Spaces:
Sleeping
Sleeping
File size: 17,073 Bytes
15bcbe6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 |
# Copyright 2022 Google.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""FLAX layers for on-TPU memory."""
import abc
import functools
from typing import Callable, Sequence, Tuple, TypeVar, Union
from absl import logging
from flax import linen
import gin
import jax
from jax import lax
import jax.numpy as jnp
import numpy as np # use with care!
Shape = Sequence[int]
Dtype = jnp.dtype
Array = jnp.ndarray
Axes = Union[int, Tuple[int, ...]]
F = TypeVar('F', bound=Callable)
class MemoryLayer(linen.Module, metaclass=abc.ABCMeta):
"""Internal interface for memory layers without batch dim.
See BatchedMemory for a layer that can be used in Flax models.
"""
num_datasets: int
@abc.abstractmethod
def update(self, key: Array, value: Array) -> int:
"""Adds key/value pairs to memory.
Args:
key: of shape (num_kv, num_datasets, k_features)
value: of shape (num_kv, num_datasets, v_features)
Returns:
Dummy value so that TPU operations can wait for the update to finish if
desired.
"""
raise NotImplementedError()
@abc.abstractmethod
def topk_retrieval(self, query: Array,
num_neighbors: int) -> Tuple[Array, Array]:
"""Retrieves the nearest neighbors for each query.
Args:
query: of shape (num_queries, num_datasets, k_features)
num_neighbors: int indicating the number of neighbors to retrieve
Returns:
Tuple of selected keys and selected values of shapes
(num_queries, num_datasets, num_neighbors, k_features), and
(num_queries, num_datasets, num_neighbors, v_features)
"""
raise NotImplementedError()
@abc.abstractmethod
def reset(self, datasets: Array) -> int:
"""Reset some or all of the datasets in the memory.
Args:
datasets: A vector of shape (num_datasets) of type bool. Each position
indicates whether the dataset with the same index should be reset.
Returns:
Dummy value so that TPU operations can wait for the update to finish if
desired.
"""
raise NotImplementedError()
def __call__(self, query, num_neighbors):
self.topk_retrieval(query, num_neighbors)
def _target_dimensions(shape: Shape,
source_dimensions: Sequence[int]) -> Sequence[int]:
target_dimensions = range(-2, -2 - len(source_dimensions), -1)
assert len(source_dimensions) == len(target_dimensions)
return sorted(d % len(shape) for d in target_dimensions)
def _rearrange_dimensions_shapes(
shape: Shape, split_dimensions: Sequence[int]) -> Tuple[Shape, Shape]:
split_shape = tuple(shape[d] for d in split_dimensions)
remaining_shape = tuple(
shape[d] for d in range(len(shape)) if d not in split_dimensions)
batch_shape = remaining_shape[:-1]
return split_shape, batch_shape
def _rearrange_dimensions(x: Array, split_dimensions: Sequence[int]) -> Array:
"""Rearrange array so that we can split by a single dimension.
Turns an array of shape [d1, ..., dn, features] and a list of dimensions to
split by into [prod(remaining_dimensions), prod(split_dimensions),
features]
Args:
x: array of shape [d1, ..., dn, features]
split_dimensions: list of dimensions that should end up in dimension -2.
Returns:
Rearranged array as described above.
"""
split_dimensions = [d % len(x.shape) for d in split_dimensions]
split_dimensions = sorted(split_dimensions)
split_shape, batch_shape = _rearrange_dimensions_shapes(
x.shape, split_dimensions)
target_dimensions = _target_dimensions(x.shape, split_dimensions)
x = jnp.moveaxis(x, split_dimensions, target_dimensions)
assert len(x.shape) > len(split_dimensions)
assert all(isinstance(d, int) and d >= 0 for d in batch_shape)
assert all(isinstance(d, int) and d >= 0 for d in split_shape)
new_shape = [
# The use of numpy is okay here, since shapes are concrete at jit time.
np.prod(batch_shape),
np.prod(split_shape),
x.shape[-1] # features dimension
]
res = x.reshape(new_shape)
assert res.ndim == 3
return res
def _restore_dimensions(x: Array, original_shape: Shape,
split_dimensions: Sequence[int]) -> Array:
"""Restores arrays encoded with _rearrange_dimensions.
Args:
x: Array of shape [prod(batch_shape), prod(split_shape), feature...]
original_shape: Shape of the array to restore to.
split_dimensions: Dimensions that were multiplied into dimension 2.
Returns:
Array of the original shape and axis order for all dimensions in batch_shape
and split_shape. Feature dimensions may have changed (can include additional
dimensions for neighbors, for example).
