File size: 12,703 Bytes
c207609
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b852d3
 
 
 
c207609
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c54ca6
c207609
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b852d3
c207609
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
import json
import os
import shutil

import gradio as gr
import requests
from huggingface_hub import Repository
from share_btn import community_icon_html, loading_icon_html, share_btn_css, share_js


HF_TOKEN = os.environ.get("H4_TOKEN", None)
API_TOKEN = os.environ.get("API_TOKEN", None)
STAR_CHAT_API_URL = os.environ.get("STAR_CHAT_API_URL", None)
STAR_CHAT_GPT_API_URL = os.environ.get("STAR_CHAT_GPT_API_URL", None)

API_TOKEN = "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"
STAR_CHAT_API_URL = "https://i1qe9e7uv7jzsg8k.us-east-1.aws.endpoints.huggingface.cloud"
STAR_CHAT_GPT_API_URL = "https://czpdnzuklyfoqjbs.us-east-1.aws.endpoints.huggingface.cloud"

model_to_api = {
    "StarChat": STAR_CHAT_API_URL,
    "StarChatGPT": STAR_CHAT_GPT_API_URL,
}
PROMPT_TEMPLATE = "<|system|>\n{system}<|end|>\n<|user|>\n{prompt}<|end|>\n<|assistant|>"

theme = gr.themes.Monochrome(
    primary_hue="indigo",
    secondary_hue="blue",
    neutral_hue="slate",
    radius_size=gr.themes.sizes.radius_sm,
    font=[gr.themes.GoogleFont("Open Sans"), "ui-sans-serif", "system-ui", "sans-serif"],
)

if HF_TOKEN:
    try:
        shutil.rmtree("./data/")
    except:
        pass

    repo = Repository(
        local_dir="./data/", clone_from="trl-lib/star-chat-prompts", use_auth_token=HF_TOKEN, repo_type="dataset"
    )
    repo.git_pull()



def save_inputs_and_outputs(inputs, outputs, generate_kwargs):
    with open(os.path.join("data", "prompts.jsonl"), "a") as f:
        json.dump({"inputs": inputs, "outputs": outputs,
                  "generate_kwargs": generate_kwargs}, f, ensure_ascii=False)
        f.write("\n")
        repo.push_to_hub()


def inference(
    model, prompt, system_message, user_message, temperature, top_p, top_k, max_new_tokens, do_sample, eos_token_id
):
    headers = {"Authorization": f"Bearer {API_TOKEN}"}
    api_url = model_to_api[model]
    print(f"CUSTOM_LOG {model} - {api_url}")
    response = requests.post(
        api_url,
        headers=headers,
        json={
            "inputs": prompt,
            "parameters": {
                "do_sample": do_sample,
                "temperature": temperature,
                "top_p": top_p,
                "top_k": top_k,
                "max_new_tokens": max_new_tokens,
                "eos_token_id": eos_token_id,
            },
        },
    )

    if response.status_code != 200:
        return None
    completion = response.json()[0]["generated_text"]
    if user_message in completion:
        completion = completion.lstrip()[len(f"{system_message}\n{user_message}\n"):]
    return completion


def get_total_inputs(inputs, chatbot, preprompt, user_name, assistant_name, sep):
    past = []
    for data in chatbot:
        user_data, model_data = data

        if not user_data.startswith(user_name):
            user_data = user_name + user_data
        if not model_data.startswith(sep + assistant_name):
            model_data = sep + assistant_name + model_data

        past.append(user_data + model_data.rstrip() + sep)

    if not inputs.startswith(user_name):
        inputs = user_name + inputs

    total_inputs = preprompt + "".join(past) + inputs + sep + assistant_name.rstrip()

    return total_inputs


def has_no_history(chatbot, history):
    return not chatbot and not history


def generate(
    model,
    system_message,
    user_message,
    chatbot,
    history,
    temperature=0.5,
    top_p=0.25,
    top_k=50,
    max_new_tokens=512,
    do_save=True,
):
    # Don't return meaningless message when the input is empty
    if not user_message:
        return chatbot, history, user_message, ""

