Spaces:
Sleeping
Sleeping
File size: 16,725 Bytes
15bcbe6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 |
# Copyright 2022 Google.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Transformer attention functions."""
import typing
from typing import Any, Callable, Mapping, NewType, Optional, Sequence, Tuple, Union
from absl import logging
from flax import linen as nn
import jax
import jax.numpy as jnp
from transformer import nn_components
from transformer import position
Array = jnp.ndarray
ArrayTree = Union[Array, Tuple["ArrayTree", ...]]
DecoderState = NewType("DecoderState", Mapping[str, Array])
# Tuple of keys, values, importance.
KVITuple = Tuple[Array, Array, Optional[Array]]
# Tuple of keys, values, queries, queries2, importance.
KVQITuple = Tuple[Array, Array, Array, Optional[Array], Optional[Array]]
# Tuple of scale factors. See TransformerBase.attention_scale_factors().
AttnScaleTuple = Tuple[Optional[Array], Optional[Array]]
def initial_kvi(shape: Sequence[int], use_importance: bool, dtype: Any):
"""Returns initial (zero) keys/values/i that can be passed to prev_kvi."""
z = jnp.zeros(shape, dtype=dtype)
if use_importance:
i = jnp.zeros((shape[0], shape[1]), dtype=dtype) # (bsize, window_length)
else:
i = None
return (z, z, i)
def concat_kvqi(kvqi: KVQITuple, prev_kvi: Optional[KVITuple]) -> (
Tuple[KVQITuple, Optional[KVITuple]]):
"""Concatenate previous keys,values with current keys,values.
Args:
kvqi: Current keys, values, queries, quieres2, importance.
prev_kvi: Previous keys, values, importance.
Returns:
(kvqi: Concatenated (keys, values, queries, importance),
next_kvi: Next (keys, values, importance)) (from kvqi)
"""
(keys, values, queries, queries2, importance) = kvqi
# The current keys,values,importance will be passed to the next window.
next_kvi = (keys, values, importance)
(batch_size, _, num_heads, head_dim) = keys.shape # (b, _, h, d)
if prev_kvi is None:
return (kvqi, None) # If prev_kvi is None, next_kvi should be None.
# Unpack prev_kvi and check shapes.
(pkeys, pvalues, pimportance) = prev_kvi
num_pkeys = pkeys.shape[1]
assert pkeys.shape == (batch_size, num_pkeys, num_heads, head_dim)
assert pkeys.shape == pvalues.shape
if pimportance is not None:
assert pimportance.shape == (batch_size, num_pkeys)
# Concatenate keys and values.
keys = jnp.concatenate([pkeys, keys], axis=1) # (b, k, h, d)
values = jnp.concatenate([pvalues, values], axis=1) # (b, k, h, d)
if importance is not None:
assert pimportance is not None
importance = jnp.concatenate([pimportance, importance], axis=1) # (b, k)
logging.info("attn: importance = %r", importance)
return ((keys, values, queries, queries2, importance), next_kvi)
def simple_attention(keys: Array,
values: Array,
queries: Array,
importance: Optional[Array],
*,
relative_position_bias: Optional[Array] = None,
scale_factor: Optional[Array] = None,
causal_mask: Optional[Array] = None,
dropout_multiplier: Optional[Array] = None,
dtype: Any = jnp.float32) -> Array:
"""Simple attention from a set of queries to a set of keys,values.
Args:
keys: of shape [batch_size, num_keys, num_heads, head_dim].
values: of shape [batch_size, num_keys, num_heads, head_dim].
queries: of shape [batch_size, num_queries, num_heads, head_dim].
importance: of shape [batch_size, num_keys].
*: ---- the following arguments are passed by keyword only ----
relative_position_bias: A positional attention matrix of shape
[num_heads, num_queries, num_keys]
scale_factor: Learned scale factor for use with normalized keys,queries
of shape [num_heads]
causal_mask: A boolean array of shape [num_heads, num_queries, num_keys]
dropout_multiplier: A random mask of either 0.0 or 1.0/keep_prob,
of shape [num_heads, num_queries, num_keys]
dtype: data type to perform attention at.