"""
split_dimensions = [d % len(original_shape) for d in split_dimensions]
split_dimensions = sorted(split_dimensions)
split_shape, batch_shape = _rearrange_dimensions_shapes(
original_shape, split_dimensions)
features_shape = x.shape[2:]
x = x.reshape((*batch_shape, *split_shape, *features_shape))
# rearrange
target_dimensions = _target_dimensions(original_shape, split_dimensions)
x = jnp.moveaxis(x, target_dimensions, split_dimensions)
return x
@gin.configurable
class BatchedMemory(linen.Module):
"""Equips a memory module with a batch dimension."""
# We wrap this linen.Module:
wrapped: MemoryLayer
# `split_dimensions` indicates the dimensions of the query and update tensors
# that will go to separate databases. By default, we use a separate database
# for each head.
# Note that some implementations of the memory share memory across all hosts
# and devices (memory_on_borg, unless configured otherwise) or just across
# devices of each host (memory_on_host).
# Default is (-2,) to split by head only; use (0, -2) to also slit by batch
# dimensions.
split_dimensions: Tuple[int, ...] = (-2,)
query_stride: int = 1
update_stride: int = 1
def update(self, key: Array, value: Array):
"""Adds key/value pairs to memory.
Args:
key: typically of shape (batch, kv_len, num_heads, k_features). This
tensor is split up into datasets according to `split_dimensions`.
value: typically of shape (batch, kv_len, num_heads, v_features). This
tensor is split up into datasets according to `split_dimensions`.
Returns:
A dummy value 0, once the operation has completed.
"""
if key.ndim != 4 or value.ndim != 4:
raise ValueError('Expected batched inputs; got shapes: %s and %s.' %
(key.shape, value.shape))
key = _rearrange_dimensions(key, self.split_dimensions)
value = _rearrange_dimensions(value, self.split_dimensions)
update_stride = self.update_stride
if update_stride == 1:
return self.wrapped.update(key, value)
return self.wrapped.update(key[update_stride - 1::update_stride, ...],
value[update_stride - 1::update_stride, ...])
def topk_retrieval(self, query: Array, num_neighbors: int):
"""Retrieves the nearest neighbors for each query.
Args:
query: typically of shape (batch, q_len, num_heads, k_features). This
tensor is split up into datasets according to `split_dimensions`.
num_neighbors: number of neighbors to retrieve
Returns:
Tuple of tensors with the retrieved keys and value of the same shape as
query, but with an extra dimension of length num_neighbors - typically:
(batch, q_len, num_heads, num_neighbors, k_features)
"""
if query.ndim != 4:
raise ValueError('Expected batched inputs; got shape: %s.' % query.shape)
query_stride = self.query_stride
original_shape = query.shape
query = _rearrange_dimensions(query, self.split_dimensions)
if query_stride == 1:
key, value = self.wrapped.topk_retrieval(query, num_neighbors)
else:
num_queries, num_heads, k_features = query.shape
throttled_query = query[0::query_stride, ...]
key = jnp.zeros(
shape=(num_queries, num_heads, num_neighbors, k_features),
dtype=query.dtype)
throttled_key, throttled_value = (
self.wrapped.topk_retrieval(throttled_query, num_neighbors))
_, _, _, v_features = throttled_value.shape
value = jnp.zeros(
shape=(num_queries, num_heads, num_neighbors, v_features),
dtype=query.dtype)
key = key.at[0::query_stride, ...].set(throttled_key)
value = value.at[0::query_stride, ...].set(throttled_value)
key = _restore_dimensions(key, original_shape, self.split_dimensions)
# Note that `original_shape` here may have the wrong feature dimension (if
# k_features != v_features. But `_restore_dimensions` does not depend on
# that dimension and the tests cover this case.
value = _restore_dimensions(value, original_shape, self.split_dimensions)
assert key.ndim == len(original_shape) + 1
return key, value
def reset(self, datasets: Array) -> int:
"""Resets the memory.
Args:
datasets: of shape (num_datasets,), typically the same as (num_heads,).
Returns:
A dummy value 0, once the operation has completed.
"""
return self.wrapped.reset(datasets)
@functools.partial(jax.jit, static_argnames=('num_buckets', 'bucket_size'))
def _chunking_sparsify(query: Array, key: Array, num_buckets: int,
bucket_size: int) -> Tuple[Array, Array, Array]:
"""Approximate top k operation for a single head."""
