gokaygokay commited on
Commit
1d51385
·
verified ·
1 Parent(s): 4a43fef

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +146 -39
app.py CHANGED
@@ -1,19 +1,22 @@
1
  import gradio as gr
2
- from transformers import AutoModelForCausalLM, AutoProcessor
3
- from PIL import Image, ImageDraw
4
  import requests
 
5
  import matplotlib.pyplot as plt
6
  import matplotlib.patches as patches
7
- import numpy as np
8
  import random
 
9
 
10
- # Load model and processor
11
  model_id = 'microsoft/Florence-2-large'
12
  model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True).eval()
13
  processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
14
 
15
  def run_example(task_prompt, image, text_input=None):
16
- prompt = task_prompt if text_input is None else task_prompt + text_input
 
 
 
17
  inputs = processor(text=prompt, images=image, return_tensors="pt")
18
  generated_ids = model.generate(
19
  input_ids=inputs["input_ids"],
@@ -25,8 +28,8 @@ def run_example(task_prompt, image, text_input=None):
25
  )
26
  generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
27
  parsed_answer = processor.post_process_generation(
28
- generated_text,
29
- task=task_prompt,
30
  image_size=(image.width, image.height)
31
  )
32
  return parsed_answer
@@ -39,43 +42,147 @@ def plot_bbox(image, data):
39
  rect = patches.Rectangle((x1, y1), x2-x1, y2-y1, linewidth=1, edgecolor='r', facecolor='none')
40
  ax.add_patch(rect)
41
  plt.text(x1, y1, label, color='white', fontsize=8, bbox=dict(facecolor='red', alpha=0.5))
42
- plt.axis('off')
43
- plt.show()
44
 
45
  def draw_polygons(image, prediction, fill_mask=False):
46
  draw = ImageDraw.Draw(image)
47
- colormap = ['blue', 'orange', 'green', 'purple', 'brown', 'pink', 'gray', 'olive', 'cyan', 'red']
48
  for polygons, label in zip(prediction['polygons'], prediction['labels']):
49
  color = random.choice(colormap)
50
- fill_color = color if fill_mask else None
51
- for polygon in polygons:
52
- draw.polygon(polygon, outline=color, fill=fill_color)
53
- draw.text((polygon[0][0], polygon[0][1]), label, fill=color)
54
- image.show()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55
 
56
- def gradio_interface(image, task_prompt, text_input):
57
- result = run_example(task_prompt, image, text_input)
58
- if task_prompt in ['<OD>', '<OPEN_VOCABULARY_DETECTION>']:
59
- plot_bbox(image, result)
60
- elif task_prompt in ['<REFERRING_EXPRESSION_SEGMENTATION>', '<REGION_TO_SEGMENTATION>']:
61
- draw_polygons(image, result, fill_mask=True)
62
- return result
 
 
 
 
 
63
 
64
- with gr.Blocks() as demo:
65
- gr.Markdown("## Florence Model Advanced Tasks")
66
- with gr.Row():
67
- image_input = gr.Image(type="pil")
68
- task_input = gr.Dropdown(label="Select Task", choices=[
69
- '<CAPTION>', '<DETAILED_CAPTION>', '<MORE_DETAILED_CAPTION>',
70
- '<OD>', '<DENSE_REGION_CAPTION>', '<REGION_PROPOSAL>',
71
- '<CAPTION_TO_PHRASE_GROUNDING>', '<REFERRING_EXPRESSION_SEGMENTATION>',
72
- '<REGION_TO_SEGMENTATION>', '<OPEN_VOCABULARY_DETECTION>',
73
- '<REGION_TO_CATEGORY>', '<REGION_TO_DESCRIPTION>', '<OCR>', '<OCR_WITH_REGION>'
74
- ])
75
- text_input = gr.Textbox(label="Optional Text Input", placeholder="Enter text here if required by the task")
76
- submit_btn = gr.Button("Run Task")
77
- output = gr.Textbox(label="Output")
78
-
79
- submit_btn.click(fn=gradio_interface, inputs=[image_input, task_input, text_input], outputs=output)
80
 
81
- demo.launch()
 
