File size: 10,346 Bytes
217780a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
# coding=utf-8
# Copyright 2020, The T5 Authors and HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" VT5 model configuration"""
import os
from typing import Tuple, Union

from transformers import AutoConfig
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging


logger = logging.get_logger(__name__)

T5_PRETRAINED_CONFIG_ARCHIVE_MAP = {
    "t5-small": "https://huggingface.co/t5-small/resolve/main/config.json",
    "t5-base": "https://huggingface.co/t5-base/resolve/main/config.json",
    "t5-large": "https://huggingface.co/t5-large/resolve/main/config.json",
    "t5-3b": "https://huggingface.co/t5-3b/resolve/main/config.json",
    "t5-11b": "https://huggingface.co/t5-11b/resolve/main/config.json",
}


class VT5Config(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`T5Model`] or a [`TFT5Model`]. It is used to
    instantiate a T5 model according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the T5
    [t5-small](https://huggingface.co/t5-small) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    TODO: this doc is completely out of sync with the actual args

    Arguments:
        vocab_size (`int`, *optional*, defaults to 32128):
            Vocabulary size of the T5 model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`T5Model`] or [`TFT5Model`].
        d_model (`int`, *optional*, defaults to 512):
            Size of the encoder layers and the pooler layer.
        d_kv (`int`, *optional*, defaults to 64):
            Size of the key, query, value projections per attention head. `d_kv` has to be equal to `d_model //
            num_heads`.
        d_ff (`int`, *optional*, defaults to 2048):
            Size of the intermediate feed forward layer in each `T5Block`.
        num_layers (`int`, *optional*, defaults to 6):
            Number of hidden layers in the Transformer encoder.
        num_decoder_layers (`int`, *optional*):
            Number of hidden layers in the Transformer decoder. Will use the same value as `num_layers` if not set.
        num_heads (`int`, *optional*, defaults to 8):
            Number of attention heads for each attention layer in the Transformer encoder.
        relative_attention_num_buckets (`int`, *optional*, defaults to 32):
            The number of buckets to use for each attention layer.
        relative_attention_max_distance (`int`, *optional*, defaults to 128):
            The maximum distance of the longer sequences for the bucket separation.
        dropout_rate (`float`, *optional*, defaults to 0.1):
            The ratio for all dropout layers.
        layer_norm_eps (`float`, *optional*, defaults to 1e-6):
            The epsilon used by the layer normalization layers.
        initializer_factor (`float`, *optional*, defaults to 1):
            A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
            testing).
        feed_forward_proj (`string`, *optional*, defaults to `"relu"`):
            Type of feed forward layer to be used. Should be one of `"relu"` or `"gated-gelu"`. T5v1.1 uses the
            `"gated-gelu"` feed forward projection. Original T5 uses `"relu"`.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models).
        additional_vocab_size (`int`, *optional`, defaults to 0):
            Additional vocabulary size of the model, typically for the special "<img>" token. Additional vocab tokens
            are always trainable whereas regular vocab tokens can be frozen or not.
        alpha_initializer (`str`, *optional*, defaults to `"ones"`):
            Initialization type for the alphas.
        alphas_initializer_range (`float`, *optional*, defaults to 0.0):
            The standard deviation of the truncated_normal_initializer for initializing the alphas in the Gated Cross Attention.
        alpha_type (`str`, *optional*, defaults to `"vector"`):
            Whether the gating alphas should be vectors or single floats.
    """
    model_type = "vt5"
    keys_to_ignore_at_inference = ["past_key_values"]
    attribute_map = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"}

