|
import { getColor } from "./colors.mjs" |
|
import { parse } from "papaparse" |
|
import _ from "lodash" |
|
import Plotly from "plotly.js/dist/plotly-basic" |
|
|
|
const DATA_FOLDER = "assets/data/clustering"; |
|
|
|
const BASE_SIZE = 4; |
|
|
|
const DEFAULT_XAXIS = { |
|
showticklabels: false, |
|
showgrid: false, |
|
zeroline: false, |
|
title: { |
|
text: "The 🍷 FineWeb dataset, <a href='https://github.com/huggingface/text-clustering' target='_blank' style='color: inherit;'>clustered</a> and annotated with educational score labels", |
|
font: { |
|
size: 16, |
|
style: "italic", |
|
}, |
|
}, |
|
range: [7.23943662773044, 13.605120929434547] |
|
} |
|
const DEFAULT_YAXIS = { |
|
showticklabels: false, |
|
showgrid: false, |
|
zeroline: false, |
|
range: [1.6774392919913423, 6.514440889610389], |
|
} |
|
|
|
const getLabelHoverFormat = (row, labelIDToName) => { |
|
return `<b>Text</b>: ${row.text}<br><b>Label</b>: ${labelIDToName[row.label] ?? "Unknown"}<br><b>Edu label</b>: ${row.eduScore}`; |
|
}; |
|
|
|
|
|
|
|
const K = 15; |
|
|
|
function createLabelOrderMapping(labels) { |
|
const labelCounts = labels.reduce((acc, label) => { |
|
acc[label] = (acc[label] || 0) + 1; |
|
return acc; |
|
}, {}); |
|
|
|
const sortedLabels = Object.entries(labelCounts) |
|
.sort((a, b) => b[1] - a[1]) |
|
.map((entry) => entry[0]); |
|
|
|
const labelOrder = {}; |
|
sortedLabels.forEach((label, index) => { |
|
labelOrder[label] = index; |
|
}); |
|
return labelOrder; |
|
} |
|
|
|
const parseAnnotations = async (file) => { |
|
return (await readCSV(file)) |
|
.filter((cluster_summary) => { |
|
return parseInt(cluster_summary.cluster_id) != -1; |
|
}) |
|
.map((cluster_summary) => { |
|
return { |
|
x: parseFloat(cluster_summary.cluster_position_x), |
|
y: parseFloat(cluster_summary.cluster_position_y), |
|
label: parseInt(cluster_summary.cluster_id), |
|
text: cluster_summary.cluster_summaries, |
|
}; |
|
}); |
|
}; |
|
|
|
const addStylingToAnnotations = (annotations) => { |
|
return annotations.map((annotation) => { |
|
return { |
|
showarrow: false, |
|
font: { |
|
size: 14, |
|
color: "black", |
|
weight: "bold", |
|
}, |
|
bgcolor: getColor(annotation.label, 0.9), |
|
borderpad: 2, |
|
...annotation, |
|
}; |
|
}); |
|
}; |
|
|
|
const getRelevantAnnotations = (annotations, x0, x1, y0, y1, k = K) => { |
|
const relevant_annotations = annotations.filter((annotation) => { |
|
return ( |
|
annotation.x >= x0 && |
|
annotation.x <= x1 && |
|
annotation.y >= y0 && |
|
annotation.y <= y1 |
|
); |
|
}); |
|
return relevant_annotations.sort((a, b) => a.ord - b.ord).slice(0, k); |
|
}; |
|
|
|
const getMinMaxTracesArea = (traces) => { |
|
const x0 = Math.min(...traces.map((trace) => trace.x)); |
|
const x1 = Math.max(...traces.map((trace) => trace.x)); |
|
const y0 = Math.min(...traces.map((trace) => trace.y)); |
|
const y1 = Math.max(...traces.map((trace) => trace.y)); |
|
return { x0, x1, y0, y1 }; |
|
}; |
|
|
|
const readData = async () => { |
|
return (await readCSV(`${DATA_FOLDER}/data.csv`)).map((row) => ({ |
|
x: parseFloat(row.X), |
|
y: parseFloat(row.Y), |
|
eduScore: parseFloat(row.edu_labels), |
|
label: parseInt(row.cluster_labels), |
|
text: row.content_display, |
|
})); |
|
}; |
|
|
|
const restyleTraces = (traces, zoomLevel) => { |
|
const res = [ |
|
{ |
|
...traces[0], |
|
marker: { |
|