Returns:
Attention outputs of shape [batch_size, num_queries, num_heads, head_size]
"""
# (batch_size, num_keys, num_heads, head_dim)
(batch_size, num_keys, num_heads, head_dim) = keys.shape # (b, k, h, d)
num_queries = queries.shape[1]
assert keys.shape == values.shape
assert queries.shape == (batch_size, num_queries, num_heads, head_dim)
if importance is not None:
assert importance.shape == (batch_size, num_keys)
logging.info("attn: keys = %r", keys)
logging.info("attn: queries = %r", queries)
# Compute attention matrix.
attn = jnp.einsum("...qhd,...khd->...hqk", queries, keys) # (b, h, q, k)
logging.info("attn: content attn = %r", attn)
# Apply relative position bias.
if relative_position_bias is not None:
logging.info("attn: pbias = %r", relative_position_bias)
relative_position_bias = jnp.asarray(relative_position_bias, dtype=dtype)
pbias = position.broadcast_mask(relative_position_bias, attn)
attn = attn + pbias
# Apply learned attention scale.
if scale_factor is not None:
logging.info("attn: learned attention scale: %s", scale_factor)
# Broadcast scale over batch/keys/queries.
scale_factor = jnp.asarray(scale_factor, dtype=dtype)
scale_factor = scale_factor.reshape((1, num_heads, 1, 1))
attn = attn * scale_factor
# Apply causal mask.
if causal_mask is not None:
causal_mask = position.broadcast_mask(causal_mask, attn)
attn = jnp.where(causal_mask, attn, jnp.asarray(-1_000_000.0, dtype=dtype))
logging.info("attn: pre-softmax attn = %r", attn)
# Normalize attention matrix with softmax.
# min_x should be much smaller than minimum expected values in attn, but
# much larger than the masked_out values created by the causal mask. That
# way, if all tokens are masked out, then softmax will attend to nothing,
# rather than attend to everything equally.
min_x = jnp.asarray(-1000.0, dtype=dtype)
attn = nn_components.safe_softmax(attn, axis=-1, min_x=min_x) # (b, h, q, k)
# Apply dropout to attention matrix.
if dropout_multiplier is not None:
logging.debug("attn: drop = %r", dropout_multiplier)
dropout_multiplier = jnp.asarray(dropout_multiplier, dtype=dtype)
attn = attn * dropout_multiplier
logging.info("attn: final attn = %r", attn)
# Compute output -- values weighted by attention matrix.
y = jnp.einsum("...hqk,...khd->...qhd", attn, values) # (b, q, h, d)
logging.info("attn: y = %r", y)
return y
def external_attention(external_keys: Array,
external_values: Array,
queries: Array,
*,
scale_factor: Optional[Array] = None,
dtype: Any = jnp.float32) -> Array:
"""Attention over (keys, values) retrieved from external memory.
Args:
external_keys: per-query keys from external memory, of shape
[batch_size, num_queries, num_heads, num_neighbors, head_size]
external_values: per-query values from external memory, of shape
[batch_size, num_queries, num_heads, num_neighbors, head_size]
queries: current queries, of shape:
[batch_size, num_queries, num_heads, head_size]
*: ---- the following arguments are passed by keyword only. ---
scale_factor: Learned scale factor for use with normalized keys,queries
of shape [num_heads]
dtype: data type to perform attention at.
Returns:
Attention outputs of shape [batch_size, num_queries, num_heads, head_size]
"""
(batch_size, num_queries, num_heads, _, head_dim) = external_keys.shape
assert queries.shape == (batch_size, num_queries, num_heads, head_dim)
