monitoringInterface / util /Monitor_construction.py
HugoHE's picture
initial commit
1215771
raw
history blame
7.3 kB
import numpy as np
import pandas as pd
import pickle
import os
import sys
# append the path of the parent directory
sys.path.append("..")
from abstractions import *
from runtime_monitors import *
# def monitors_offline_construction(network_name, network_folder_path, classes, layers_indexes, taus):
# appendixes = ["_correctly_classified_features.csv", "_incorrectly_classified_features.csv"]
# product = ((i, y) for i in layers_indexes for y in classes)
# for i, y in product:
# # load obtained features to creat reference
# path_bad_features = network_folder_path +"Layer_minus_" + str(i) + "/class_" + str(y) + appendixes[1]
# path_good_features = network_folder_path +"Layer_minus_" + str(i) + "/class_" + str(y) + appendixes[0]
# bad_feat_clustering_results = []
# good_feat_clustering_results = []
# if os.path.exists(path_bad_features):
# df_bad_features = pd.read_csv(path_bad_features)
# bad_features_to_cluster = df_bad_features[df_bad_features.columns[3:]].to_numpy()
# bad_features_index = df_bad_features["index"].to_numpy()
# # load clustering results to partition the features
# bad_feat_clustering_results_path = network_folder_path + "Layer_minus_" + str(i) + "/clustering_results_class_" + str(y) + appendixes[1]
# if os.path.exists(bad_feat_clustering_results_path):
# bad_feat_clustering_results = pd.read_csv(bad_feat_clustering_results_path)
# if os.path.exists(path_good_features):
# df_good_features = pd.read_csv(path_good_features)
# good_features_to_cluster = df_good_features[df_good_features.columns[3:]].to_numpy()
# good_features_index = df_good_features["index"].to_numpy()
# # load clustering results to partition the features
# good_feat_clustering_results_path = network_folder_path + "Layer_minus_" + str(i) + "/clustering_results_class_" + str(y) + appendixes[0]
# n_dim = good_features_to_cluster.shape[1]
# if os.path.exists(good_feat_clustering_results_path):
# good_feat_clustering_results = pd.read_csv(good_feat_clustering_results_path)
# for tau in taus:
# good_loc_boxes = []
# bad_loc_boxes = []
# if len(bad_feat_clustering_results):
# # load clustering result related to tau
# bad_feat_clustering_result = bad_feat_clustering_results[str(tau)]
# # determine the labels of clusters
# bad_num_clusters = np.amax(bad_feat_clustering_result) + 1
# bad_clustering_labels = np.arange(bad_num_clusters)
# # extract the indices of vectors in a cluster
# bad_clusters_indices = []
# for k in bad_clustering_labels:
# bad_indices_cluster_k, = np.where(bad_feat_clustering_result == k)
# bad_clusters_indices.append(bad_indices_cluster_k)
# # creat local box for each cluster
# bad_loc_boxes = [Box() for i in bad_clustering_labels]
# for j in range(len(bad_loc_boxes)):
# bad_points_j = [(bad_features_index[i], bad_features_to_cluster[i]) for i in bad_clusters_indices[j]]
# bad_loc_boxes[j].build(n_dim, bad_points_j)
# if len(good_feat_clustering_results):
# # load clustering result related to tau
# good_feat_clustering_result = good_feat_clustering_results[str(tau)]
# # determine the labels of clusters
# good_num_clusters = np.amax(good_feat_clustering_result) + 1
# good_clustering_labels = np.arange(good_num_clusters)
# # extract the indices of vectors in a cluster
# good_clusters_indices = []
# for k in good_clustering_labels:
# good_indices_cluster_k, = np.where(good_feat_clustering_result == k)
# good_clusters_indices.append(good_indices_cluster_k)
# # creat local box for each cluster
# good_loc_boxes = [Box() for i in good_clustering_labels]
# for j in range(len(good_loc_boxes)):
# good_points_j = [(good_features_index[i], good_features_to_cluster[i]) for i in good_clusters_indices[j]]
# good_loc_boxes[j].build(n_dim, good_points_j)
# # creat the monitor for class y at layer i
# monitor_y_i = Monitor("Box", network_name, y, i, good_ref=good_loc_boxes, bad_ref=bad_loc_boxes)
# # save the created monitor
# monitor_stored_folder_path = network_folder_path + "Monitors/"
# if not os.path.exists(monitor_stored_folder_path):
# os.makedirs(monitor_stored_folder_path)
# monitor_stored_path = monitor_stored_folder_path + network_name + "_monitor_for_class_" + str(y) + "_at_layer_minus_" + str(i) + "_tau_" + str(tau) + ".pkl"
# with open(monitor_stored_path, 'wb') as f:
# pickle.dump(monitor_y_i, f)
def monitor_construction_from_features(features, taus, clustering_results, class_name, monitor_saving_folder):
# if os.path.exists(clustering_result_path):
# clustering_results = pd.read_csv(clustering_result_path)
# else:
# raise RuntimeError("Please partition your data first!")
for tau in taus:
loc_boxes = []
if len(features):
n_dim = features.shape[1]
# load clustering result related to tau
clustering_result = clustering_results[str(tau)]
# determine the labels of clusters
num_clusters = np.amax(clustering_result) + 1
clustering_labels = np.arange(num_clusters)
# extract the indices of vectors in a cluster
clusters_indices = []
for k in clustering_labels:
indices_cluster_k, = np.where(clustering_result == k)
clusters_indices.append(indices_cluster_k)
# creat local box for each cluster
loc_boxes = [Box() for i in clustering_labels]
for j in range(len(loc_boxes)):
points_j = [(i, features[i]) for i in clusters_indices[j]]
loc_boxes[j].build(n_dim, points_j)
else:
raise RuntimeError("There exists no feature for building monitor!!")
# creat the monitor for class y at layer i
monitor = Monitor(good_ref=loc_boxes)
# save the created monitor
if not os.path.exists(monitor_saving_folder):
os.makedirs(monitor_saving_folder)
monitor_saving_path = monitor_saving_folder + "monitor_for_clustering_parameter" + "_tau_" + str(tau) + ".pkl"
with open(monitor_saving_path, 'wb') as f:
pickle.dump(monitor, f)