    def __init__(
        self,
        vocab_size=32128,
        d_model=512,
        d_kv=64,
        d_ff=2048,
        num_layers=6,
        num_decoder_layers=None,
        num_heads=8,
        relative_attention_num_buckets=32,
        relative_attention_max_distance=128,
        dropout_rate=0.1,
        layer_norm_epsilon=1e-6,
        initializer_factor=1.0,
        feed_forward_proj="relu",
        is_encoder_decoder=True,
        use_cache=True,
        pad_token_id=0,
        eos_token_id=1,
        additional_vocab_size=0,
        alpha_initializer="ones",
        alphas_initializer_range=0.0,
        alpha_type="vector",
        cross_layer_interval=1,
        tie_word_embeddings=False,
        freeze_text_layers=True,
        freeze_lm_head=False,
        freeze_vision_layers=True,
        vision_model_name="google/vit-base-patch16-224",
        vision_model_params="{}",
        vision_embed_dim=768,
        image_token_index=32128,
        **kwargs,
    ):
        self.vocab_size = vocab_size
        self.additional_vocab_size = additional_vocab_size
        self.d_model = d_model
        self.d_kv = d_kv
        self.d_ff = d_ff
        self.num_layers = num_layers
        self.num_decoder_layers = (
            num_decoder_layers if num_decoder_layers is not None else self.num_layers
        )  # default = symmetry
        self.num_heads = num_heads
        self.relative_attention_num_buckets = relative_attention_num_buckets
        self.relative_attention_max_distance = relative_attention_max_distance
        self.dropout_rate = dropout_rate
        self.layer_norm_epsilon = layer_norm_epsilon
        self.initializer_factor = initializer_factor
        self.feed_forward_proj = feed_forward_proj
        self.use_cache = use_cache

        act_info = self.feed_forward_proj.split("-")
        self.dense_act_fn = act_info[-1]
        self.is_gated_act = act_info[0] == "gated"

        if len(act_info) > 1 and act_info[0] != "gated" or len(act_info) > 2:
            raise ValueError(
                f"`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer."
                "Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. "
                "'gated-gelu' or 'relu'"
            )

        # for backwards compatibility
        if feed_forward_proj == "gated-gelu":
            self.dense_act_fn = "gelu_new"

        self.alpha_initializer = alpha_initializer
        self.alphas_initializer_range = alphas_initializer_range
        self.alpha_type = alpha_type

        self.cross_layer_interval = cross_layer_interval
        self.freeze_vision_layers = freeze_vision_layers
        self.vision_model_name = vision_model_name
        self.vision_model_params = vision_model_params

        self.tie_word_embeddings = tie_word_embeddings
        self.freeze_text_layers = freeze_text_layers
        self.freeze_lm_head = freeze_lm_head
        self.image_token_index = image_token_index

        self.vision_embed_dim = vision_embed_dim

        # IMPORTANT: Do not do any __init__ args-based checks in the constructor, since
        # PretrainedConfig.from_dict first instantiates the class with the config dict and only then
        # updates the config object with `kwargs` from from_pretrained, so during the instantiation
        # of this object many attributes have default values and haven't yet been overridden.
        # Do any required checks inside `from_pretrained` once the superclass' `from_pretrained` was run.

        super().__init__(
            pad_token_id=pad_token_id,
            eos_token_id=eos_token_id,
            is_encoder_decoder=is_encoder_decoder,
            tie_word_embeddings=tie_word_embeddings,
            **kwargs,
        )

    def check_compatibilities(self):
        if self.tie_word_embeddings and (self.freeze_text_layers != self.freeze_lm_head):
            raise ValueError(
                "if `tie_word_embeddings` is True, then `freeze_lm_head` and `freeze_text_layers` must be equal."
            )

        vision_model_params = eval(self.vision_model_params)
        config = AutoConfig.from_pretrained(self.vision_model_name, **vision_model_params)
        if hasattr(config, "vision_config"):
            vison_config = config.vision_config
        else:
            vison_config = config
        vision_embed_dim = vison_config.hidden_size
        if self.vision_embed_dim != vision_embed_dim:
            raise ValueError(
                f"vision_embed_dim ({self.vision_embed_dim}) must match the hidden size of the vision model"
                f" ({vision_embed_dim})"
            )

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
        outputs = super(VT5Config, cls).from_pretrained(pretrained_model_name_or_path, **kwargs)
        if isinstance(outputs, Tuple):
            # When called with return_unused_kwargs=True, the first item will be the config
            outputs[0].check_compatibilities()
        else:
            outputs.check_compatibilities()
        return outputs