    prompt = PROMPT_TEMPLATE.format(system=system_message, prompt=user_message)

    history.append(user_message)

    generate_kwargs = {
        "temperature": temperature,
        "top_p": top_p,
        "top_k": top_k,
        "max_new_tokens": max_new_tokens,
        "do_sample": True,
        "eos_token_id": [49155, 32003],
    }

    response = inference(model, prompt, system_message, user_message, **generate_kwargs)

    history.append(response)
    chat = [(history[i].strip(), history[i + 1].strip()) for i in range(0, len(history) - 1, 2)]

    if HF_TOKEN and do_save:
        try:
            print("Pushing prompt and completion to the Hub")
            save_inputs_and_outputs(prompt, output, generate_kwargs)
        except Exception as e:
            print(e)

    return chat, history, user_message, ""


examples = [
    "What's the capital city of Brunei?",
    "How can I sort a list in Python?",
    "What date is it today? Use Python to answer the question.",
    "What's the meaning of life?",
    "How can I write a Java function to generate the nth Fibonacci number?",
]


def regenerate(
    model,
    system_message,
    user_message,
    chatbot,
    history,
    temperature=0.5,
    top_p=0.25,
    top_k=50,
    max_new_tokens=512,
    do_save=True,
):
    # Do nothing if there's no history
    if has_no_history(chatbot, history):
        return (
            chatbot,
            history,
            user_message,
            "",
        )

    chatbot = chatbot[:-1]
    history = history[:-2]

    return generate(
        model, system_message, user_message, chatbot, history, temperature, top_p, top_k, max_new_tokens, do_save
    )


def clear_chat():
    return [], []


def radio_on_change():
    return [], []

# def radio_on_change(
#     model, system_message, user_message, chatbot, history, temperature, top_p, top_k, max_new_tokens, do_save
# ):
#     return generate(
#         model, system_message, user_message, chatbot, history, temperature, top_p, top_k, max_new_tokens, do_save
#     )


def process_example(args):
    for [x, y] in generate(args):
        pass
    return [x, y]


title = """<h1 align="center">⭐ StarChat Demo 💬</h1>"""
custom_css = """
#banner-image {
  display: block;
  margin-left: auto;
  margin-right: auto;
  width: 40%;
}

#chat-message .message {
 padding: 15px;
 border-color: #a5b4fc;
 background-color: #eef2ff;
}

#chat-message .message.bot {
 padding: 15px;
 border-color: #e2e8f0;
    background-color: #f8fafc;
}

#system-message {
    min-height: 622px;
}

#system-message textarea {
    min-height: 562px;
}

#chat-message {
    font-size: 14px;
    min-height: 500px;
}

message pending

"""

css = share_btn_css + custom_css

with gr.Blocks(theme=theme, analytics_enabled=False, css=css) as demo:
    gr.HTML(title)
    gr.Image("StarCoderBanner.png", elem_id="banner-image", show_label=False)
    gr.Markdown(
    """
            StarChat is an instruction fine-tuned model based on [StarCoder](https://huggingface.co/bigcode/starcoder), a 16B parameter model trained on one trillion tokens sourced from 80+ programming languages, GitHub issues, Git commits, and Jupyter notebooks (all permissively licensed). With an enterprise-friendly license, 8,192 token context length, and fast large-batch inference via [multi-query attention](https://arxiv.org/abs/1911.02150), StarCoder is currently the best open-source choice for code-based applications. For more details, check out our [blog post]().

            ⚠️ **Intended Use**: this app and its supporting models ([StarChat](https://huggingface.co/HuggingFaceH4/starchat) and [StarChatGPT](https://huggingface.co/HuggingFaceH4/starchatgpt)) are provided as educational tools to explain instruction fine-tuning; not to serve as replacement for human expertise. For more details on the model's limitations in terms of factuality and biases, see the model cards: [StarChat](https://huggingface.co/HuggingFaceH4/starchat#bias-risks-and-limitations) and [StarChatGPT](https://huggingface.co/HuggingFaceH4/starchatgpt#bias-risks-and-limitations).
            
