Spaces:
Sleeping
Sleeping
Fix auth
Browse files
app.ipynb
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
-
"execution_count":
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
@@ -18,10 +18,11 @@
|
|
18 |
},
|
19 |
{
|
20 |
"cell_type": "code",
|
21 |
-
"execution_count":
|
22 |
"metadata": {},
|
23 |
"outputs": [],
|
24 |
"source": [
|
|
|
25 |
"if Path(\".env\").is_file():\n",
|
26 |
" load_dotenv(\".env\")\n",
|
27 |
"\n",
|
@@ -30,7 +31,7 @@
|
|
30 |
},
|
31 |
{
|
32 |
"cell_type": "code",
|
33 |
-
"execution_count":
|
34 |
"metadata": {},
|
35 |
"outputs": [],
|
36 |
"source": [
|
@@ -42,7 +43,7 @@
|
|
42 |
" top_p\n",
|
43 |
"):\n",
|
44 |
" API_URL = f\"https://api-inference.huggingface.co/models/{model_id}\"\n",
|
45 |
-
" headers = {\"Authorization\": \"Bearer \", \"x-wait-for-model\": \"1\"}\n",
|
46 |
"\n",
|
47 |
" payload = {\n",
|
48 |
" \"inputs\": inputs,\n",
|
@@ -64,16 +65,16 @@
|
|
64 |
},
|
65 |
{
|
66 |
"cell_type": "code",
|
67 |
-
"execution_count":
|
68 |
"metadata": {},
|
69 |
"outputs": [
|
70 |
{
|
71 |
"data": {
|
72 |
"text/plain": [
|
73 |
-
"[{'generated_text': '
|
74 |
]
|
75 |
},
|
76 |
-
"execution_count":
|
77 |
"metadata": {},
|
78 |
"output_type": "execute_result"
|
79 |
}
|
@@ -86,7 +87,7 @@
|
|
86 |
},
|
87 |
{
|
88 |
"cell_type": "code",
|
89 |
-
"execution_count":
|
90 |
"metadata": {},
|
91 |
"outputs": [],
|
92 |
"source": [
|
@@ -100,7 +101,7 @@
|
|
100 |
},
|
101 |
{
|
102 |
"cell_type": "code",
|
103 |
-
"execution_count":
|
104 |
"metadata": {},
|
105 |
"outputs": [],
|
106 |
"source": [
|
@@ -129,6 +130,14 @@
|
|
129 |
" return {chatbot: chat, state: history}\n"
|
130 |
]
|
131 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
{
|
133 |
"cell_type": "code",
|
134 |
"execution_count": 6,
|
@@ -644,9 +653,17 @@
|
|
644 |
" json.dump({\"prompt\": template}, f)"
|
645 |
]
|
646 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
647 |
{
|
648 |
"cell_type": "code",
|
649 |
-
"execution_count":
|
650 |
"metadata": {},
|
651 |
"outputs": [],
|
652 |
"source": [
|
@@ -678,14 +695,14 @@
|
|
678 |
},
|
679 |
{
|
680 |
"cell_type": "code",
|
681 |
-
"execution_count":
|
682 |
"metadata": {},
|
683 |
"outputs": [
|
684 |
{
|
685 |
"name": "stdout",
|
686 |
"output_type": "stream",
|
687 |
"text": [
|
688 |
-
"Running on local URL: http://127.0.0.1:
|
689 |
"\n",
|
690 |
"To create a public link, set `share=True` in `launch()`.\n"
|
691 |
]
|
@@ -693,7 +710,7 @@
|
|
693 |
{
|
694 |
"data": {
|
695 |
"text/html": [
|
696 |
-
"<div><iframe src=\"http://127.0.0.1:
|
697 |
],
|
698 |
"text/plain": [
|
699 |
"<IPython.core.display.HTML object>"
|
@@ -706,25 +723,9 @@
|
|
706 |
"data": {
|
707 |
"text/plain": []
|
708 |
},
|
709 |
-
"execution_count":
|
710 |
"metadata": {},
|
711 |
"output_type": "execute_result"
|
712 |
-
},
|
713 |
-
{
|
714 |
-
"name": "stderr",
|
715 |
-
"output_type": "stream",
|
716 |
-
"text": [
|
717 |
-
"Traceback (most recent call last):\n",
|
718 |
-
" File \"/Users/lewtun/miniconda3/envs/hf/lib/python3.8/site-packages/gradio/routes.py\", line 337, in run_predict\n",
|
719 |
-
" output = await app.get_blocks().process_api(\n",
|
720 |
-
" File \"/Users/lewtun/miniconda3/envs/hf/lib/python3.8/site-packages/gradio/blocks.py\", line 1018, in process_api\n",
|
721 |
-
" data = self.postprocess_data(fn_index, result[\"prediction\"], state)\n",
|
722 |
-
" File \"/Users/lewtun/miniconda3/envs/hf/lib/python3.8/site-packages/gradio/blocks.py\", line 924, in postprocess_data\n",
|
723 |
-
" predictions = convert_component_dict_to_list(\n",
|
724 |
-
" File \"/Users/lewtun/miniconda3/envs/hf/lib/python3.8/site-packages/gradio/blocks.py\", line 397, in convert_component_dict_to_list\n",
|
725 |
-
" raise ValueError(\n",
|
726 |
-
"ValueError: Returned component chatbot not specified as output of function.\n"
|
727 |
-
]
|
728 |
}
|
729 |
],
|
730 |
"source": [
|
@@ -761,9 +762,9 @@
|
|
761 |
" interactive=True,\n",
|
762 |
" )\n",
|
763 |
" temperature = gr.Slider(\n",
|
764 |
-
" minimum=0.
