File size: 16,725 Bytes
15bcbe6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
# Copyright 2022 Google.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Transformer attention functions."""

import typing
from typing import Any, Callable, Mapping, NewType, Optional, Sequence, Tuple, Union

from absl import logging
from flax import linen as nn
import jax
import jax.numpy as jnp

from transformer import nn_components
from transformer import position


Array = jnp.ndarray
ArrayTree = Union[Array, Tuple["ArrayTree", ...]]
DecoderState = NewType("DecoderState", Mapping[str, Array])

# Tuple of keys, values, importance.
KVITuple = Tuple[Array, Array, Optional[Array]]

# Tuple of keys, values, queries, queries2, importance.
KVQITuple = Tuple[Array, Array, Array, Optional[Array], Optional[Array]]

# Tuple of scale factors.  See TransformerBase.attention_scale_factors().
AttnScaleTuple = Tuple[Optional[Array], Optional[Array]]


def initial_kvi(shape: Sequence[int], use_importance: bool, dtype: Any):
  """Returns initial (zero) keys/values/i that can be passed to prev_kvi."""
  z = jnp.zeros(shape, dtype=dtype)
  if use_importance:
    i = jnp.zeros((shape[0], shape[1]), dtype=dtype)  # (bsize, window_length)
  else:
    i = None
  return (z, z, i)


def concat_kvqi(kvqi: KVQITuple, prev_kvi: Optional[KVITuple]) -> (
    Tuple[KVQITuple, Optional[KVITuple]]):
  """Concatenate previous keys,values with current keys,values.

  Args:
    kvqi: Current keys, values, queries, quieres2, importance.
    prev_kvi: Previous keys, values, importance.

  Returns:
    (kvqi: Concatenated (keys, values, queries, importance),
     next_kvi:  Next (keys, values, importance))  (from kvqi)
  """

  (keys, values, queries, queries2, importance) = kvqi
  # The current keys,values,importance will be passed to the next window.
  next_kvi = (keys, values, importance)
  (batch_size, _, num_heads, head_dim) = keys.shape    # (b, _, h, d)

  if prev_kvi is None:
    return (kvqi, None)   # If prev_kvi is None, next_kvi should be None.

  # Unpack prev_kvi and check shapes.
  (pkeys, pvalues, pimportance) = prev_kvi
  num_pkeys = pkeys.shape[1]
  assert pkeys.shape == (batch_size, num_pkeys, num_heads, head_dim)
  assert pkeys.shape == pvalues.shape
  if pimportance is not None:
    assert pimportance.shape == (batch_size, num_pkeys)

  # Concatenate keys and values.
  keys = jnp.concatenate([pkeys, keys], axis=1)        # (b, k, h, d)
  values = jnp.concatenate([pvalues, values], axis=1)  # (b, k, h, d)
  if importance is not None:
    assert pimportance is not None
    importance = jnp.concatenate([pimportance, importance], axis=1)  # (b, k)
    logging.info("attn: importance = %r", importance)

  return ((keys, values, queries, queries2, importance), next_kvi)


def simple_attention(keys: Array,
                     values: Array,
                     queries: Array,
                     importance: Optional[Array],
                     *,
                     relative_position_bias: Optional[Array] = None,
                     scale_factor: Optional[Array] = None,
                     causal_mask: Optional[Array] = None,
                     dropout_multiplier: Optional[Array] = None,
                     dtype: Any = jnp.float32) -> Array:
  """Simple attention from a set of queries to a set of keys,values.

  Args:
    keys: of shape [batch_size, num_keys, num_heads, head_dim].
    values: of shape [batch_size, num_keys, num_heads, head_dim].
    queries: of shape [batch_size, num_queries, num_heads, head_dim].
    importance: of shape [batch_size, num_keys].

    *: ---- the following arguments are passed by keyword only ----
    relative_position_bias:  A positional attention matrix of shape
          [num_heads, num_queries, num_keys]
    scale_factor:  Learned scale factor for use with normalized keys,queries
          of shape [num_heads]
    causal_mask: A boolean array of shape [num_heads, num_queries, num_keys]
    dropout_multiplier: A random mask of either 0.0 or 1.0/keep_prob,
          of shape [num_heads, num_queries, num_keys]
    dtype: data type to perform attention at.