assert external_values.shape == external_keys.shape
# Build attention matrix.
logging.info("ext_attn: external keys = %r", external_keys)
ext_attn = jnp.einsum("...qhd,...qhid->...hqi", queries, external_keys)
logging.info("ext_attn: external_mem_attn: %s", ext_attn)
if scale_factor is not None:
scale_factor = jnp.asarray(scale_factor, dtype=dtype)
scale_factor = scale_factor.reshape((1, num_heads, 1, 1))
logging.info("ext_attn: scaling external_mem_attn by %s", scale_factor)
ext_attn = ext_attn * scale_factor
ext_attn = nn.softmax(ext_attn, axis=-1)
# Compute weighted sum of values.
ext_y = jnp.einsum("...hqi,...qhid->...qhd", ext_attn, external_values)
logging.info("ext_attn: ext_y = %r", ext_y)
return ext_y
def sliding_attention_window_shape(kvi: KVITuple,
prev_kvi: Optional[KVITuple],
queries: Array,
window_length: int) -> Tuple[int, int]:
"""Return (num_queries, num_keys) for the sliding attention window."""
# Do error checking here.
(keys, values, importance) = kvi
assert keys.shape == queries.shape
assert values.shape == queries.shape
# Get sizes...
(batch_size, sequence_length, _, _) = queries.shape
if importance is not None:
assert importance.ndim == 2
assert importance.shape == (batch_size, sequence_length)
assert window_length > 0
if window_length >= sequence_length:
# No sliding window.
num_queries = sequence_length
num_keys = sequence_length
if prev_kvi is not None:
num_keys += prev_kvi[0].shape[1]
else:
# Sliding window.
if prev_kvi is not None:
assert prev_kvi[0].shape[1] == window_length
num_queries = window_length
num_keys = window_length * 2
return (num_queries, num_keys)
def split_tree(tree: ArrayTree, sections: int, axis: int = 0) -> (
Sequence[ArrayTree]):
"""Recursively splits a possibly nested tuple of arrays along the given axis.
Args:
tree: A nested tree of tuples and arrays.
sections: The number of sections to split the tree into.
axis: The axis to do the split on arrays.
Returns:
A list of trees, of length sections, where each has the same shape as the
original, but with arrays of size 1/sections.
"""
if tree is None:
return [None] * sections
elif isinstance(tree, jnp.ndarray):
return jnp.split(tree, sections, axis=axis)
elif isinstance(tree, tuple):
# Recursively split each element of the tuple into a list.
branch_lists = [split_tree(tree_i, sections, axis=axis) for tree_i in tree]
# Rearrange the tuple of lists into a list of tuples.
return [tuple([brs[i] for brs in branch_lists]) for i in range(sections)]
else:
raise ValueError("Argument %r must be an ndarray or tuple." % tree)
def concat_trees(tree_list: Sequence[ArrayTree], axis: int = 0) -> ArrayTree:
"""Merges a list of trees into a single tree by concatenating their elements.
Args:
tree_list: A list of trees, all of the same shape.
axis: The axis to concatenate arrays on.
Returns:
A single tree, with the same shape as the trees in tree_list.
"""
# All trees in the list are required to have the same shape.
# We return a tree with the same shape as each of the trees in the list,
first_tree = tree_list[0]
if first_tree is None:
# Merge a list of None into a single None.
for tree_i in tree_list:
assert tree_i is None
return None
elif isinstance(first_tree, jnp.ndarray):
# Concatenate a list of arrays.
for tree_i in tree_list:
assert isinstance(tree_i, jnp.ndarray)
return jnp.concatenate(tree_list, axis=axis)
elif isinstance(first_tree, tuple):
# Reshape a list of tuples into a tuple of concatenated lists.
for tree_i in tree_list:
assert isinstance(tree_i, tuple) and len(tree_i) == len(first_tree)
num_branches = len(first_tree)
return tuple([concat_trees([tree[b] for tree in tree_list], axis=axis)
for b in range(num_branches)])
else:
raise ValueError("Argument %r must be an ndarray or tuple." % first_tree)
def reshape_transpose_tree(tree: ArrayTree, sections: int, axis: int = 0) -> (
ArrayTree):
"""Reshape and transpose arrays so that the window is dimension 0."""
