Spaces:
Runtime error
Runtime error
File size: 24,789 Bytes
217780a 58777cc 217780a 7df19dd 217780a 3692a7a 217780a 58777cc 217780a 794d2b7 58777cc 217780a 58777cc 217780a 7df19dd 794d2b7 58777cc 217780a 0e145dd 217780a 794d2b7 217780a 7df19dd 217780a 7df19dd 217780a 7df19dd 217780a dafb0ab 217780a 7df19dd 217780a 7df19dd 217780a 0e145dd 217780a 7df19dd 217780a 0e145dd 217780a 0e145dd 217780a 7df19dd 217780a 0e145dd 217780a 58777cc 217780a 58777cc 217780a f10b974 58777cc 217780a 58777cc 217780a 4c85382 217780a 58777cc 0e145dd 217780a 58777cc 217780a 0e145dd cf12ee0 cf142d2 cf12ee0 5b1ab48 cf12ee0 0e145dd cf12ee0 0e145dd cf142d2 0e145dd cf142d2 0e145dd cf142d2 0e145dd 58777cc e3795af 0e145dd 58777cc 0e145dd 58777cc 0e145dd 58777cc 0e145dd 5167a8a 0e145dd 58777cc 0e145dd 58777cc 0e145dd 5167a8a 0e145dd 5167a8a 0e145dd 5167a8a 0e145dd 5167a8a 0e145dd 5167a8a e3795af 5167a8a e3795af 5167a8a 0e145dd 5167a8a 0e145dd 5167a8a 0e145dd c586e09 217780a 0e145dd 217780a 58777cc f10b974 58777cc f10b974 58777cc 217780a 58777cc f10b974 58777cc f10b974 58777cc 217780a 0e145dd 217780a 0e145dd 58777cc 217780a e3795af cf142d2 e3795af 217780a 7df19dd 5167a8a 217780a 5167a8a 217780a cf12ee0 cf142d2 5167a8a 217780a 7df19dd 217780a 58777cc 217780a dafb0ab cf12ee0 cf142d2 dafb0ab 4932b87 dafb0ab 217780a dafb0ab cf12ee0 cf142d2 dafb0ab 217780a 13f2998 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 |
import os
import gradio as gr
models = [
"HuggingFaceM4/idefics-9b-instruct",
# "HuggingFaceM4/idefics-80b-instruct",
]
SYSTEM_PROMPT = """The following is a conversation between a highly knowledgeable and intelligent visual AI assistant, called Assistant, and a human user, called User. In the following interactions, User and Assistant will converse in natural language, and Assistant will do its best to answer User’s questions. Assistant has the ability to perceive images and reason about the content of visual inputs. Assistant was built to be respectful, polite and inclusive. It knows a lot, and always tells the truth. When prompted with an image, it does not make up facts.
The conversation begins:
User:<fake_token_around_image><image:https://i1.pickpik.com/photos/515/906/355/kittens-cats-pet-cute-preview.jpg><fake_token_around_image>Describe this image.</s>
Assistant: Five kittens are standing together in the center of the photograph. From the left to right, there is one orange kitte, two kittens white and black stripes, and two brown kittens with an orange head. They are in bright green grass and it looks like they are moving forward.</s>
User:How about this image?<fake_token_around_image><image:https://cdn.pixabay.com/photo/2017/09/25/13/12/puppy-2785074_1280.jpg><fake_token_around_image>Can you describe it too?</s>
Assistant: A dog is lying on the floor, looking at the camera. It is looking directly at you. The dog has a white body and brown patches on its face and ears. Its eyes are dark. Its nose is black, and it has long, floppy ears, white paws, long fur, big eyes.</s>
User: What kind of breed is it?</s>
Assistant: It looks like a Cavalier King Charles Spaniel. These breeds are known for their gentle, affectionate nature. Their long ears and big, brown eyes give them a sweet, expressive face. Cavaliers are small dogs weighing between 13 and 20 pounds. They have a silky, medium-length coat that comes in various colors, including black and tan, tricolor, red and white, or black.</s>
User: What can you tell me about this breed of dogs?</s>
Assistant: One specific characteristic of the Cavalier King Charles Spaniel is its friendly and affectionate nature. This breed is known for being extremely sociable and forming strong bonds with their owners. They are often described as "velcro dogs" because they love to be close to their human companions, whether it's sitting on their laps, cuddling on the couch, or simply following them around the house.</s>
User: ghjkhjabnufs</s>
Assistant: That doesn’t seem to be a word. Could you ask me another way?</s>