  Returns:
    Attention outputs of shape [batch_size, num_queries, num_heads, head_size]
  """

  # (batch_size, num_keys, num_heads, head_dim)
  (batch_size, num_keys, num_heads, head_dim) = keys.shape  # (b, k, h, d)
  num_queries = queries.shape[1]
  assert keys.shape == values.shape
  assert queries.shape == (batch_size, num_queries, num_heads, head_dim)
  if importance is not None:
    assert importance.shape == (batch_size, num_keys)

  logging.info("attn: keys = %r", keys)
  logging.info("attn: queries = %r", queries)

  # Compute attention matrix.
  attn = jnp.einsum("...qhd,...khd->...hqk", queries, keys)  # (b, h, q, k)

  logging.info("attn: content attn = %r", attn)

  # Apply relative position bias.
  if relative_position_bias is not None:
    logging.info("attn: pbias = %r", relative_position_bias)
    relative_position_bias = jnp.asarray(relative_position_bias, dtype=dtype)
    pbias = position.broadcast_mask(relative_position_bias, attn)
    attn = attn + pbias

  # Apply learned attention scale.
  if scale_factor is not None:
    logging.info("attn: learned attention scale: %s", scale_factor)
    # Broadcast scale over batch/keys/queries.
    scale_factor = jnp.asarray(scale_factor, dtype=dtype)
    scale_factor = scale_factor.reshape((1, num_heads, 1, 1))
    attn = attn * scale_factor

  # Apply causal mask.
  if causal_mask is not None:
    causal_mask = position.broadcast_mask(causal_mask, attn)
    attn = jnp.where(causal_mask, attn, jnp.asarray(-1_000_000.0, dtype=dtype))

  logging.info("attn: pre-softmax attn = %r", attn)

  # Normalize attention matrix with softmax.
  # min_x should be much smaller than minimum expected values in attn, but
  # much larger than the masked_out values created by the causal mask. That
  # way, if all tokens are masked out, then softmax will attend to nothing,
  # rather than attend to everything equally.
  min_x = jnp.asarray(-1000.0, dtype=dtype)
  attn = nn_components.safe_softmax(attn, axis=-1, min_x=min_x)  # (b, h, q, k)

  # Apply dropout to attention matrix.
  if dropout_multiplier is not None:
    logging.debug("attn: drop = %r", dropout_multiplier)
    dropout_multiplier = jnp.asarray(dropout_multiplier, dtype=dtype)
    attn = attn * dropout_multiplier

  logging.info("attn: final attn = %r", attn)

  # Compute output -- values weighted by attention matrix.
  y = jnp.einsum("...hqk,...khd->...qhd", attn, values)  # (b, q, h, d)

  logging.info("attn: y = %r", y)
  return y


def external_attention(external_keys: Array,
                       external_values: Array,
                       queries: Array,
                       *,
                       scale_factor: Optional[Array] = None,
                       dtype: Any = jnp.float32) -> Array:
  """Attention over (keys, values) retrieved from external memory.

  Args:
    external_keys: per-query keys from external memory, of shape
        [batch_size, num_queries, num_heads, num_neighbors, head_size]
    external_values: per-query values from external memory, of shape
        [batch_size, num_queries, num_heads, num_neighbors, head_size]
    queries: current queries, of shape:
        [batch_size, num_queries, num_heads, head_size]

    *: ---- the following arguments are passed by keyword only. ---
    scale_factor:  Learned scale factor for use with normalized keys,queries
          of shape [num_heads]
    dtype: data type to perform attention at.

  Returns:
    Attention outputs of shape [batch_size, num_queries, num_heads, head_size]
  """

  (batch_size, num_queries, num_heads, _, head_dim) = external_keys.shape
  assert queries.shape == (batch_size, num_queries, num_heads, head_dim)
  assert external_values.shape == external_keys.shape

  # Build attention matrix.
  logging.info("ext_attn: external keys = %r", external_keys)
  ext_attn = jnp.einsum("...qhd,...qhid->...hqi", queries, external_keys)

  logging.info("ext_attn: external_mem_attn: %s", ext_attn)
  if scale_factor is not None:
    scale_factor = jnp.asarray(scale_factor, dtype=dtype)
    scale_factor = scale_factor.reshape((1, num_heads, 1, 1))
    logging.info("ext_attn: scaling external_mem_attn by %s", scale_factor)
    ext_attn = ext_attn * scale_factor

  ext_attn = nn.softmax(ext_attn, axis=-1)

