File size: 12,703 Bytes
c207609 5b852d3 c207609 8c54ca6 c207609 5b852d3 c207609 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 |
import json
import os
import shutil
import gradio as gr
import requests
from huggingface_hub import Repository
from share_btn import community_icon_html, loading_icon_html, share_btn_css, share_js
HF_TOKEN = os.environ.get("H4_TOKEN", None)
API_TOKEN = os.environ.get("API_TOKEN", None)
STAR_CHAT_API_URL = os.environ.get("STAR_CHAT_API_URL", None)
STAR_CHAT_GPT_API_URL = os.environ.get("STAR_CHAT_GPT_API_URL", None)
API_TOKEN = "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"
STAR_CHAT_API_URL = "https://i1qe9e7uv7jzsg8k.us-east-1.aws.endpoints.huggingface.cloud"
STAR_CHAT_GPT_API_URL = "https://czpdnzuklyfoqjbs.us-east-1.aws.endpoints.huggingface.cloud"
model_to_api = {
"StarChat": STAR_CHAT_API_URL,
"StarChatGPT": STAR_CHAT_GPT_API_URL,
}
PROMPT_TEMPLATE = "<|system|>\n{system}<|end|>\n<|user|>\n{prompt}<|end|>\n<|assistant|>"
theme = gr.themes.Monochrome(
primary_hue="indigo",
secondary_hue="blue",
neutral_hue="slate",
radius_size=gr.themes.sizes.radius_sm,
font=[gr.themes.GoogleFont("Open Sans"), "ui-sans-serif", "system-ui", "sans-serif"],
)
if HF_TOKEN:
try:
shutil.rmtree("./data/")
except:
pass
repo = Repository(
local_dir="./data/", clone_from="trl-lib/star-chat-prompts", use_auth_token=HF_TOKEN, repo_type="dataset"
)
repo.git_pull()
def save_inputs_and_outputs(inputs, outputs, generate_kwargs):
with open(os.path.join("data", "prompts.jsonl"), "a") as f:
json.dump({"inputs": inputs, "outputs": outputs,
"generate_kwargs": generate_kwargs}, f, ensure_ascii=False)
f.write("\n")
repo.push_to_hub()
def inference(
model, prompt, system_message, user_message, temperature, top_p, top_k, max_new_tokens, do_sample, eos_token_id
):
headers = {"Authorization": f"Bearer {API_TOKEN}"}
api_url = model_to_api[model]
print(f"CUSTOM_LOG {model} - {api_url}")
response = requests.post(
api_url,
headers=headers,
json={
"inputs": prompt,
"parameters": {
"do_sample": do_sample,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"max_new_tokens": max_new_tokens,
"eos_token_id": eos_token_id,
},
},
)
if response.status_code != 200:
return None
completion = response.json()[0]["generated_text"]
if user_message in completion:
completion = completion.lstrip()[len(f"{system_message}\n{user_message}\n"):]
return completion
def get_total_inputs(inputs, chatbot, preprompt, user_name, assistant_name, sep):
past = []
for data in chatbot:
user_data, model_data = data
if not user_data.startswith(user_name):
user_data = user_name + user_data
if not model_data.startswith(sep + assistant_name):
model_data = sep + assistant_name + model_data
past.append(user_data + model_data.rstrip() + sep)
if not inputs.startswith(user_name):
inputs = user_name + inputs
total_inputs = preprompt + "".join(past) + inputs + sep + assistant_name.rstrip()
return total_inputs
def has_no_history(chatbot, history):
return not chatbot and not history
def generate(
model,
system_message,
user_message,
chatbot,
history,
temperature=0.5,
top_p=0.25,
top_k=50,
max_new_tokens=512,
do_save=True,
):
# Don't return meaningless message when the input is empty
if not user_message:
return chatbot, history, user_message, ""
prompt = PROMPT_TEMPLATE.format(system=system_message, prompt=user_message)
history.append(user_message)
generate_kwargs = {
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"max_new_tokens": max_new_tokens,
"do_sample": True,
"eos_token_id": [49155, 32003],
}
response = inference(model, prompt, system_message, user_message, **generate_kwargs)
history.append(response)
chat = [(history[i].strip(), history[i + 1].strip()) for i in range(0, len(history) - 1, 2)]
if HF_TOKEN and do_save:
try:
print("Pushing prompt and completion to the Hub")
save_inputs_and_outputs(prompt, output, generate_kwargs)
except Exception as e:
print(e)
return chat, history, user_message, ""
examples = [
"What's the capital city of Brunei?",
"How can I sort a list in Python?",
"What date is it today? Use Python to answer the question.",
"What's the meaning of life?",
"How can I write a Java function to generate the nth Fibonacci number?",
]
def regenerate(
model,
system_message,
user_message,
chatbot,
history,
temperature=0.5,
top_p=0.25,
top_k=50,
max_new_tokens=512,
do_save=True,
):
# Do nothing if there's no history
if has_no_history(chatbot, history):
return (
chatbot,
history,
user_message,
"",
)
chatbot = chatbot[:-1]
history = history[:-2]
return generate(
model, system_message, user_message, chatbot, history, temperature, top_p, top_k, max_new_tokens, do_save
)
def clear_chat():
return [], []
def radio_on_change():
return [], []
# def radio_on_change(
# model, system_message, user_message, chatbot, history, temperature, top_p, top_k, max_new_tokens, do_save
# ):
# return generate(
# model, system_message, user_message, chatbot, history, temperature, top_p, top_k, max_new_tokens, do_save
# )
def process_example(args):
for [x, y] in generate(args):
pass
return [x, y]
title = """<h1 align="center">⭐ StarChat Demo 💬</h1>"""
custom_css = """
#banner-image {
display: block;
margin-left: auto;
margin-right: auto;
width: 40%;
}
#chat-message .message {
padding: 15px;
border-color: #a5b4fc;
background-color: #eef2ff;
}
#chat-message .message.bot {
padding: 15px;
border-color: #e2e8f0;
background-color: #f8fafc;
}
#system-message {
min-height: 622px;
}
#system-message textarea {
min-height: 562px;
}
#chat-message {
font-size: 14px;
min-height: 500px;
}
message pending
"""
css = share_btn_css + custom_css
with gr.Blocks(theme=theme, analytics_enabled=False, css=css) as demo:
gr.HTML(title)
gr.Image("StarCoderBanner.png", elem_id="banner-image", show_label=False)
gr.Markdown(
"""
StarChat is an instruction fine-tuned model based on [StarCoder](https://huggingface.co/bigcode/starcoder), a 16B parameter model trained on one trillion tokens sourced from 80+ programming languages, GitHub issues, Git commits, and Jupyter notebooks (all permissively licensed). With an enterprise-friendly license, 8,192 token context length, and fast large-batch inference via [multi-query attention](https://arxiv.org/abs/1911.02150), StarCoder is currently the best open-source choice for code-based applications. For more details, check out our [blog post]().
