Spaces:
Runtime error
Runtime error
# %% | |
try: | |
import detectron2 | |
except: | |
import os | |
os.system('pip install git+https://github.com/facebookresearch/detectron2.git') | |
import torch | |
from detectron2.utils.logger import setup_logger | |
setup_logger() | |
from detectron2.config import get_cfg | |
import detectron2.data.transforms as T | |
from detectron2.checkpoint import DetectionCheckpointer | |
from detectron2.modeling import build_model | |
from detectron2.utils.visualizer import Visualizer | |
from detectron2.data.detection_utils import read_image | |
from detectron2.data import MetadataCatalog | |
import numpy as np | |
import cv2 | |
from PIL import Image | |
import random | |
import gradio as gr | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
import io | |
from pickle import load | |
torch.manual_seed(0) | |
np.random.seed(0) | |
random.seed(0) | |
from base_cam import EigenCAM | |
from pytorch_grad_cam.utils.model_targets import FasterRCNNBoxScoreTarget | |
class Detectron2Monitor(): | |
def __init__(self, label_list, label_dict, config_file, model_file): | |
self.label_list = label_list | |
self.cfg = self._setup_cfg(config_file, model_file) | |
self.model = build_model(self.cfg) | |
self.model.eval() | |
checkpointer = DetectionCheckpointer(self.model) | |
checkpointer.load(self.cfg.MODEL.WEIGHTS) | |
self.monitors_dict = self._load_monitor() | |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
self.class_dict = label_dict | |
def _setup_cfg(self, config_file, model_file): | |
cfg = get_cfg() | |
cfg.merge_from_file(config_file) | |
cfg.MODEL.WEIGHTS = model_file | |
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5 | |
if torch.cuda.is_available(): | |
cfg.MODEL.DEVICE = "cuda" | |
else: | |
cfg.MODEL.DEVICE = "cpu" | |
cfg.freeze() | |
return cfg | |
def _get_input_dict(self, original_image): | |
height, width = original_image.shape[:2] | |
transform_gen = T.ResizeShortestEdge( | |
[self.cfg.INPUT.MIN_SIZE_TEST, self.cfg.INPUT.MIN_SIZE_TEST], self.cfg.INPUT.MAX_SIZE_TEST | |
) | |
image = transform_gen.get_transform(original_image).apply_image(original_image) | |
image = torch.as_tensor(image.astype("float32").transpose(2, 0, 1)) | |
inputs = {"image": image, "height": height, "width": width} | |
return inputs | |
def _postprocess_cam(self, raw_cam, img_width, img_height): | |
cam_orig = np.sum(raw_cam, axis=0) # [H,W] | |
cam_orig = np.maximum(cam_orig, 0) # ReLU | |
cam_orig -= np.min(cam_orig) | |
cam_orig /= np.max(cam_orig) | |
cam = cv2.resize(cam_orig, (img_width, img_height)) | |
return cam | |
def _inference(self, inputs): | |
with torch.no_grad(): | |
images = self.model.preprocess_image(inputs) | |
features = self.model.backbone(images.tensor) | |
proposals, _ = self.model.proposal_generator(images, features, None) # RPN | |
features_ = [features[f] for f in self.model.roi_heads.box_in_features] | |
box_features = self.model.roi_heads.box_pooler(features_, [x.proposal_boxes for x in proposals]) | |
box_features = self.model.roi_heads.box_head(box_features) # features of all 1k candidates | |
predictions = self.model.roi_heads.box_predictor(box_features) | |
pred_instances, pred_inds = self.model.roi_heads.box_predictor.inference(predictions, proposals) | |
pred_instances = self.model.roi_heads.forward_with_given_boxes(features, pred_instances) | |
# output boxes, masks, scores, etc | |
pred_instances = self.model._postprocess(pred_instances, inputs, images.image_sizes) # scale box to orig size | |
# features of the proposed boxes | |
feats = box_features[pred_inds] | |
return pred_instances, feats | |
def _load_monitor(self): | |
with open("monitors_dict.pkl", 'rb') as f: | |
monitors_dict = load(f) | |
return monitors_dict | |
# monitors_dict = {} | |
# for class_name in self.label_list: | |
# if class_name == "train" or class_name == "OOD": | |
# continue | |
# monitor_path = f"monitors/{class_name}/monitor_for_clustering_parameter" + "_tau_" + str(tau) + ".pkl" | |
# with open(monitor_path, 'rb') as f: | |
# monitor = load(f) | |
# monitors_dict[class_name] = monitor | |
# return monitors_dict | |
def _fasterrcnn_reshape_transform(self, x): | |
target_size = x['p6'].size()[-2 : ] | |
activations = [] | |
for key, value in x.items(): | |
activations.append(torch.nn.functional.interpolate(torch.abs(value), target_size, mode='bilinear')) | |
activations = torch.cat(activations, axis=1) | |
return activations | |
def get_output(self, img): | |
image = read_image(img, format="BGR") | |
input_image_dict = [self._get_input_dict(image)] | |
pred_instances, feats = self._inference(input_image_dict) | |
feats = feats.cpu().detach().numpy() | |
detections = pred_instances[0]["instances"].to("cpu") | |