  # Compute weighted sum of values.
  ext_y = jnp.einsum("...hqi,...qhid->...qhd", ext_attn, external_values)
  logging.info("ext_attn: ext_y = %r", ext_y)
  return ext_y


def sliding_attention_window_shape(kvi: KVITuple,
                                   prev_kvi: Optional[KVITuple],
                                   queries: Array,
                                   window_length: int) -> Tuple[int, int]:
  """Return (num_queries, num_keys) for the sliding attention window."""

  # Do error checking here.
  (keys, values, importance) = kvi
  assert keys.shape == queries.shape
  assert values.shape == queries.shape

  # Get sizes...
  (batch_size, sequence_length, _, _) = queries.shape

  if importance is not None:
    assert importance.ndim == 2
    assert importance.shape == (batch_size, sequence_length)

  assert window_length > 0
  if window_length >= sequence_length:
    # No sliding window.
    num_queries = sequence_length
    num_keys = sequence_length
    if prev_kvi is not None:
      num_keys += prev_kvi[0].shape[1]
  else:
    # Sliding window.
    if prev_kvi is not None:
      assert prev_kvi[0].shape[1] == window_length
    num_queries = window_length
    num_keys = window_length * 2

  return (num_queries, num_keys)


def split_tree(tree: ArrayTree, sections: int, axis: int = 0) -> (
    Sequence[ArrayTree]):
  """Recursively splits a possibly nested tuple of arrays along the given axis.

  Args:
    tree: A nested tree of tuples and arrays.
    sections: The number of sections to split the tree into.
    axis: The axis to do the split on arrays.

  Returns:
    A list of trees, of length sections, where each has the same shape as the
    original, but with arrays of size 1/sections.
  """

  if tree is None:
    return [None] * sections
  elif isinstance(tree, jnp.ndarray):
    return jnp.split(tree, sections, axis=axis)
  elif isinstance(tree, tuple):
    # Recursively split each element of the tuple into a list.
    branch_lists = [split_tree(tree_i, sections, axis=axis) for tree_i in tree]
    # Rearrange the tuple of lists into a list of tuples.
    return [tuple([brs[i] for brs in branch_lists]) for i in range(sections)]
  else:
    raise ValueError("Argument %r must be an ndarray or tuple." % tree)


def concat_trees(tree_list: Sequence[ArrayTree], axis: int = 0) -> ArrayTree:
  """Merges a list of trees into a single tree by concatenating their elements.

  Args:
    tree_list: A list of trees, all of the same shape.
    axis: The axis to concatenate arrays on.

  Returns:
    A single tree, with the same shape as the trees in tree_list.
  """

  # All trees in the list are required to have the same shape.
  # We return a tree with the same shape as each of the trees in the list,
  first_tree = tree_list[0]
  if first_tree is None:
    # Merge a list of None into a single None.
    for tree_i in tree_list:
      assert tree_i is None
    return None
  elif isinstance(first_tree, jnp.ndarray):
    # Concatenate a list of arrays.
    for tree_i in tree_list:
      assert isinstance(tree_i, jnp.ndarray)
    return jnp.concatenate(tree_list, axis=axis)
  elif isinstance(first_tree, tuple):
    # Reshape a list of tuples into a tuple of concatenated lists.
    for tree_i in tree_list:
      assert isinstance(tree_i, tuple) and len(tree_i) == len(first_tree)
    num_branches = len(first_tree)
    return tuple([concat_trees([tree[b] for tree in tree_list], axis=axis)
                  for b in range(num_branches)])
  else:
    raise ValueError("Argument %r must be an ndarray or tuple." % first_tree)


def reshape_transpose_tree(tree: ArrayTree, sections: int, axis: int = 0) -> (
    ArrayTree):
  """Reshape and transpose arrays so that the window is dimension 0."""