...traces[0].marker, |
|
size: BASE_SIZE * zoomLevel, |
|
}, |
|
}, |
|
]; |
|
return res; |
|
}; |
|
|
|
|
|
|
|
const destroyPlaceholderImage = (parent) => { |
|
const img = parent.querySelector("img"); |
|
console.log(img); |
|
img.remove(); |
|
}; |
|
|
|
export async function plotClusters() { |
|
const parent = document.getElementById("clusters-plot"); |
|
|
|
const data = await readData(); |
|
const labelOrder = createLabelOrderMapping(data.map((row) => row.label)); |
|
const annotations = addStylingToAnnotations( |
|
await parseAnnotations(`${DATA_FOLDER}/info.csv`) |
|
).map((annot) => { |
|
return { |
|
...annot, |
|
ord: labelOrder[annot.label], |
|
}; |
|
}); |
|
|
|
const labelIDToName = annotations.reduce((acc, annotation) => { |
|
acc[annotation.label] = annotation.text; |
|
return acc; |
|
}, {}); |
|
|
|
const traces = [ |
|
{ |
|
type: "scatter", |
|
mode: "markers", |
|
x: data.map((row) => row.x), |
|
y: data.map((row) => row.y), |
|
marker: { |
|
color: data.map((row) => getColor(row.label, 1.0)), |
|
size: BASE_SIZE, |
|
opacity: 8, |
|
}, |
|
hoverinfo: "text", |
|
hovertext: data.map((row) => getLabelHoverFormat(row, labelIDToName)), |
|
hoverlabel: { |
|
bgcolor: "white", |
|
}, |
|
}, |
|
]; |
|
|
|
const { x0, x1, y0, y1 } = getMinMaxTracesArea(data); |
|
const layout = { |
|
height: 550, |
|
width: parent.clientWidth, |
|
xaxis: DEFAULT_XAXIS, |
|
yaxis: DEFAULT_YAXIS, |
|
annotations: getRelevantAnnotations(annotations, DEFAULT_XAXIS.range[0], DEFAULT_XAXIS.range[1], DEFAULT_YAXIS.range[0], DEFAULT_YAXIS.range[1]), |
|
font: { |
|
family: "apple-system, Arial, sans-serif", |
|
}, |
|
margin: { |
|
t: 0, |
|
b: 50, |
|
l: 0, |
|
r: 0, |
|
}, |
|
}; |
|
|
|
destroyPlaceholderImage(parent); |
|
Plotly.newPlot(parent, traces, layout); |
|
|
|
parent.on("plotly_relayout", (eventdata) => { |
|
|
|
if (eventdata["xaxis.range[0]"]) { |
|
const [newx0, newx1] = [ |
|
eventdata["xaxis.range[0]"], |
|
eventdata["xaxis.range[1]"], |
|
]; |
|
const [newy0, newy1] = [ |
|
eventdata["yaxis.range[0]"], |
|
eventdata["yaxis.range[1]"], |
|
]; |
|
|
|
const relevant_annotations = getRelevantAnnotations( |
|
annotations, |
|
newx0, |
|
newx1, |
|
newy0, |
|
newy1 |
|
); |
|
console.log(x0, x1, y0, y1); |
|
|
|
const zoomLevel = |
|
Math.min( |
|
(x1 - x0) / (newx1 - newx0), |
|
(y1 - y0) / (newy1 - newy0) |
|
) / 1.2; |
|
Plotly.update( |
|
parent, |
|
{ "marker.size": BASE_SIZE * zoomLevel }, |
|
{ annotations: relevant_annotations }, |
|
); |
|
} |
|
|
|
else if (eventdata["xaxis.autorange"] || eventdata["xaxis.range"]) { |
|
const relevant_annotations = getRelevantAnnotations( |
|
annotations, |
|
x0, |
|
x1, |
|
y0, |
|
y1 |
|
); |
|
|
|
const xaxis = _.merge({}, DEFAULT_XAXIS, { range: [x0, x1] }); |
|
const yaxis = _.merge({}, DEFAULT_YAXIS, { range: [y0, y1] }); |
|
Plotly.update( |
|
parent, |
|
{ "marker.size": BASE_SIZE }, |
|
{ annotations: relevant_annotations, xaxis, yaxis } |
|
); |
|
} |
|
}); |
|
|
|
window.addEventListener("resize", () => { |
|
|
|
if (window.innerWidth < 768) { |
|
return; |
|
} |
|
Plotly.relayout(parent, { |
|
width: parent.offsetWidth, |
|
}); |
|
}); |
|
} |
|
|
|
const readCSV = async (file) => { |
|
const data = await fetch(file); |
|
const text = await data.text(); |
|
const csv = parse(text, { header: true, skipEmptyLines: true }); |
|
return csv.data; |
|
}; |