|
765 |
" maximum=3.0,\n",
|
766 |
-
" value=
|
767 |
" step=0.1,\n",
|
768 |
" interactive=True,\n",
|
769 |
" label=\"Temperature\",\n",
|
@@ -772,7 +773,7 @@
|
|
772 |
" top_p = gr.Slider(\n",
|
773 |
" minimum=-0,\n",
|
774 |
" maximum=1.0,\n",
|
775 |
-
" value=0.
|
776 |
" step=0.05,\n",
|
777 |
" interactive=True,\n",
|
778 |
" label=\"Top-p (nucleus sampling)\",\n",
|
@@ -828,14 +829,14 @@
|
|
828 |
},
|
829 |
{
|
830 |
"cell_type": "code",
|
831 |
-
"execution_count":
|
832 |
"metadata": {},
|
833 |
"outputs": [
|
834 |
{
|
835 |
"name": "stdout",
|
836 |
"output_type": "stream",
|
837 |
"text": [
|
838 |
-
"Closing server running on port:
|
839 |
]
|
840 |
}
|
841 |
],
|
@@ -845,7 +846,7 @@
|
|
845 |
},
|
846 |
{
|
847 |
"cell_type": "code",
|
848 |
-
"execution_count":
|
849 |
"metadata": {},
|
850 |
"outputs": [],
|
851 |
"source": [
|
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
|
|
18 |
},
|
19 |
{
|
20 |
"cell_type": "code",
|
21 |
+
"execution_count": 11,
|
22 |
"metadata": {},
|
23 |
"outputs": [],
|
24 |
"source": [
|
25 |
+
"# |export\n",
|
26 |
"if Path(\".env\").is_file():\n",
|
27 |
" load_dotenv(\".env\")\n",
|
28 |
"\n",
|
|
|
31 |
},
|
32 |
{
|
33 |
"cell_type": "code",
|
34 |
+
"execution_count": 3,
|
35 |
"metadata": {},
|
36 |
"outputs": [],
|
37 |
"source": [
|
|
|
43 |
" top_p\n",
|
44 |
"):\n",
|
45 |
" API_URL = f\"https://api-inference.huggingface.co/models/{model_id}\"\n",
|
46 |
+
" headers = {\"Authorization\": f\"Bearer {HF_TOKEN}\", \"x-wait-for-model\": \"1\"}\n",
|
47 |
"\n",
|
48 |
" payload = {\n",
|
49 |
" \"inputs\": inputs,\n",
|
|
|
65 |
},
|
66 |
{
|
67 |
"cell_type": "code",
|
68 |
+
"execution_count": 4,
|
69 |
"metadata": {},
|
70 |
"outputs": [
|
71 |
{
|
72 |
"data": {
|
73 |
"text/plain": [
|
74 |
+
"[{'generated_text': 'love'}]"
|
75 |
]
|
76 |
},
|
77 |
+
"execution_count": 4,
|
78 |
"metadata": {},
|
79 |
"output_type": "execute_result"
|
80 |
}
|
|
|
87 |
},
|
88 |
{
|
89 |
"cell_type": "code",
|
90 |
+
"execution_count": 5,
|
91 |
"metadata": {},
|
92 |
"outputs": [],
|
93 |
"source": [
|
|
|
101 |
},
|
102 |
{
|
103 |
"cell_type": "code",
|
104 |
+
"execution_count": 9,
|
105 |
"metadata": {},
|
106 |
"outputs": [],
|
107 |
"source": [
|
|
|
130 |
" return {chatbot: chat, state: history}\n"