  # We could use jax tree utils for this, but we do it the hard way so the
  # implementaiton can be compared with split_tree.
  if tree is None:
    return None
  elif isinstance(tree, jnp.ndarray):
    tree = typing.cast(Array, tree)  # Tell type-checker about isinstance
    ndim = tree.ndim
    wlen = tree.shape[axis] // sections
    assert sections * wlen == tree.shape[axis]  # Must be evenly divisible.

    # Break the axis dimension into sections * window_size
    arr = tree
    sh = list(arr.shape)
    nshape = sh[0:axis] + [sections, wlen] + sh[axis + 1:]
    arr = jnp.reshape(arr, nshape)

    # Transpose sections to be dimension 0.
    tdims = [axis] + list(range(0, axis)) + list(range(axis + 1, ndim + 1))
    arr = jnp.transpose(arr, tdims)
    return arr
  elif isinstance(tree, tuple):
    return tuple([reshape_transpose_tree(b, sections, axis) for b in tree])
  else:
    raise ValueError("Argument %r must be an ndarray or tuple." % tree)


def transpose_reshape_tree(tree: ArrayTree, sections: int, axis: int = 0) -> (
    ArrayTree):
  """Reshape and transpose arrays so that the window is dimension 0."""

  # We could use jax tree utils for this, but we do it the hard way so the
  # implementaiton can be compared with split_tree.
  if tree is None:
    return None
  elif isinstance(tree, jnp.ndarray):
    tree = typing.cast(Array, tree)  # Tell type-checker about isinstance
    ndim = tree.ndim - 1   # Input tree has 1 extra dimension on front.
    assert axis < ndim
    wlen = tree.shape[axis + 1]  # Window length.

    # Transpose dimension 0 back to its proper place.
    arr = tree
    tdims = list(range(1, axis + 1)) + [0] + list(range(axis + 1, ndim + 1))
    arr = jnp.transpose(arr, tdims)

    # Combine the sections and window_size dimensions.
    sh = list(arr.shape)
    nshape = sh[0:axis] + [sections * wlen] + sh[axis + 2:]
    arr = jnp.reshape(arr, nshape)
    return arr
  elif isinstance(tree, tuple):
    return tuple([transpose_reshape_tree(b, sections, axis) for b in tree])
  else:
    raise ValueError("Argument %r must be an ndarray or tuple." % tree)


def split_and_scan(fn: Callable[[ArrayTree, ArrayTree],
                                Tuple[ArrayTree, ArrayTree]],
                   carry: ArrayTree, input_arrays: ArrayTree,
                   sections: int, axis: int = 0,
                   max_unrolled_windows: int = -1) -> (
                       Tuple[ArrayTree, ArrayTree]):
  """Scan over a set of input arrays in chunks.

  Splits each array in 'input_arrays' into the number of chunks given by
  'sections', and then loops over the chunks using a scan operation.
  Returns a concatenation of the results.

  Args:
    fn: A function from (carry, input_i) -> (carry, output_i).
    carry: The initial state for the scan, that will be passed from one
           iteration to the next.
    input_arrays: A nested tree of tuples of arrays.
    sections: The number of sections or chunks for the split.
    axis: The axis to split each array along.
    max_unrolled_windows: If 0 <= max_unrolled_windows < sections,
        use jax.lax.scan rather than unrolling the windows with a python loop.

  Returns:
    (carry, output)
  """

  if sections == 1:
    logging.info("Single window, no scan.")
    return fn(carry, input_arrays)

  if axis < 0:
    raise ValueError(f"Axis must be positive. Got {axis}")

  logging.info("Scanning over %d windows", sections)

  if 0 <= max_unrolled_windows and max_unrolled_windows < sections:
    logging.info("Using jax.lax.scan.")
    in_arrs = reshape_transpose_tree(input_arrays, sections, axis)
    (carry, out_arrs) = jax.lax.scan(fn, carry, in_arrs)
    output_arrays = transpose_reshape_tree(out_arrs, sections, axis)
    return (carry, output_arrays)

  logging.info("Using unrolled for-loop.")
  in_list = split_tree(input_arrays, sections, axis=axis)
  out_list = []

  for (k, in_chunk) in enumerate(in_list):
    logging.info("Processing window %d", k)
    (carry, out_chunk) = fn(carry, in_chunk)
    out_list.append(out_chunk)

  output_arrays = concat_trees(out_list, axis=axis)
  return (carry, output_arrays)