Spaces:
Runtime error
Runtime error
VictorSanh
commited on
Commit
Β·
f20057b
1
Parent(s):
157a0b7
hello
Browse files- app.py +261 -0
- requirements.txt +7 -0
app.py
ADDED
@@ -0,0 +1,261 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import gradio as gr
|
3 |
+
import random
|
4 |
+
import numpy as np
|
5 |
+
from PIL import Image
|
6 |
+
import imagehash
|
7 |
+
import cv2
|
8 |
+
import os
|
9 |
+
|
10 |
+
from transformers import AutoProcessor, AutoModelForCausalLM
|
11 |
+
from transformers.image_utils import to_numpy_array, PILImageResampling, ChannelDimension
|
12 |
+
from transformers.image_transforms import resize, to_channel_dimension_format
|
13 |
+
|
14 |
+
from typing import List
|
15 |
+
from PIL import Image
|
16 |
+
from collections import Counter
|
17 |
+
|
18 |
+
from datasets import load_dataset, concatenate_datasets
|
19 |
+
|
20 |
+
|
21 |
+
DEVICE = torch.device("cuda")
|
22 |
+
PROCESSOR = AutoProcessor.from_pretrained(
|
23 |
+
"HuggingFaceM4/idefics2_raven_finetuned",
|
24 |
+
token=os.environ["HF_AUTH_TOKEN"],
|
25 |
+
)
|
26 |
+
MODEL = AutoModelForCausalLM.from_pretrained(
|
27 |
+
"HuggingFaceM4/idefics2_raven_finetuned",
|
28 |
+
trust_remote_code=True,
|
29 |
+
torch_dtype=torch.bfloat16,
|
30 |
+
token=os.environ["HF_AUTH_TOKEN"],
|
31 |
+
).to(DEVICE)
|
32 |
+
if MODEL.config.use_resampler:
|
33 |
+
image_seq_len = MODEL.config.perceiver_config.resampler_n_latents
|
34 |
+
else:
|
35 |
+
image_seq_len = (
|
36 |
+
MODEL.config.vision_config.image_size // MODEL.config.vision_config.patch_size
|
37 |
+
) ** 2
|
38 |
+
BOS_TOKEN = PROCESSOR.tokenizer.bos_token
|
39 |
+
BAD_WORDS_IDS = PROCESSOR.tokenizer(["<image>", "<fake_token_around_image>"], add_special_tokens=False).input_ids
|
40 |
+
DATASET = load_dataset("HuggingFaceM4/RAVEN_rendered", split="validation")
|
41 |
+
|
42 |
+
## Utils
|
43 |
+
|
44 |
+
def convert_to_rgb(image):
|
45 |
+
# `image.convert("RGB")` would only work for .jpg images, as it creates a wrong background
|
46 |
+
# for transparent images. The call to `alpha_composite` handles this case
|
47 |
+
if image.mode == "RGB":
|
48 |
+
return image
|
49 |
+
|
50 |
+
image_rgba = image.convert("RGBA")
|
51 |
+
background = Image.new("RGBA", image_rgba.size, (255, 255, 255))
|
52 |
+
alpha_composite = Image.alpha_composite(background, image_rgba)
|
53 |
+
alpha_composite = alpha_composite.convert("RGB")
|
54 |
+
return alpha_composite
|
55 |
+
|
56 |
+
# The processor is the same as the Idefics processor except for the BICUBIC interpolation inside siglip,
|
57 |
+
# so this is a hack in order to redefine ONLY the transform method
|
58 |
+
def custom_transform(x):
|
59 |
+
x = convert_to_rgb(x)
|
60 |
+
x = to_numpy_array(x)
|
61 |
+
x = resize(x, (960, 960), resample=PILImageResampling.BILINEAR)
|
62 |
+
x = PROCESSOR.image_processor.rescale(x, scale=1 / 255)
|
63 |
+
x = PROCESSOR.image_processor.normalize(
|
64 |
+
x,
|
65 |
+
mean=PROCESSOR.image_processor.image_mean,
|
66 |
+
std=PROCESSOR.image_processor.image_std
|
67 |
+
)
|
68 |
+
x = to_channel_dimension_format(x, ChannelDimension.FIRST)
|
69 |
+
x = torch.tensor(x)
|
70 |
+
return x
|
71 |
+
|
72 |
+
def pixel_difference(image1, image2):
|
73 |
+
def color(im):
|
74 |
+
arr = np.array(im).flatten()
|
75 |
+
arr_list = arr.tolist()
|
76 |
+
counts = Counter(arr_list)
|
77 |
+
most_common = counts.most_common(2)
|
78 |
+
if most_common[0][0] == 255:
|
79 |
+
return most_common[1][0]