# We could use jax tree utils for this, but we do it the hard way so the
# implementaiton can be compared with split_tree.
if tree is None:
return None
elif isinstance(tree, jnp.ndarray):
tree = typing.cast(Array, tree) # Tell type-checker about isinstance
ndim = tree.ndim
wlen = tree.shape[axis] // sections
assert sections * wlen == tree.shape[axis] # Must be evenly divisible.
# Break the axis dimension into sections * window_size
arr = tree
sh = list(arr.shape)
nshape = sh[0:axis] + [sections, wlen] + sh[axis + 1:]
arr = jnp.reshape(arr, nshape)
# Transpose sections to be dimension 0.
tdims = [axis] + list(range(0, axis)) + list(range(axis + 1, ndim + 1))
arr = jnp.transpose(arr, tdims)
return arr
elif isinstance(tree, tuple):
return tuple([reshape_transpose_tree(b, sections, axis) for b in tree])
else:
raise ValueError("Argument %r must be an ndarray or tuple." % tree)
def transpose_reshape_tree(tree: ArrayTree, sections: int, axis: int = 0) -> (
ArrayTree):
"""Reshape and transpose arrays so that the window is dimension 0."""
# We could use jax tree utils for this, but we do it the hard way so the
# implementaiton can be compared with split_tree.
if tree is None:
return None
elif isinstance(tree, jnp.ndarray):
tree = typing.cast(Array, tree) # Tell type-checker about isinstance
ndim = tree.ndim - 1 # Input tree has 1 extra dimension on front.
assert axis < ndim
wlen = tree.shape[axis + 1] # Window length.
# Transpose dimension 0 back to its proper place.
arr = tree
tdims = list(range(1, axis + 1)) + [0] + list(range(axis + 1, ndim + 1))
arr = jnp.transpose(arr, tdims)
# Combine the sections and window_size dimensions.
sh = list(arr.shape)
nshape = sh[0:axis] + [sections * wlen] + sh[axis + 2:]
arr = jnp.reshape(arr, nshape)
return arr
elif isinstance(tree, tuple):
return tuple([transpose_reshape_tree(b, sections, axis) for b in tree])
else:
raise ValueError("Argument %r must be an ndarray or tuple." % tree)
def split_and_scan(fn: Callable[[ArrayTree, ArrayTree],
Tuple[ArrayTree, ArrayTree]],
carry: ArrayTree, input_arrays: ArrayTree,
sections: int, axis: int = 0,
max_unrolled_windows: int = -1) -> (
Tuple[ArrayTree, ArrayTree]):
"""Scan over a set of input arrays in chunks.
Splits each array in 'input_arrays' into the number of chunks given by
'sections', and then loops over the chunks using a scan operation.
Returns a concatenation of the results.
Args:
fn: A function from (carry, input_i) -> (carry, output_i).
carry: The initial state for the scan, that will be passed from one
iteration to the next.
input_arrays: A nested tree of tuples of arrays.
sections: The number of sections or chunks for the split.
axis: The axis to split each array along.
max_unrolled_windows: If 0 <= max_unrolled_windows < sections,
use jax.lax.scan rather than unrolling the windows with a python loop.
Returns:
(carry, output)
"""
if sections == 1:
logging.info("Single window, no scan.")
return fn(carry, input_arrays)
if axis < 0:
raise ValueError(f"Axis must be positive. Got {axis}")
logging.info("Scanning over %d windows", sections)
if 0 <= max_unrolled_windows and max_unrolled_windows < sections:
logging.info("Using jax.lax.scan.")
in_arrs = reshape_transpose_tree(input_arrays, sections, axis)
(carry, out_arrs) = jax.lax.scan(fn, carry, in_arrs)
output_arrays = transpose_reshape_tree(out_arrs, sections, axis)
return (carry, output_arrays)
logging.info("Using unrolled for-loop.")
in_list = split_tree(input_arrays, sections, axis=axis)
out_list = []
for (k, in_chunk) in enumerate(in_list):
logging.info("Processing window %d", k)
(carry, out_chunk) = fn(carry, in_chunk)
out_list.append(out_chunk)
output_arrays = concat_trees(out_list, axis=axis)
return (carry, output_arrays)
|