            ⚠️ **Data Collection**: by default, we are collecting the prompts entered in this app to further improve and evaluate the model. Do not share any personal or sensitive information while using the app! You can opt out of this data collection by removing the checkbox below.
    """
    )

    with gr.Row():
        with gr.Column(scale=1):
            system_message = gr.Textbox(elem_id="system-message", label="System prompt")

        with gr.Column(scale=2):
            with gr.Box():
                model = gr.Radio(
                    value="StarChat",
                    choices=[
                        "StarChat",
                        "StarChatGPT",
                    ],
                    label="Model",
                    interactive=True,
                )
                output = gr.Markdown()
                chatbot = gr.Chatbot(elem_id="chat-message", label="Chat")

    with gr.Row():
        with gr.Column(scale=3):
            do_save = gr.Checkbox(
                value=True,
                label="Store data",
                info="You agree to the storage of your prompt and generated text for research and development purposes:",
            )
            user_message = gr.Textbox(placeholder="Enter your message here",
                                      show_label=False, elem_id="q-input")
            with gr.Row():
                send_button = gr.Button("Send", elem_id="send-btn", visible=True)
                regenerate_button = gr.Button("Regenerate", elem_id="send-btn", visible=True)

                clear_chat_button = gr.Button("Clear chat", elem_id="clear-btn", visible=True)

            with gr.Group(elem_id="share-btn-container"):
                community_icon = gr.HTML(community_icon_html, visible=True)
                loading_icon = gr.HTML(loading_icon_html, visible=True)
                # share_button = gr.Button("Share to community", elem_id="share-btn", visible=True)
            with gr.Row():
                gr.Examples(
                    examples=examples,
                    inputs=[user_message],
                    cache_examples=False,
                    fn=process_example,
                    outputs=[output],
                )

        with gr.Column(scale=1):
            temperature = gr.Slider(
                label="Temperature",
                value=0.8,
                minimum=0.0,
                maximum=2.0,
                step=0.1,
                interactive=True,
                info="Higher values produce more diverse outputs",
            )
            top_k = gr.Slider(
                label="Top-k",
                value=50,
                minimum=0.0,
                maximum=100,
                step=1,
                interactive=True,
                info="Sample from a shortlist of top-k tokens",
            )
            top_p = gr.Slider(
                label="Top-p (nucleus sampling)",
                value=0.25,
                minimum=0.0,
                maximum=1,
                step=0.05,
                interactive=True,
                info="Higher values sample more low-probability tokens",
            )
            max_new_tokens = gr.Slider(
                label="Max new tokens",
                value=512,
                minimum=0,
                maximum=2048,
                step=4,
                interactive=True,
                info="The maximum numbers of new tokens",
            )

    history = gr.State([])
    # To clear out "message" input textbox and use this to regenerate message
    last_user_message = gr.State("")

    user_message.submit(
        generate,
        inputs=[
            model,
            system_message,
            user_message,
            chatbot,
            history,
            temperature,
            top_p,
            top_k,
            max_new_tokens,
            do_save,
        ],
        outputs=[chatbot, history, last_user_message, user_message],
    )

    send_button.click(
        generate,
        inputs=[
            model,
            system_message,
            user_message,
            chatbot,
            history,
            temperature,
            top_p,
            top_k,
            max_new_tokens,
            do_save,
        ],
        outputs=[chatbot, history, last_user_message, user_message],
    )

    regenerate_button.click(
        regenerate,
        inputs=[
            model,
            system_message,
            last_user_message,
            chatbot,
            history,
            temperature,
            top_p,
            top_k,
            max_new_tokens,
            do_save,
        ],
        outputs=[chatbot, history, last_user_message, user_message],
    )

    clear_chat_button.click(clear_chat, outputs=[chatbot, history])

    model.change(radio_on_change, outputs=[chatbot, history])
    # share_button.click(None, [], [], _js=share_js)

demo.queue(concurrency_count=16).launch(debug=True)