|
80 |
+
else:
|
81 |
+
return most_common[0][0]
|
82 |
+
|
83 |
+
def canny_edges(im):
|
84 |
+
im = cv2.Canny(np.array(im), 50, 100)
|
85 |
+
im[im!=0] = 255
|
86 |
+
return Image.fromarray(im)
|
87 |
+
|
88 |
+
def phash(im):
|
89 |
+
return imagehash.phash(canny_edges(im), hash_size=32)
|
90 |
+
|
91 |
+
def surface(im):
|
92 |
+
return (np.array(im) != 255).sum()
|
93 |
+
|
94 |
+
color_diff = np.abs(color(image1) - color(image2))
|
95 |
+
hash_diff = phash(image1) - phash(image2)
|
96 |
+
surface_diff = np.abs(surface(image1) - surface(image2))
|
97 |
+
|
98 |
+
if int(hash_diff/7) < 10:
|
99 |
+
return color_diff < 10 or int(surface_diff / (160 * 160) * 100) < 10
|
100 |
+
elif color_diff < 10:
|
101 |
+
return int(surface_diff / (160 * 160) * 100) < 10 or int(hash_diff/7) < 10
|
102 |
+
elif int(surface_diff / (160 * 160) * 100) < 10:
|
103 |
+
return int(hash_diff/7) < 10 or color_diff < 10
|
104 |
+
else:
|
105 |
+
return False
|
106 |
+
|
107 |
+
# End of Utils
|
108 |
+
|
109 |
+
|
110 |
+
def load_sample():
|
111 |
+
n = len(DATASET)
|
112 |
+
found_sample = False
|
113 |
+
while not found_sample:
|
114 |
+
idx = random.randint(0, n)
|
115 |
+
sample = DATASET[idx]
|
116 |
+
found_sample = True
|
117 |
+
return sample["image"], sample["label"], "", "", ""
|
118 |
+
|
119 |
+
|
120 |
+
# @spaces.GPU(duration=180)
|
121 |
+
def model_inference(
|
122 |
+
image,
|
123 |
+
):
|
124 |
+
if image is None:
|
125 |
+
raise ValueError("`image` is None. It should be a PIL image.")
|
126 |
+
|
127 |
+
# return "A"
|
128 |
+
inputs = PROCESSOR.tokenizer(
|
129 |
+
f"{BOS_TOKEN}User:<fake_token_around_image>{'<image>' * image_seq_len}<fake_token_around_image>Which figure should complete the logical sequence?<end_of_utterance>\nAssistant:",
|
130 |
+
return_tensors="pt",
|
131 |
+
add_special_tokens=False,
|
132 |
+
)
|
133 |
+
inputs["pixel_values"] = PROCESSOR.image_processor(
|
134 |
+
[image],
|
135 |
+
transform=custom_transform
|
136 |
+
)
|
137 |
+
inputs = {
|
138 |
+
k: v.to(DEVICE)
|
139 |
+
for k, v in inputs.items()
|
140 |
+
}
|
141 |
+
generation_kwargs = dict(
|
142 |
+
inputs,
|
143 |
+
bad_words_ids=BAD_WORDS_IDS,
|
144 |
+
max_length=4,
|
145 |
+
)
|
146 |
+
# Regular generation version
|
147 |
+
generated_ids = MODEL.generate(**generation_kwargs)
|
148 |
+
generated_text = PROCESSOR.batch_decode(
|
149 |
+
generated_ids,
|
150 |
+
skip_special_tokens=True
|
151 |
+
)[0]
|
152 |
+
return generated_text[-1]
|
153 |
+
|
154 |
+
|
155 |
+
model_prediction = gr.TextArea(
|
156 |
+
label="AI's guess",
|
157 |
+
visible=True,
|
158 |
+
lines=1,
|
159 |
+
max_lines=1,
|
160 |
+
interactive=False,
|
161 |
+
)
|
162 |
+
user_prediction = gr.TextArea(
|
163 |
+
label="Your guess",
|
164 |
+
visible=True,
|
165 |
+
lines=1,
|
166 |
+
max_lines=1,
|
167 |
+
interactive=False,
|
168 |
+
)
|
169 |
+
result = gr.TextArea(
|
170 |
+
label="Win or lose?",
|
171 |
+
visible=True,
|
172 |
+
lines=1,
|
173 |
+
max_lines=1,
|
174 |
+
interactive=False,
|
175 |
+
)
|
176 |
+
|
177 |
+
|
178 |
+
|
179 |
+
css = """
|
180 |
+
.gradio-container{max-width: 1000px!important}
|
181 |
+
h1{display: flex;align-items: center;justify-content: center;gap: .25em}
|
182 |
+
*{transition: width 0.5s ease, flex-grow 0.5s ease}
|
183 |
+
"""
|
184 |
+
|
185 |
+
|
186 |
+
with gr.Blocks(title="Beat the AI", theme=gr.themes.Base(), css=css) as demo:
|
187 |
+
gr.Markdown(
|
188 |
+
"Are you smarter than the AI?"