1
  import gradio as gr
2
+ from transformers import AutoProcessor, AutoModelForCausalLM
3
+ from PIL import Image
4
  import requests
5
+ import copy
6
  import matplotlib.pyplot as plt
7
  import matplotlib.patches as patches
 
8
  import random
9
+ import numpy as np
10
 
 
11
  model_id = 'microsoft/Florence-2-large'
12
  model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True).eval()
13
  processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
14
 
15
  def run_example(task_prompt, image, text_input=None):
16
+ if text_input is None:
17
+ prompt = task_prompt
18
+ else:
19
+ prompt = task_prompt + text_input
20
  inputs = processor(text=prompt, images=image, return_tensors="pt")
21
  generated_ids = model.generate(
22
  input_ids=inputs["input_ids"],
 
28
  )
29
  generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
30
  parsed_answer = processor.post_process_generation(
31
+ generated_text,
32
+ task=task_prompt,
33
  image_size=(image.width, image.height)
34
  )
35
  return parsed_answer
 
42
  rect = patches.Rectangle((x1, y1), x2-x1, y2-y1, linewidth=1, edgecolor='r', facecolor='none')
43
  ax.add_patch(rect)
44
  plt.text(x1, y1, label, color='white', fontsize=8, bbox=dict(facecolor='red', alpha=0.5))
45
+ ax.axis('off')
46
+ return fig
47
 