|
131 |
]
|
132 |
},
|
133 |
+
{
|
134 |
+
"attachments": {},
|
135 |
+
"cell_type": "markdown",
|
136 |
+
"metadata": {},
|
137 |
+
"source": [
|
138 |
+
"## Prompt templates"
|
139 |
+
]
|
140 |
+
},
|
141 |
{
|
142 |
"cell_type": "code",
|
143 |
"execution_count": 6,
|
|
|
653 |
" json.dump({\"prompt\": template}, f)"
|
654 |
]
|
655 |
},
|
656 |
+
{
|
657 |
+
"attachments": {},
|
658 |
+
"cell_type": "markdown",
|
659 |
+
"metadata": {},
|
660 |
+
"source": [
|
661 |
+
"## App"
|
662 |
+
]
|
663 |
+
},
|
664 |
{
|
665 |
"cell_type": "code",
|
666 |
+
"execution_count": 5,
|
667 |
"metadata": {},
|
668 |
"outputs": [],
|
669 |
"source": [
|
|
|
695 |
},
|
696 |
{
|
697 |
"cell_type": "code",
|
698 |
+
"execution_count": 6,
|
699 |
"metadata": {},
|
700 |
"outputs": [
|
701 |
{
|
702 |
"name": "stdout",
|
703 |
"output_type": "stream",
|
704 |
"text": [
|
705 |
+
"Running on local URL: http://127.0.0.1:7860\n",
|
706 |
"\n",
|
707 |
"To create a public link, set `share=True` in `launch()`.\n"
|
708 |
]
|
|
|
710 |
{
|
711 |
"data": {
|
712 |
"text/html": [
|
713 |
+
"<div><iframe src=\"http://127.0.0.1:7860/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
714 |
],
|
715 |
"text/plain": [
|
716 |
"<IPython.core.display.HTML object>"
|
|
|
723 |
"data": {
|
724 |
"text/plain": []
|
725 |
},
|
726 |
+
"execution_count": 6,
|
727 |
"metadata": {},
|
728 |
"output_type": "execute_result"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
729 |
}
|
730 |
],
|
731 |
"source": [
|
|
|
762 |
" interactive=True,\n",
|
763 |
" )\n",
|
764 |
" temperature = gr.Slider(\n",
|
765 |
+
" minimum=0.0,\n",
|
766 |
" maximum=3.0,\n",
|
767 |
+
" value=0.5,\n",
|
768 |
" step=0.1,\n",
|
769 |
" interactive=True,\n",
|
770 |
" label=\"Temperature\",\n",
|
|
|
773 |
" top_p = gr.Slider(\n",
|
774 |
" minimum=-0,\n",
|
775 |
" maximum=1.0,\n",
|
776 |
+
" value=0.9,\n",
|
777 |
" step=0.05,\n",
|
778 |
" interactive=True,\n",
|
779 |
" label=\"Top-p (nucleus sampling)\",\n",
|
|
|
829 |
},
|
830 |
{
|
831 |
"cell_type": "code",
|
832 |
+
"execution_count": 7,
|
833 |
"metadata": {},
|
834 |
"outputs": [
|
835 |
{
|
836 |
"name": "stdout",
|
837 |
"output_type": "stream",
|
838 |
"text": [
|
839 |
+
"Closing server running on port: 7860\n"
|
840 |
]