⚠️ **Intended Use**: this app and its supporting models ([StarChat](https://huggingface.co/HuggingFaceH4/starchat) and [StarChatGPT](https://huggingface.co/HuggingFaceH4/starchatgpt)) are provided as educational tools to explain instruction fine-tuning; not to serve as replacement for human expertise. For more details on the model's limitations in terms of factuality and biases, see the model cards: [StarChat](https://huggingface.co/HuggingFaceH4/starchat#bias-risks-and-limitations) and [StarChatGPT](https://huggingface.co/HuggingFaceH4/starchatgpt#bias-risks-and-limitations).
⚠️ **Data Collection**: by default, we are collecting the prompts entered in this app to further improve and evaluate the model. Do not share any personal or sensitive information while using the app! You can opt out of this data collection by removing the checkbox below.
"""
)
with gr.Row():
with gr.Column(scale=1):
system_message = gr.Textbox(elem_id="system-message", label="System prompt")
with gr.Column(scale=2):
with gr.Box():
model = gr.Radio(
value="StarChat",
choices=[
"StarChat",
"StarChatGPT",
],
label="Model",
interactive=True,
)
output = gr.Markdown()
chatbot = gr.Chatbot(elem_id="chat-message", label="Chat")
with gr.Row():
with gr.Column(scale=3):
do_save = gr.Checkbox(
value=True,
label="Store data",
info="You agree to the storage of your prompt and generated text for research and development purposes:",
)
user_message = gr.Textbox(placeholder="Enter your message here",
show_label=False, elem_id="q-input")
with gr.Row():
send_button = gr.Button("Send", elem_id="send-btn", visible=True)
regenerate_button = gr.Button("Regenerate", elem_id="send-btn", visible=True)
clear_chat_button = gr.Button("Clear chat", elem_id="clear-btn", visible=True)
with gr.Group(elem_id="share-btn-container"):
community_icon = gr.HTML(community_icon_html, visible=True)
loading_icon = gr.HTML(loading_icon_html, visible=True)
# share_button = gr.Button("Share to community", elem_id="share-btn", visible=True)
with gr.Row():
gr.Examples(
examples=examples,
inputs=[user_message],
cache_examples=False,
fn=process_example,
outputs=[output],
)
with gr.Column(scale=1):
temperature = gr.Slider(
label="Temperature",
value=0.8,
minimum=0.0,
maximum=2.0,
step=0.1,
interactive=True,
info="Higher values produce more diverse outputs",
)
top_k = gr.Slider(
label="Top-k",
value=50,
minimum=0.0,
maximum=100,
step=1,
interactive=True,
info="Sample from a shortlist of top-k tokens",
)
top_p = gr.Slider(
label="Top-p (nucleus sampling)",
value=0.25,
minimum=0.0,
maximum=1,
step=0.05,
interactive=True,
info="Higher values sample more low-probability tokens",
)
max_new_tokens = gr.Slider(
label="Max new tokens",
value=512,
minimum=0,
maximum=2048,
step=4,
interactive=True,
info="The maximum numbers of new tokens",
)
history = gr.State([])
# To clear out "message" input textbox and use this to regenerate message
last_user_message = gr.State("")
user_message.submit(
generate,
inputs=[
model,
system_message,
user_message,
chatbot,
history,
temperature,
top_p,
top_k,
max_new_tokens,
do_save,
],
outputs=[chatbot, history, last_user_message, user_message],
)
send_button.click(
generate,
inputs=[
model,
system_message,
user_message,
chatbot,
history,
temperature,
top_p,
top_k,
max_new_tokens,
do_save,
],
outputs=[chatbot, history, last_user_message, user_message],
)
regenerate_button.click(
regenerate,
inputs=[
model,
system_message,
last_user_message,
chatbot,
history,
temperature,
top_p,
top_k,
max_new_tokens,
do_save,
],
outputs=[chatbot, history, last_user_message, user_message],
)
clear_chat_button.click(clear_chat, outputs=[chatbot, history])
model.change(radio_on_change, outputs=[chatbot, history])
# share_button.click(None, [], [], _js=share_js)
demo.queue(concurrency_count=16).launch(debug=True)
|