48
  def draw_polygons(image, prediction, fill_mask=False):
49
  draw = ImageDraw.Draw(image)
50
+ scale = 1
51
  for polygons, label in zip(prediction['polygons'], prediction['labels']):
52
  color = random.choice(colormap)
53
+ fill_color = random.choice(colormap) if fill_mask else None
54
+ for _polygon in polygons:
55
+ _polygon = np.array(_polygon).reshape(-1, 2)
56
+ if len(_polygon) < 3:
57
+ print('Invalid polygon:', _polygon)
58
+ continue
59
+ _polygon = (_polygon * scale).reshape(-1).tolist()
60
+ if fill_mask:
61
+ draw.polygon(_polygon, outline=color, fill=fill_color)
62
+ else:
63
+ draw.polygon(_polygon, outline=color)
64
+ draw.text((_polygon[0] + 8, _polygon[1] + 2), label, fill=color)
65
+ return image
66
+
67
+ def convert_to_od_format(data):
68
+ bboxes = data.get('bboxes', [])
69
+ labels = data.get('bboxes_labels', [])
70
+ od_results = {
71
+ 'bboxes': bboxes,
72
+ 'labels': labels
73
+ }
74
+ return od_results
75
+
76
+ def draw_ocr_bboxes(image, prediction):
77
+ scale = 1
78
+ draw = ImageDraw.Draw(image)
79
+ bboxes, labels = prediction['quad_boxes'], prediction['labels']
80
+ for box, label in zip(bboxes, labels):
81
+ color = random.choice(colormap)
82
+ new_box = (np.array(box) * scale).tolist()
83
+ draw.polygon(new_box, width=3, outline=color)
84
+ draw.text((new_box[0]+8, new_box[1]+2),
85
+ "{}".format(label),
86
+ align="right",
87
+ fill=color)
88
+ return image
89
+
90
+ def process_image(image, task_prompt, text_input=None):
91
+ if task_prompt == '<CAPTION>':
92
+ result = run_example(task_prompt, image)
93
+ return result
94
+ elif task_prompt == '<DETAILED_CAPTION>':
95
+ result = run_example(task_prompt, image)
96
+ return result
97
+ elif task_prompt == '<MORE_DETAILED_CAPTION>':
98
+ result = run_example(task_prompt, image)
99
+ return result
100
+ elif task_prompt == '<OD>':
101
+ results = run_example(task_prompt, image)
102
+ fig = plot_bbox(image, results['<OD>'])
103
+ return fig
104
+ elif task_prompt == '<DENSE_REGION_CAPTION>':
105
+ results = run_example(task_prompt, image)
106
+ fig = plot_bbox(image, results['<DENSE_REGION_CAPTION>'])
107
+ return fig
108
+ elif task_prompt == '<REGION_PROPOSAL>':
109
+ results = run_example(task_prompt, image)
110
+ fig = plot_bbox(image, results['<REGION_PROPOSAL>'])
111
+ return fig
112
+ elif task_prompt == '<CAPTION_TO_PHRASE_GROUNDING>':
113
+ results = run_example(task_prompt, image, text_input)
114
+ fig = plot_bbox(image, results['<CAPTION_TO_PHRASE_GROUNDING>'])
115
+ return fig
116
+ elif task_prompt == '<REFERRING_EXPRESSION_SEGMENTATION>':
117
+ results = run_example(task_prompt, image, text_input)
118
+ output_image = copy.deepcopy(image)
119
+ output_image = draw_polygons(output_image, results['<REFERRING_EXPRESSION_SEGMENTATION>'], fill_mask=True)
120
+ return output_image
121
+ elif task_prompt == '<REGION_TO_SEGMENTATION>':
122
+ results = run_example(task_prompt, image, text_input)
123
+ output_image = copy.deepcopy(image)
124
+ output_image = draw_polygons(output_image, results['<REGION_TO_SEGMENTATION>'], fill_mask=True)
125
+ return output_image
126
+ elif task_prompt == '<OPEN_VOCABULARY_DETECTION>':
127
+ results = run_example(task_prompt, image, text_input)
128
+ bbox_results = convert_to_od_format(results['<OPEN_VOCABULARY_DETECTION>'])
129
+ fig = plot_bbox(image, bbox_results)
130
+ return fig
131
+ elif task_prompt == '<REGION_TO_CATEGORY>':
132
+ results = run_example(task_prompt, image, text_input)
133
+ return results
134
+ elif task_prompt == '<REGION_TO_DESCRIPTION>':
135
+ results = run_example(task_prompt, image, text_input)
136
+ return results
137
+ elif task_prompt == '<OCR>':
138
+ result = run_example(task_prompt, image)
139
+ return result
140
+ elif task_prompt == '<OCR_WITH_REGION>':
141
+ results = run_example(task_prompt, image)
142
+ output_image = copy.deepcopy(image)
143
+ output_image = draw_ocr_bboxes(output_image, results['<OCR_WITH_REGION>'])
144
+ return output_image
145
+
146
+ css = """
147
+ #output {
148
+ height: 500px;
149
+ overflow: auto;
150
+ border: 1px solid #ccc;
151
+ }
152
+ """
153
+
154
+ with gr.Blocks(css=css) as demo:
155
+ gr.HTML("<h1><center>Florence-2 Demo<center><h1>")
156
+ with gr.Tab(label="Florence-2 Image Captioning"):
157
+ with gr.Row():
158
+ with gr.Column():
159
+ input_img = gr.Image(label="Input Picture")
160
+ task_prompt = gr.Dropdown(choices=[
161
+ '<CAPTION>', '<DETAILED_CAPTION>', '<MORE_DETAILED_CAPTION>', '<OD>',
162
+ '<DENSE_REGION_CAPTION>', '<REGION_PROPOSAL>', '<CAPTION_TO_PHRASE_GROUNDING>',
163
+ '<REFERRING_EXPRESSION_SEGMENTATION>', '<REGION_TO_SEGMENTATION>',
164
+ '<OPEN_VOCABULARY_DETECTION>', '<REGION_TO_CATEGORY>', '<REGION_TO_DESCRIPTION>',
165
+ '<OCR>', '<OCR_WITH_REGION>'
166
+ ], label="Task Prompt")
167
+ text_input = gr.Textbox(label="Text Input (optional)")
168
+ submit_btn = gr.Button(value="Submit")
169
+ with gr.Column():
170
+ output_text = gr.Textbox(label="Output Text")
171
+ output_img = gr.Image(label="Output Image")
172
 
173
+ gr.Examples(
174
+ examples=[
175
+ ["image1.jpg", '<CAPTION>'],
176
+ ["image1.jpg", '<OD>'],
177
+ ["image1.jpg", '<OCR_WITH_REGION>']
178
+ ],
179
+ inputs=[input_img, task_prompt],
180
+ outputs=[output_text, output_img],
181
+ fn=process_image,
182
+ cache_examples=True,
183
+ label='Try examples'
184
+ )
185
 
186
+ submit_btn.click(process_image, [input_img, task_prompt, text_input], [output_text, output_img])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
187
 
188
+ demo.launch(debug=True)