|
841 |
}
|
842 |
],
|
|
|
846 |
},
|
847 |
{
|
848 |
"cell_type": "code",
|
849 |
+
"execution_count": 10,
|
850 |
"metadata": {},
|
851 |
"outputs": [],
|
852 |
"source": [
|
app.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
# AUTOGENERATED! DO NOT EDIT! File to edit: app.ipynb.
|
2 |
|
3 |
# %% auto 0
|
4 |
-
__all__ = ['title', 'description', 'query_chat_api', 'inference_chat']
|
5 |
|
6 |
# %% app.ipynb 0
|
7 |
import gradio as gr
|
@@ -13,6 +13,13 @@ from pathlib import Path
|
|
13 |
from dotenv import load_dotenv
|
14 |
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
# %% app.ipynb 2
|
17 |
def query_chat_api(
|
18 |
model_id,
|
@@ -21,7 +28,7 @@ def query_chat_api(
|
|
21 |
top_p
|
22 |
):
|
23 |
API_URL = f"https://api-inference.huggingface.co/models/{model_id}"
|
24 |
-
headers = {"Authorization": "Bearer ", "x-wait-for-model": "1"}
|
25 |
|
26 |
payload = {
|
27 |
"inputs": inputs,
|
@@ -66,7 +73,7 @@ def inference_chat(
|
|
66 |
return {chatbot: chat, state: history}
|
67 |
|
68 |
|
69 |
-
# %% app.ipynb
|
70 |
title = """<h1 align="center">Chatty Language Models</h1>"""
|
71 |
description = """Language models can be conditioned to act like dialogue agents through a conversational prompt that typically takes the form:
|
72 |
|
@@ -91,7 +98,7 @@ So far, the following prompts are available:
|
|
91 |
As you can see, most of these prompts exceed the maximum context size of models like Flan-T5, so an error usually means the Inference API has timed out.
|
92 |
"""
|
93 |
|
94 |
-
# %% app.ipynb
|
95 |
with gr.Blocks(
|
96 |
css="""
|
97 |
.message.svelte-w6rprc.svelte-w6rprc.svelte-w6rprc {font-size: 20px; margin-top: 20px}
|
@@ -124,9 +131,9 @@ with gr.Blocks(
|
|
124 |
interactive=True,
|
125 |
)
|
126 |
temperature = gr.Slider(
|
127 |
-
minimum=0.
|
128 |
maximum=3.0,
|
129 |
-
value=
|
130 |
step=0.1,
|
131 |
interactive=True,
|
132 |
label="Temperature",
|
@@ -135,7 +142,7 @@ with gr.Blocks(
|
|
135 |
top_p = gr.Slider(
|
136 |
minimum=-0,
|
137 |
maximum=1.0,
|
138 |
-
value=0.
|
139 |
step=0.05,
|
140 |
interactive=True,
|
141 |
label="Top-p (nucleus sampling)",
|
|
|
1 |
# AUTOGENERATED! DO NOT EDIT! File to edit: app.ipynb.
|
2 |
|
3 |
# %% auto 0
|
4 |
+
__all__ = ['HF_TOKEN', 'title', 'description', 'query_chat_api', 'inference_chat']
|
5 |
|
6 |
# %% app.ipynb 0
|
7 |
import gradio as gr
|
|
|
13 |
from dotenv import load_dotenv
|
14 |
|
15 |
|
16 |
+
# %% app.ipynb 1
|
17 |
+
if Path(".env").is_file():
|
18 |
+
load_dotenv(".env")
|
19 |
+
|
20 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
21 |
+
|
22 |
+
|
23 |
# %% app.ipynb 2
|
24 |
def query_chat_api(
|
25 |
model_id,
|
|
|
28 |
top_p
|
29 |
):
|
30 |
API_URL = f"https://api-inference.huggingface.co/models/{model_id}"
|
31 |
+
headers = {"Authorization": f"Bearer {HF_TOKEN}", "x-wait-for-model": "1"}
|
32 |
|
33 |
payload = {
|
34 |
"inputs": inputs,
|
|
|
73 |
return {chatbot: chat, state: history}
|
74 |
|
75 |
|
76 |
+
# %% app.ipynb 15
|
77 |
title = """<h1 align="center">Chatty Language Models</h1>"""
|
78 |
description = """Language models can be conditioned to act like dialogue agents through a conversational prompt that typically takes the form:
|
79 |
|
|
|
98 |
As you can see, most of these prompts exceed the maximum context size of models like Flan-T5, so an error usually means the Inference API has timed out.
|
99 |
"""
|
100 |
|
101 |
+
# %% app.ipynb 16
|
102 |
with gr.Blocks(
|
103 |
css="""
|
104 |
.message.svelte-w6rprc.svelte-w6rprc.svelte-w6rprc {font-size: 20px; margin-top: 20px}
|
|
|
131 |
interactive=True,
|
132 |
)
|
133 |
temperature = gr.Slider(
|
134 |
+
minimum=0.0,
|
135 |
maximum=3.0,
|
136 |
+
value=0.5,
|
137 |
step=0.1,
|
138 |
interactive=True,
|
139 |
label="Temperature",
|
|
|
142 |
top_p = gr.Slider(
|
143 |
minimum=-0,
|
144 |
maximum=1.0,
|
145 |
+
value=0.9,
|
146 |
step=0.05,
|
147 |
interactive=True,
|
148 |
label="Top-p (nucleus sampling)",
|