User: Do you like Cavalier King Charles Spaniel?</s>
Assistant: I do not have personal opinions as I’m just a computer program. However, cavaliers are known for being excellent family pets due to their gentle and patient demeanor, making them great with children and other pets. Their affectionate nature also makes them ideal therapy dogs, as they can provide comfort and emotional support to those in need.</s>
User: How many dogs do you see in this image?<fake_token_around_image><image:https://i.dailymail.co.uk/i/pix/2011/07/01/article-2010308-0CD22A8300000578-496_634x414.jpg><fake_token_around_image></s>
Assistant: There is no dogs in this image. The picture shows a tennis player jumping to volley the ball.</s>"""
BAN_TOKENS = "<image>;<fake_token_around_image>"
EOS_TOKENS = "</s>;User"
import logging
from accelerate.utils import get_max_memory
from transformers import AutoConfig, IdeficsForVisionText2Text, AutoProcessor
TOKENIZER_FAST = True
MAX_SEQ_LEN = 2048
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger()
def load_processor_tokenizer_model(model_name):
processor = AutoProcessor.from_pretrained(
model_name,
use_auth_token=os.getenv("HF_AUTH_TOKEN", True),
truncation_side="left",
)
tokenizer = processor.tokenizer
# tokenizer = AutoTokenizer.from_pretrained(
# model_name,
# use_fast=TOKENIZER_FAST,
# use_auth_token=os.getenv("HF_AUTH_TOKEN", True),
# truncation_side="left",
# )
# tokenizer.padding_side = "left" -> we don't need that, do we?
config = AutoConfig.from_pretrained(model_name, use_auth_token=os.getenv("HF_AUTH_TOKEN", True))
max_memory_map = get_max_memory()
for key in max_memory_map.keys():
if key != "cpu":
# Get this in GB
max_memory_map[key] = max_memory_map[key] // (1024 * 1024 * 1024)
# Decrease 2 for Pytorch overhead and 2 for the forward to be safe
max_memory_map[key] = f"{max_memory_map[key] - 4} GiB"
model = IdeficsForVisionText2Text.from_pretrained(
model_name,
use_auth_token=os.getenv("HF_AUTH_TOKEN", True),
device_map="auto",
offload_folder="./offload",
torch_dtype=config.torch_dtype,
max_memory=max_memory_map,
)
model.eval()
print("Current device map:", model.hf_device_map)
print("Model default generation config:", model.generation_config)
# TODO: the device_map looks very inefficien right now. that could be improved
return processor, tokenizer, model
def split_prompt_into_list(prompt_str):
"""Convert a full string prompt to the list format expected by the processor."""
prompt_splitted = prompt_str.split("<fake_token_around_image>")
prompt_list = []
for ps in prompt_splitted:
if ps.startswith("<image:"):
prompt_list.append(ps[7:-1])
else:
prompt_list.append(ps)
return prompt_list
def model_generation(
prompt,
processor,
tokenizer,
model,
temperature,
no_repeat_ngram_size,
max_new_tokens,
min_length,
ban_tokens,
eos_tokens,
force_words,
repetition_penalty,
hide_special_tokens,
decoding_strategy,
num_beams,
length_penalty,
top_k,
top_p,
penalty_alpha,
):
input_args = processor(
[split_prompt_into_list(prompt)],
eval_mode=True,
truncation=True,
max_length=MAX_SEQ_LEN - 512, # TODO: replace the 512 value with `max_new_tokens`
padding=True,
)
for k, v in input_args.items():
input_args[k] = v.to(0)
# Excluding some words from the generation
bad_words_ids = None
ban_tokens = ban_tokens.replace("\\n", "\n")
bad_words = ban_tokens.split(";")
if len(bad_words) > 0:
bad_words_ids = tokenizer(bad_words, add_special_tokens=False).input_ids
# Forcing some words in the generation
force_words_ids = None
if force_words != "":
force_words = force_words.replace("\\n", "\n")
force_words = force_words.split(";")
if len(force_words) > 0:
force_words_ids = tokenizer(force_words, add_special_tokens=False).input_ids
eos_token_ids = None
if eos_tokens != "":
eos_tokens = eos_tokens.replace("\\n", "\n")
eos_tokens = eos_tokens.split(";")
if len(eos_tokens) > 0:
eos_token_ids = []
for eos_token in eos_tokens:
tokenized_eos_token = tokenizer(eos_token, add_special_tokens=False).input_ids