cls_idxs = detections.pred_classes.detach().numpy() | |
# get labels from class indices | |
labels = [self.class_dict[i] for i in cls_idxs] | |
# count values in labels, and return a dictionary | |
labels_count_dict = dict((i, labels.count(i)) for i in labels) | |
v = Visualizer(image[..., ::-1], MetadataCatalog.get("bdd_dataset"), scale=1) | |
v = v.draw_instance_predictions(detections) | |
img_detection = v.get_image() | |
df = pd.DataFrame(list(labels_count_dict.items()), columns=['Object', 'Count']) | |
verdicts = [] | |
for label, feat in zip(labels, feats): | |
verdict = self.monitors_dict[label].make_verdicts(feat[np.newaxis,:])[0] if label in self.monitors_dict else True | |
verdicts.append(verdict) | |
detections_ood = detections[[i for i, x in enumerate(verdicts) if not x]] | |
detections_ood.pred_classes = torch.tensor([10]*len(detections_ood.pred_classes)) | |
v = Visualizer(image[..., ::-1], MetadataCatalog.get("bdd_dataset"), scale=1) | |
v = v.draw_instance_predictions(detections_ood) | |
img_ood = v.get_image() | |
pred_bboxes = detections.pred_boxes.tensor.numpy().astype(np.int32) | |
target_layers = [self.model.backbone] | |
targets = [FasterRCNNBoxScoreTarget(labels=labels, bounding_boxes=pred_bboxes)] | |
cam = EigenCAM(self.model, | |
target_layers, | |
use_cuda=False, | |
reshape_transform=self._fasterrcnn_reshape_transform) | |
grayscale_cam = cam(input_image_dict, targets) | |
cam = self._postprocess_cam(grayscale_cam, input_image_dict[0]["width"], input_image_dict[0]["height"]) | |
# plt.rcParams["figure.figsize"] = (30,10) | |
# plt.imshow(img_detection[..., ::-1], interpolation='none') | |
# plt.imshow(cam, cmap='jet', alpha=0.5) | |
# plt.axis("off") | |
# img_buff = io.BytesIO() | |
# plt.savefig(img_buff, format='png', bbox_inches='tight', pad_inches=0) | |
# img_cam = Image.open(img_buff) | |
img_cam = image | |
image_dict = {} | |
image_dict["image"] = image | |
image_dict["cam"] = img_cam | |
image_dict["detection"] = img_detection | |
image_dict["verdict"] = img_ood | |
return image_dict, df | |
config_file = "vanilla.yaml" | |
model_file = "model_final_vos_resnet_bdd.pth" | |
label_dict = { | |
0: 'pedestrian', | |
1: 'rider', | |
2: 'car', | |
3: 'truck', | |
4: 'bus', | |
5: 'train', | |
6: 'motor', | |
7: 'bike', | |
8: 'traffic light', | |
9: 'traffic sign', | |
10: 'OOD' | |
} | |
label_list = list(label_dict.values()) | |
MetadataCatalog.get("bdd_dataset").set(thing_classes=label_list) | |
extractor = Detectron2Monitor(config_file=config_file, label_list=label_list, label_dict=label_dict, model_file=model_file) | |
# %% | |
def inference_gd(file): | |
image_dict, df = extractor.get_output(file) | |
return image_dict["detection"], df, image_dict["verdict"], image_dict["cam"] | |
examples = ["examples/0.jpg", "examples/1.jpg", "examples/2.jpg", "examples/3.jpg"] | |
with gr.Blocks(theme="gradio/monochrome") as demo: | |
gr.Markdown("# Runtime Monitoring Object Detection") | |
gr.Markdown( | |
"""This interactive demo is based on the box abstraction-based monitors for Faster R-CNN model. The model is trained using [Detectron2](https://github.com/facebookresearch/detectron2) library on the in-distribution dataset [Berkeley DeepDrive-100k](https://www.bdd100k.com/), which contains objects within autonomous driving domain. The monitors are constructed by abstraction of extracted feature from the training data. The demo showcases the monitors' capacity to reject problematic detections due to out-of-distribution(OOD) objects. | |
To utilize the demo, upload an image or select one from the provided examples, and click on "Infer" to view the following results: | |
- **Detection**: outputs of Object Detector | |
- **Detection summary**: a summary of the detection outputs | |
- **Verdict**: verdicts from Monitors | |
- **Explainable AI**: visual explanation generated by [grad-cam](https://github.com/jacobgil/pytorch-grad-cam) library which is based on Class Activation Mapping(CAM) method. | |
In case the output image seems too small, simply right-click on the image, and choose “Open image in new tab” to visualize it in full size. | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(): | |
image = gr.inputs.Image(type="filepath", label="Input") | |
button = gr.Button("Infer") | |
eamples_block = gr.Examples(examples, image) | |
with gr.Column(): | |
with gr.Tab("Detection"): | |
detection = gr.Image(label="Output") | |
with gr.Tab("Verdict"): | |
verdict = gr.Image(label="Output") | |
with gr.Tab("Explainable AI"): | |
cam = gr.Image(label="Output") | |
df = gr.Dataframe(label="Detection summary") | |
button.click(fn=inference_gd, inputs=image, outputs=[detection, df, verdict, cam]) | |
demo.launch() | |