Spaces:
Sleeping
Sleeping
import numpy as np | |
import pandas as pd | |
import pickle | |
import os | |
import sys | |
# append the path of the parent directory | |
sys.path.append("..") | |
from abstractions import * | |
from runtime_monitors import * | |
# def monitors_offline_construction(network_name, network_folder_path, classes, layers_indexes, taus): | |
# appendixes = ["_correctly_classified_features.csv", "_incorrectly_classified_features.csv"] | |
# product = ((i, y) for i in layers_indexes for y in classes) | |
# for i, y in product: | |
# # load obtained features to creat reference | |
# path_bad_features = network_folder_path +"Layer_minus_" + str(i) + "/class_" + str(y) + appendixes[1] | |
# path_good_features = network_folder_path +"Layer_minus_" + str(i) + "/class_" + str(y) + appendixes[0] | |
# bad_feat_clustering_results = [] | |
# good_feat_clustering_results = [] | |
# if os.path.exists(path_bad_features): | |
# df_bad_features = pd.read_csv(path_bad_features) | |
# bad_features_to_cluster = df_bad_features[df_bad_features.columns[3:]].to_numpy() | |
# bad_features_index = df_bad_features["index"].to_numpy() | |
# # load clustering results to partition the features | |
# bad_feat_clustering_results_path = network_folder_path + "Layer_minus_" + str(i) + "/clustering_results_class_" + str(y) + appendixes[1] | |
# if os.path.exists(bad_feat_clustering_results_path): | |
# bad_feat_clustering_results = pd.read_csv(bad_feat_clustering_results_path) | |
# if os.path.exists(path_good_features): | |
# df_good_features = pd.read_csv(path_good_features) | |
# good_features_to_cluster = df_good_features[df_good_features.columns[3:]].to_numpy() | |
# good_features_index = df_good_features["index"].to_numpy() | |
# # load clustering results to partition the features | |
# good_feat_clustering_results_path = network_folder_path + "Layer_minus_" + str(i) + "/clustering_results_class_" + str(y) + appendixes[0] | |
# n_dim = good_features_to_cluster.shape[1] | |
# if os.path.exists(good_feat_clustering_results_path): | |
# good_feat_clustering_results = pd.read_csv(good_feat_clustering_results_path) | |
# for tau in taus: | |
# good_loc_boxes = [] | |
# bad_loc_boxes = [] | |
# if len(bad_feat_clustering_results): | |
# # load clustering result related to tau | |
# bad_feat_clustering_result = bad_feat_clustering_results[str(tau)] | |
# # determine the labels of clusters | |
# bad_num_clusters = np.amax(bad_feat_clustering_result) + 1 | |
# bad_clustering_labels = np.arange(bad_num_clusters) | |
# # extract the indices of vectors in a cluster | |
# bad_clusters_indices = [] | |
# for k in bad_clustering_labels: | |
# bad_indices_cluster_k, = np.where(bad_feat_clustering_result == k) | |
# bad_clusters_indices.append(bad_indices_cluster_k) | |
# # creat local box for each cluster | |
# bad_loc_boxes = [Box() for i in bad_clustering_labels] | |
# for j in range(len(bad_loc_boxes)): | |
# bad_points_j = [(bad_features_index[i], bad_features_to_cluster[i]) for i in bad_clusters_indices[j]] | |
# bad_loc_boxes[j].build(n_dim, bad_points_j) | |
# if len(good_feat_clustering_results): | |
# # load clustering result related to tau | |
# good_feat_clustering_result = good_feat_clustering_results[str(tau)] | |
# # determine the labels of clusters | |
# good_num_clusters = np.amax(good_feat_clustering_result) + 1 | |
# good_clustering_labels = np.arange(good_num_clusters) | |
# # extract the indices of vectors in a cluster | |
# good_clusters_indices = [] | |
# for k in good_clustering_labels: | |
# good_indices_cluster_k, = np.where(good_feat_clustering_result == k) | |
# good_clusters_indices.append(good_indices_cluster_k) | |
# # creat local box for each cluster | |
# good_loc_boxes = [Box() for i in good_clustering_labels] | |
# for j in range(len(good_loc_boxes)): | |
# good_points_j = [(good_features_index[i], good_features_to_cluster[i]) for i in good_clusters_indices[j]] | |
# good_loc_boxes[j].build(n_dim, good_points_j) | |
# # creat the monitor for class y at layer i | |
# monitor_y_i = Monitor("Box", network_name, y, i, good_ref=good_loc_boxes, bad_ref=bad_loc_boxes) | |
# # save the created monitor | |
# monitor_stored_folder_path = network_folder_path + "Monitors/" | |
# if not os.path.exists(monitor_stored_folder_path): | |
# os.makedirs(monitor_stored_folder_path) | |
# monitor_stored_path = monitor_stored_folder_path + network_name + "_monitor_for_class_" + str(y) + "_at_layer_minus_" + str(i) + "_tau_" + str(tau) + ".pkl" | |
# with open(monitor_stored_path, 'wb') as f: | |
# pickle.dump(monitor_y_i, f) | |
def monitor_construction_from_features(features, taus, clustering_results, class_name, monitor_saving_folder): | |
# if os.path.exists(clustering_result_path): | |
# clustering_results = pd.read_csv(clustering_result_path) | |
# else: | |
# raise RuntimeError("Please partition your data first!") | |
for tau in taus: | |
loc_boxes = [] | |
if len(features): | |
n_dim = features.shape[1] | |
# load clustering result related to tau | |
clustering_result = clustering_results[str(tau)] | |
# determine the labels of clusters | |
num_clusters = np.amax(clustering_result) + 1 | |
clustering_labels = np.arange(num_clusters) | |
# extract the indices of vectors in a cluster | |
clusters_indices = [] | |
for k in clustering_labels: | |
indices_cluster_k, = np.where(clustering_result == k) | |
clusters_indices.append(indices_cluster_k) | |
# creat local box for each cluster | |
loc_boxes = [Box() for i in clustering_labels] | |
for j in range(len(loc_boxes)): | |
points_j = [(i, features[i]) for i in clusters_indices[j]] | |
loc_boxes[j].build(n_dim, points_j) | |
else: | |
raise RuntimeError("There exists no feature for building monitor!!") | |
# creat the monitor for class y at layer i | |
monitor = Monitor(good_ref=loc_boxes) | |
# save the created monitor | |
if not os.path.exists(monitor_saving_folder): | |
os.makedirs(monitor_saving_folder) | |
monitor_saving_path = monitor_saving_folder + "monitor_for_clustering_parameter" + "_tau_" + str(tau) + ".pkl" | |
with open(monitor_saving_path, 'wb') as f: | |
pickle.dump(monitor, f) | |