if len(tokenized_eos_token) > 1:
raise ValueError(
f"eos_tokens should be one token, here {eos_token} is {len(tokenized_eos_token)} tokens:"
f" {tokenized_eos_token}"
)
eos_token_ids += tokenized_eos_token
# Common parameters to all decoding strategies
# This documentation is useful to read: https://huggingface.co/docs/transformers/main/en/generation_strategies
generation_args = {
"temperature": temperature,
"no_repeat_ngram_size": no_repeat_ngram_size,
"max_new_tokens": max_new_tokens,
"min_length": min_length,
"bad_words_ids": bad_words_ids,
"force_words_ids": force_words_ids,
"repetition_penalty": repetition_penalty,
"eos_token_id": eos_token_ids,
}
assert decoding_strategy in [
"greedy",
"beam_search",
"beam_sampling",
"sampling_top_k",
"sampling_top_p",
"contrastive_sampling",
]
if decoding_strategy == "greedy":
pass
elif decoding_strategy == "beam_search":
generation_args["num_beams"] = num_beams
generation_args["length_penalty"] = length_penalty
assert generation_args["num_beams"] > 1
elif decoding_strategy == "beam_sampling":
generation_args["num_beams"] = num_beams
generation_args["length_penalty"] = length_penalty
generation_args["do_sample"] = True
assert generation_args["num_beams"] > 1
elif decoding_strategy == "sampling_top_k":
generation_args["do_sample"] = True
generation_args["top_k"] = top_k
elif decoding_strategy == "sampling_top_p":
generation_args["do_sample"] = True
generation_args["top_p"] = top_p
elif decoding_strategy == "contrastive_sampling":
generation_args["do_sample"] = True
generation_args["penalty_alpha"] = penalty_alpha
generation_args["top_k"] = top_k
generated_tokens = model.generate(
**input_args,
**generation_args,
)
tokens = tokenizer.convert_ids_to_tokens(generated_tokens[0])
decoded_skip_special_tokens = repr(
tokenizer.batch_decode(generated_tokens, skip_special_tokens=hide_special_tokens)[0]
)
actual_generated_tokens = generated_tokens[:, input_args["input_ids"].shape[-1] :]
first_end_token = len(actual_generated_tokens[0])
actual_generated_tokens = actual_generated_tokens[:, :first_end_token]
generated_text = tokenizer.batch_decode(actual_generated_tokens, skip_special_tokens=hide_special_tokens)[0]
logger.info(
"Result: \n"
f"----Prompt: `{prompt}`\n"
f"----Tokens ids - prompt + generation: `{generated_tokens[0].tolist()}`\n"
f"----Tokens converted - prompt + generation: `{tokens}`\n"
f"----String decoded with skipped special tokens - prompt + generation: `{decoded_skip_special_tokens}`\n"
f"----Total length - prompt + generation `{len(generated_tokens[0].tolist())}`\n"
f"----Token ids - generation: `{actual_generated_tokens[0].tolist()}`\n"
f"----Tokens converted - generation: `{tokenizer.convert_ids_to_tokens(actual_generated_tokens[0])}`\n"
f"----String decoded with skipped special tokens - generation: `{generated_text}`\n"
f"----Total length - generation: `{len(actual_generated_tokens[0].tolist())}`\n"
f"----Generation mode: `{decoding_strategy}`\n"
f"----Generation parameters: `{generation_args}`\n"
)
return generated_text
textbox = gr.Textbox(
show_label=False,
value="What color are the cat's eyes?",
placeholder=(
"To input images, use the following syntax:"
" `<fake_token_around_image><image:URL_IMAGE><fake_token_around_image>textexttext`"
),
visible=True,
container=False,
)
with gr.Blocks(title="IDEFICS", theme=gr.themes.Base()) as demo:
# state = gr.State()
with gr.Row():
with gr.Column(scale=3):
with gr.Row(elem_id="model_selector_row"):
model_selector = gr.Dropdown(
choices=models,
value=models[0] if len(models) > 0 else "",
interactive=True,
show_label=False,
container=False,
)
processor, tokenizer, model = load_processor_tokenizer_model(model_selector.value)
imagebox = gr.Image(
type="pil",
label=(
"Image input - This image box is not supported yet! To include images, do through the text by"
" adding `<fake_token_around_image><image:IMAGE_URL><fake_token_around_image>`. The backend takes"
" care of parsing that <image:URL> and download the correponding image. That way, you can"