|
189 |
+
)
|
190 |
+
load_new_sample = gr.Button(value="Load new sample")
|
191 |
+
with gr.Row(equal_height=True):
|
192 |
+
with gr.Column(scale=4, min_width=250) as upload_area:
|
193 |
+
imagebox = gr.Image(
|
194 |
+
image_mode="L",
|
195 |
+
type="pil",
|
196 |
+
visible=True,
|
197 |
+
sources=None,
|
198 |
+
)
|
199 |
+
with gr.Column(scale=4):
|
200 |
+
with gr.Row():
|
201 |
+
a = gr.Button(value="A", min_width=1)
|
202 |
+
b = gr.Button(value="B", min_width=1)
|
203 |
+
c = gr.Button(value="C", min_width=1)
|
204 |
+
d = gr.Button(value="D", min_width=1)
|
205 |
+
with gr.Row():
|
206 |
+
e = gr.Button(value="E", min_width=1)
|
207 |
+
f = gr.Button(value="F", min_width=1)
|
208 |
+
g = gr.Button(value="G", min_width=1)
|
209 |
+
h = gr.Button(value="H", min_width=1)
|
210 |
+
with gr.Row():
|
211 |
+
model_prediction.render()
|
212 |
+
user_prediction.render()
|
213 |
+
solution = gr.TextArea(
|
214 |
+
label="Solution",
|
215 |
+
visible=False,
|
216 |
+
lines=1,
|
217 |
+
max_lines=1,
|
218 |
+
interactive=False,
|
219 |
+
)
|
220 |
+
with gr.Row():
|
221 |
+
result.render()
|
222 |
+
|
223 |
+
|
224 |
+
load_new_sample.click(
|
225 |
+
fn=load_sample,
|
226 |
+
inputs=[],
|
227 |
+
outputs=[imagebox, solution, model_prediction, user_prediction, result]
|
228 |
+
)
|
229 |
+
gr.on(
|
230 |
+
triggers=[
|
231 |
+
a.click,
|
232 |
+
b.click,
|
233 |
+
c.click,
|
234 |
+
d.click,
|
235 |
+
e.click,
|
236 |
+
f.click,
|
237 |
+
g.click,
|
238 |
+
h.click,
|
239 |
+
],
|
240 |
+
fn=model_inference,
|
241 |
+
inputs=[imagebox],
|
242 |
+
outputs=[model_prediction],
|
243 |
+
).then(
|
244 |
+
fn=lambda x, y, z: "π₯" if x==y else f"π© The solution is {chr(ord('A') + int(z))}",
|
245 |
+
inputs=[model_prediction, user_prediction, solution],
|
246 |
+
outputs=[result],
|
247 |
+
)
|
248 |
+
|
249 |
+
a.click(fn=lambda: "A", inputs=[], outputs=[user_prediction])
|
250 |
+
b.click(fn=lambda: "B", inputs=[], outputs=[user_prediction])
|
251 |
+
c.click(fn=lambda: "C", inputs=[], outputs=[user_prediction])
|
252 |
+
d.click(fn=lambda: "D", inputs=[], outputs=[user_prediction])
|
253 |
+
e.click(fn=lambda: "E", inputs=[], outputs=[user_prediction])
|
254 |
+
f.click(fn=lambda: "F", inputs=[], outputs=[user_prediction])
|
255 |
+
g.click(fn=lambda: "G", inputs=[], outputs=[user_prediction])
|
256 |
+
h.click(fn=lambda: "H", inputs=[], outputs=[user_prediction])
|
257 |
+
|
258 |
+
demo.load()
|
259 |
+
|
260 |
+
demo.queue(max_size=40, api_open=False)
|
261 |
+
demo.launch(max_threads=400)
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
cv2
|
2 |
+
torch
|
3 |
+
imagehash
|
4 |
+
transformers
|
5 |
+
datasets
|
6 |
+
pillow
|
7 |
+
numpy
|