Spaces:
Sleeping
Sleeping
# AUTOGENERATED! DO NOT EDIT! File to edit: app.ipynb. | |
# %% auto 0 | |
__all__ = ['HF_TOKEN', 'title', 'description', 'get_model_endpoint_params', 'query_chat_api', 'inference_chat'] | |
# %% app.ipynb 0 | |
import gradio as gr | |
import requests | |
import json | |
import requests | |
import os | |
from pathlib import Path | |
from dotenv import load_dotenv | |
# %% app.ipynb 1 | |
if Path(".env").is_file(): | |
load_dotenv(".env") | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
# %% app.ipynb 2 | |
def get_model_endpoint_params(model_id): | |
if "joi" in model_id: | |
headers = None | |
max_new_tokens_supported = True | |
return "https://joi-20b.ngrok.io/generate", headers, max_new_tokens_supported | |
else: | |
max_new_tokens_supported = False | |
headers = {"Authorization": f"Bearer {HF_TOKEN}", "x-wait-for-model": "1"} | |
return f"https://api-inference.huggingface.co/models/{model_id}", headers, max_new_tokens_supported | |
# %% app.ipynb 3 | |
def query_chat_api( | |
model_id, | |
inputs, | |
temperature, | |
top_p | |
): | |
endpoint, headers, max_new_tokens_supported = get_model_endpoint_params(model_id) | |
payload = { | |
"inputs": inputs, | |
"parameters": { | |
"temperature": temperature, | |
"top_p": top_p, | |
"do_sample": True, | |
}, | |
} | |
if max_new_tokens_supported is True: | |
payload["parameters"]["max_new_tokens"] = 100 | |
payload["parameters"]["repetition_penalty"]: 1.03 | |
# payload["parameters"]["stop"] = ["Human:"] | |
else: | |
payload["parameters"]["max_length"] = 512 | |
response = requests.post(endpoint, json=payload, headers=headers) | |
if response.status_code == 200: | |
return response.json() | |
else: | |
return "Error: " + response.text | |
# %% app.ipynb 5 | |
def inference_chat( | |
model_id, | |
prompt_template, | |
text_input, | |
temperature, | |
top_p, | |
history=[], | |
): | |
with open(f"prompt_templates/{prompt_template}.json", "r") as f: | |
prompt_template = json.load(f) | |
history_input = "" | |
for idx, text in enumerate(history): | |
if idx % 2 == 0: | |
history_input += f"Human: {text}\n" | |
else: | |
history_input += f"Assistant: {text}\n" | |
history_input = history_input.rstrip("\n") | |
inputs = prompt_template["prompt"].format(human_input=text_input, history=history_input) | |
history.append(text_input) | |
print(f"History: {history}") | |
print(f"Inputs: {inputs}") | |
output = query_chat_api(model_id, inputs, temperature, top_p) | |
if isinstance(output, list): | |
output = output[0] | |
output = output["generated_text"].rstrip(" Human:") | |
history.append(" " + output) | |
chat = [ | |
(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2) | |
] # convert to tuples of list | |
return {chatbot: chat, state: history} | |
# %% app.ipynb 19 | |
title = """<h1 align="center">Chatty Language Models</h1>""" | |
description = """Pretrained language models can be conditioned to act like dialogue agents through a conversational prompt that typically takes the form: | |
``` | |
Human: <utterance> | |
Assistant: <utterance> | |
Human: <utterance> | |
Assistant: <utterance> | |
... | |
``` | |
In this app, you can explore the outputs of several language models conditioned on different conversational prompts. The models are trained on different datasets and have different objectives, so they will have different personalities and strengths. | |
So far, the following prompts are available: | |
* `langchain_default`: The default prompt used in the [LangChain library](https://github.com/hwchase17/langchain/blob/bc53c928fc1b221d0038b839d111039d31729def/langchain/chains/conversation/prompt.py#L4). Around 67 tokens long. | |
* `openai_chatgpt`: The prompt used in the OpenAI ChatGPT model. Around 261 tokens long. | |
* `deepmind_Assistant`: The prompt used in the DeepMind Assistant model (Table 7 of [their paper](https://arxiv.org/abs/2209.14375)). Around 880 tokens long. | |
* `deepmind_gopher`: The prompt used in the DeepMind Assistant model (Table A30 of [their paper](https://arxiv.org/abs/2112.11446)). Around 791 tokens long. | |
* `anthropic_hhh`: The prompt used in the [Anthropic HHH models](https://gist.github.com/jareddk/2509330f8ef3d787fc5aaac67aab5f11#file-hhh_prompt-txt). A whopping 6,341 tokens long! | |
As you can see, most of these prompts exceed the maximum context size of models like Flan-T5 (which has a context size of 512 tokens), so an error usually means the Inference API has timed out. | |
""" | |
# %% app.ipynb 20 | |
with gr.Blocks( | |
css=""" | |
.message.svelte-w6rprc.svelte-w6rprc.svelte-w6rprc {font-size: 20px; margin-top: 20px} | |
#component-21 > div.wrap.svelte-w6rprc {height: 600px;} | |
""" | |
) as iface: | |
state = gr.State([]) | |
gr.Markdown(title) | |
gr.Markdown(description) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
model_id = gr.Dropdown( | |
choices=["google/flan-t5-xl" ,"Rallio67/joi_20B_instruct_alpha"], | |
value="google/flan-t5-xl", | |
label="Model", | |
interactive=True, | |
) | |
prompt_template = gr.Dropdown( | |
choices=[ | |
"langchain_default", | |
"openai_chatgpt", | |
"deepmind_sparrow", | |
"deepmind_gopher", | |
"anthropic_hhh", | |
], | |
value="langchain_default", | |
label="Prompt Template", | |
interactive=True, | |
) | |
temperature = gr.Slider( | |
minimum=0.0, | |
maximum=2.0, | |
value=1.0, | |
step=0.1, | |
interactive=True, | |
label="Temperature", | |
) | |
top_p = gr.Slider( | |
minimum=0., | |
maximum=1.0, | |
value=0.8, | |
step=0.05, | |
interactive=True, | |
label="Top-p (nucleus sampling)", | |
) | |
with gr.Column(scale=1.8): | |
with gr.Row(): | |
chatbot = gr.Chatbot( | |
label="Chat Output", | |
) | |
with gr.Row(): | |
chat_input = gr.Textbox(lines=1, label="Chat Input") | |
chat_input.submit( | |
inference_chat, | |
[ | |
model_id, | |
prompt_template, | |
chat_input, | |
temperature, | |
top_p, | |
state, | |
], | |
[chatbot, state], | |
) | |
with gr.Row(): | |
clear_button = gr.Button(value="Clear", interactive=True) | |
clear_button.click( | |
lambda: ("", [], []), | |
[], | |
[chat_input, chatbot, state], | |
queue=False, | |
) | |
submit_button = gr.Button( | |
value="Submit", interactive=True, variant="primary" | |
) | |
submit_button.click( | |
inference_chat, | |
[ | |
model_id, | |
prompt_template, | |
chat_input, | |
temperature, | |
top_p, | |
state, | |
], | |
[chatbot, state], | |
) | |
iface.launch() | |