" technically interleave as many images and texts as you want. No need to add space before and"
" after `<fake_token_around_image>`"
),
)
with gr.Accordion("Generation parameters", open=False, visible=True) as parameter_row:
max_new_tokens = gr.Slider(
minimum=0,
maximum=2048,
value=512,
step=1,
interactive=True,
label="Maximum number of new tokens to generate",
)
min_length = gr.Slider(
minimum=0,
maximum=50,
value=0,
step=1,
interactive=True,
label="Minimum number of new tokens to generate",
)
repetition_penalty = gr.Slider(
minimum=0.0,
maximum=5.0,
value=1.0,
step=0.1,
interactive=True,
label="Repetition penalty",
info="1.0 means no penalty",
)
no_repeat_ngram_size = gr.Slider(
minimum=0,
maximum=10,
value=0,
step=1,
interactive=True,
label="N-gram repetition threshold",
info="If set to int > 0, all ngrams of that size can only occur once.",
)
decoding_strategy = gr.Radio(
[
"greedy",
"beam_search",
"beam_sampling",
"sampling_top_k",
"sampling_top_p",
],
value="greedy",
label="Decoding strategy",
interactive=True,
)
temperature = gr.Slider(
minimum=0.0,
maximum=5.0,
value=1.0,
step=0.1,
interactive=True,
label="Sampling temperature",
)
num_beams = gr.Slider(
minimum=0,
maximum=20,
value=3.0,
step=1.0,
interactive=True,
visible=False,
label="Number of beams",
info="Only used if `decoding_strategy` is `beam_search` or `beam_sampling`.",
)
decoding_strategy.change(
fn=lambda selection: gr.Slider.update(visible=(selection in ["beam_search", "beam_sampling"])),
inputs=decoding_strategy,
outputs=num_beams,
)
top_p = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.95,
step=0.01,
interactive=True,
visible=False,
label="Top P",
info=(
"If set to float < 1, only the smallest set of most probable tokens with probabilities that"
" add up to top_p or higher are kept for generation."
),
)
decoding_strategy.change(
fn=lambda selection: gr.Slider.update(visible=(selection in ["sampling_top_p"])),
inputs=decoding_strategy,
outputs=top_p,
)
top_k = gr.Slider(
minimum=0,
maximum=500,
value=50,
step=1,
interactive=True,
visible=False,
label="Top K",
info="The number of highest probability vocabulary tokens to keep for top-k-filtering.",
)
decoding_strategy.change(
fn=lambda selection: gr.Slider.update(visible=(selection in ["sampling_top_k"])),
inputs=decoding_strategy,
outputs=top_k,
)
length_penalty = gr.Slider(
minimum=-1000.0,
maximum=1000.0,
value=1.0,
step=0.1,
interactive=True,
visible=False,
label="Length penalty",
info=(
"length_penalty > 0.0 promotes longer sequences, while length_penalty < 0.0 encourages shorter"
" sequences. Only used if `decoding_strategy` is `beam_search` or `beam_sampling`."
),
)
decoding_strategy.change(
fn=lambda selection: gr.Slider.update(visible=(selection in ["beam_search", "beam_sampling"])),
inputs=decoding_strategy,
outputs=length_penalty,
)
penalty_alpha = gr.Slider(
minimum=0.0,
maximum=5.0,
value=0.95,
step=0.05,
interactive=True,
visible=False,
label="Penalty alpha",
info="Only used if `decoding_strategy` is `contrastive_sampling`.",
)
decoding_strategy.change(
fn=lambda selection: gr.Slider.update(visible=(selection in ["contrastive_sampling"])),
inputs=decoding_strategy,
outputs=penalty_alpha,
)
with gr.Column(scale=6):
chatbot = gr.Chatbot(
elem_id="chatbot",
label="Idefics Chatbot",
visible=True,
height=550,
value=[
[
(
"What's unusual about this"
" image?<fake_token_around_image><image:https://i.redd.it/9nkcvbi1pp9y.jpg><fake_token_around_image>"
),
(
"The unusual aspect of this image is that there is a cat lying on a bed with an orange on"
" its stomach. The cat is white and fluffy, and it appears to be sleeping or resting"
" comfortably with the orange on its belly. This is an uncommon sight, as cats typically"
" do not interact with fruits in such a manner."
),
],
[
(
"<fake_token_around_image><image:https://www.boredpanda.com/blog/wp-content/uploads/2014/02/funny-wet-cats-coverimage.jpg><fake_token_around_image>What"
" about this cat? Why do people find it funny?"
