace) => trace.y));
const y1 = Math.max(...traces.map((trace) => trace.y));
return { x0, x1, y0, y1 };
};
const readData = async () => {
return (await readCSV(`${DATA_FOLDER}/data.csv`)).map((row) => ({
x: parseFloat(row.X),
y: parseFloat(row.Y),
eduScore: parseFloat(row.edu_labels),
label: parseInt(row.cluster_labels),
text: row.content_display,
}));
};
// The cluster is pretty big, so takes time to donwload
// In the meantime we put there a placeholder image
const destroyPlaceholderImage = (parent) => {
const img = parent.querySelector("img");
console.log(img);
img.remove();
};
export async function plotClusters() {
const parent = document.getElementById("clusters-plot");
// We do a little trolling on users and pretend that we already donwloaded the data by simply showing uniteractive image :)
const data = await readData();
const labelOrder = createLabelOrderMapping(data.map((row) => row.label));
const annotations = addStylingToAnnotations(
await parseAnnotations(`${DATA_FOLDER}/info.csv`)
).map((annot) => {
return {
...annot,
ord: labelOrder[annot.label],
};
});
const labelIDToName = annotations.reduce((acc, annotation) => {
acc[annotation.label] = annotation.text;
return acc;
}, {});
const traces = [
{
type: "scatter",
mode: "markers",
x: data.map((row) => row.x),
y: data.map((row) => row.y),
marker: {
color: data.map((row) => getColor(row.label, 0.4)),
size: BASE_SIZE,
},
hoverinfo: "text",
hovertext: data.map((row) => getLabelHoverFormat(row, labelIDToName)),
hoverlabel: {
bgcolor: "white",
},
},
];
const { x0, x1, y0, y1 } = getMinMaxTracesArea(data);
const layout = {
height: 550,
width: parent.clientWidth,
xaxis: DEFAULT_XAXIS,
yaxis: DEFAULT_YAXIS,
annotations: getRelevantAnnotations(annotations, DEFAULT_XAXIS.range[0], DEFAULT_XAXIS.range[1], DEFAULT_YAXIS.range[0], DEFAULT_YAXIS.range[1]),
font: {
family: "apple-system, Arial, sans-serif",
},
margin: {
t: 0,
b: 50,
l: 0,
r: 0,
},
};
destroyPlaceholderImage(parent);
Plotly.newPlot(parent, traces, layout);
parent.on("plotly_relayout", (eventdata) => {
// First option zoomed in
console.log(eventdata)
if (eventdata["xaxis.range[0]"]) {
const [newx0, newx1] = [
eventdata["xaxis.range[0]"],
eventdata["xaxis.range[1]"],
];
const [newy0, newy1] = [
eventdata["yaxis.range[0]"],
eventdata["yaxis.range[1]"],
];
// Idk maybe we can even recompute the ordering, but I think it's fine to use the global one
const relevant_annotations = getRelevantAnnotations(
annotations,
newx0,
newx1,
newy0,
newy1
);
console.log(x0, x1, y0, y1);
// 1.8 otherwise it's too big
const zoomLevel =
Math.min(
(x1 - x0) / (newx1 - newx0),
(y1 - y0) / (newy1 - newy0)
) / 1.2;
Plotly.update(
parent,
{ "marker.size": BASE_SIZE * zoomLevel },
{ annotations: relevant_annotations },
);
}
// Zoom reset to full outzoomed or to base range
else if (eventdata["xaxis.autorange"] || eventdata["xaxis.range"]) {
const relevant_annotations = getRelevantAnnotations(
annotations,
x0,
x1,
y0,
y1
);
// We wan to always fully zoomed out
const xaxis = _.merge({}, DEFAULT_XAXIS, { range: [x0, x1] });
const yaxis = _.merge({}, DEFAULT_YAXIS, { range: [y0, y1] });
Plotly.update(
parent,
{ "marker.size": BASE_SIZE },
{ annotations: relevant_annotations, xaxis, yaxis }
);
}
});
window.addEventListener("resize", () => {
// If the window size is smaller than 768, we don't care as it's not shown
if (window.innerWidth < 768) {
return;
}
Plotly.relayout(parent, {
width: parent.offsetWidth,
});
});
}
const readCSV = async (file) => {
const data = await fetch(file);
const text = await data.text();
const csv = parse(text, { header: true, skipEmptyLines: true });
return csv.data;
}; |