),
(
"The cat in the image is a gray and white long-haired cat with a surprised expression on"
" its face. The cat's eyes are wide open, and it appears to be looking directly at the"
" camera. The cat's mouth is also open, which adds to its surprised and funny appearance."
" The combination of the cat's surprised expression and its wet fur, possibly from being"
" in the shower or bath, makes it an amusing and entertaining sight for many people."
),
],
],
)
with gr.Row():
with gr.Column(scale=8):
textbox.render()
with gr.Column(scale=1, min_width=60):
submit_btn = gr.Button(value="Submit", visible=True)
with gr.Column(scale=1, min_width=20):
clear_btn = gr.ClearButton([textbox, chatbot])
cur_dir = os.path.dirname(os.path.abspath(__file__))
# gr.Examples(examples=[
# [f"{cur_dir}/examples/extreme_ironing.jpg", "What is unusual about this image?"],
# [f"{cur_dir}/examples/waterview.jpg", "What are the things I should be cautious about when I visit here?"],
# ], inputs=[textbox])
# gr.Examples(
# examples=[
# [
# ("How many of these animals can we fit into an engine like that<fake_token_around_image><image:https://upload.wikimedia.org/wikipedia/commons/thumb/4/4e/Nassau_County_Police_Bell_407.jpg/1200px-Nassau_County_Police_Bell_407.jpg><fake_token_around_image>?", "The image shows a helicopter with a large engine, but it is not possible to determine the exact number of animals that can fit into it based on the image alone. The size and capacity of the helicopter's engine would depend on various factors, such as the size of the animals, the weight of the animals, and the size of the helicopter itself. However, it is safe to assume that the helicopter is designed to carry a limited number of animals, and it is not intended to be used as a means of transporting large groups of animals."),
# ],
# ],
# inputs = [chatbot]
# )
def format_prompt_with_history_and_system_conditioning(current_user_prompt, history):
resulting_text = SYSTEM_PROMPT
for turn in history:
user_utterance, assistant_utterance = turn
resulting_text += f"\nUser: {user_utterance}</s>\nAssistant: {assistant_utterance}</s>"
resulting_text += f"\nUser: {current_user_prompt}</s>\nAssistant:"
return resulting_text
def model_inference(
user_prompt,
chat_history,
decoding_strategy,
num_beams,
temperature,
no_repeat_ngram_size,
max_new_tokens,
min_length,
repetition_penalty,
length_penalty,
top_k,
top_p,
penalty_alpha,
):
global processor, model, tokenizer
# temperature = 1.0
# no_repeat_ngram_size = 0
# max_new_tokens = 512
# min_length = 16
force_words = ""
# repetition_penalty = 1.0
hide_special_tokens = False
# decoding_strategy = "greedy"
# num_beams = 3
# length_penalty = 1.0
# top_k = 50
# top_p = 0.95
# penalty_alpha = 0.95
formated_prompt = format_prompt_with_history_and_system_conditioning(
current_user_prompt=user_prompt.strip(),
history=chat_history,
)
generated_text = model_generation(
prompt=formated_prompt,
processor=processor,
tokenizer=tokenizer,
model=model,
temperature=temperature,
no_repeat_ngram_size=no_repeat_ngram_size,
max_new_tokens=max_new_tokens,
min_length=min_length,
ban_tokens=BAN_TOKENS,
eos_tokens=EOS_TOKENS,
force_words=force_words,
repetition_penalty=repetition_penalty,
hide_special_tokens=hide_special_tokens,
decoding_strategy=decoding_strategy,
num_beams=num_beams,
length_penalty=length_penalty,
top_k=top_k,
top_p=top_p,
penalty_alpha=penalty_alpha,
)
chat_history.append((user_prompt, generated_text.strip("</s>")))
return "", chat_history
textbox.submit(
fn=model_inference,
inputs=[
textbox,
chatbot,
decoding_strategy,
num_beams,
temperature,
no_repeat_ngram_size,
max_new_tokens,
min_length,
repetition_penalty,
length_penalty,
top_k,
top_p,
penalty_alpha,
],
outputs=[textbox, chatbot],
)
submit_btn.click(
fn=model_inference,
inputs=[
textbox,
chatbot,
decoding_strategy,
num_beams,
temperature,
no_repeat_ngram_size,
max_new_tokens,
min_length,
repetition_penalty,
length_penalty,
top_k,
top_p,
penalty_alpha,
],
outputs=[
textbox,
chatbot,
],
)
demo.queue()
demo.launch()
|