# q = q_length, f = qk features, d = database_size
scores = jnp.einsum('qf,df->qd', query, key)
mask = (key.sum(-1) == 0).astype(jnp.bfloat16) * -1e6
scores += mask
num_queries, _ = scores.shape
reshaped_scores = jnp.reshape(scores, (num_queries, bucket_size, num_buckets))
sparse_scores = linen.softmax(reshaped_scores * 1e6, axis=1)
# topk_scores and topk_indices will only be computed if we depend on their
# results.
topk_scores = jnp.max(reshaped_scores, axis=1)
local_indices = jnp.argmax(reshaped_scores, axis=1)
topk_indices = (
local_indices * num_buckets + jnp.arange(num_buckets).reshape(
(1, num_buckets)))
return sparse_scores, topk_scores, topk_indices
def _retrieve_topk_gatherless(
query: Array, key: Array, value: Array,
num_neighbors: int) -> Tuple[Array, Array, Array, Array]:
"""Retrieves for a single head - used to simplify array accesses."""
num_kv, query_features = query.shape
database_size, key_features = key.shape
_, value_features = value.shape
assert query_features == key_features
num_buckets = num_neighbors
if num_buckets > database_size:
raise ValueError('More buckets than items in database. %s > %s' %
(num_buckets, database_size))
if database_size % num_buckets:
raise ValueError('Buckets must divide database: %s %% %s.' %
(database_size, num_buckets))
bucket_size = database_size // num_buckets
sparse_scores, topk_scores, topk_indices = _chunking_sparsify(
query, key, num_buckets, bucket_size)
key = key.reshape(bucket_size, num_buckets, key_features)
value = value.reshape(bucket_size, num_buckets, value_features)
selected_keys = jnp.einsum('qbn,bnd->qnd', sparse_scores, key)
selected_values = jnp.einsum('qbn,bnd->qnd', sparse_scores, value)
assert selected_keys.shape == (num_kv, num_neighbors, key_features)
assert selected_values.shape == (num_kv, num_neighbors, value_features)
return selected_keys, selected_values, topk_scores, topk_indices
class MemoryOnTpu(MemoryLayer):
"""Approximate top K search on TPU."""
# database_size must be integer multiple of prod(batch_dims) * num_neighbors.
database_size: int
dtype: Dtype = jnp.float32 # pylint: disable=g-bare-generic
key_features: int = 64
value_features: int = 64
report_scores_and_indices: bool = False
def setup(self):
self.db_index = self.variable('database', 'database_index',
functools.partial(jnp.zeros, dtype=jnp.int32),
(self.num_datasets,))
self.key_db = self.variable(
'database', 'key_db', functools.partial(jnp.zeros, dtype=self.dtype),
(self.num_datasets, self.database_size, self.key_features))
self.value_db = self.variable(
'database', 'value_db', functools.partial(jnp.zeros, dtype=self.dtype),
(self.num_datasets, self.database_size, self.value_features))
self.retrieved_indices = self.variable(
'database', 'retrieved_indices',
functools.partial(jnp.zeros, dtype=jnp.int32), (0, 0, 0))
self.retrieved_indices_scores = self.variable(
'database', 'retrieved_indices_scores',
functools.partial(jnp.zeros, dtype=jnp.float32), (0, 0, 0))
def _update_kv_database(self, database, new_values, start_index):
num_datasets, database_size, _ = database.shape
assert database_size == self.database_size, f'{database_size} vs {self.database_size}'
assert num_datasets == self.num_datasets
assert new_values.ndim == 3
assert start_index.shape == (self.num_datasets,)
def _update(database, new_values, start_index):
return lax.dynamic_update_slice(
database, new_values, start_indices=(start_index, 0))
return jax.vmap(
_update, in_axes=(0, 0, 0), out_axes=0)(database, new_values,
start_index)
def update(self, key: Array, value: Array) -> int:
"""Add keys and values to the memory; overwrite oldest if memory is full."""
key = lax.stop_gradient(key)
value = lax.stop_gradient(value)
assert len(key.shape) == len(value.shape)
assert key.shape[:-1] == value.shape[:-1]
num_kv, num_datasets, key_features = key.shape
assert num_datasets == self.num_datasets
assert key_features == self.key_features
assert value.shape[-1] == self.value_features
assert self.database_size % num_kv == 0, (
'Database size must be integer multiple of num_kv.')
key = jnp.moveaxis(key, source=1, destination=0) # split by dataset
value = jnp.moveaxis(value, source=1, destination=0) # split by dataset
# start_index can be larger than DB - we use that to detect which entries
# are not written to yet
start_index = self.db_index.value % self.database_size
self.key_db.value = self._update_kv_database(self.key_db.value, key,
start_index)
self.value_db.value = self._update_kv_database(self.value_db.value, value,
start_index)
self.db_index.value = self.db_index.value + num_kv
return 0
def topk_retrieval(self, query: Array,
num_neighbors: int) -> Tuple[Array, Array]:
"""Nearest neighbors by full multiplication and approximate top k on TPU."""
query = lax.stop_gradient(query)
unused_num_kv, num_datasets, query_features = query.shape
assert num_datasets == self.num_datasets
assert query_features == self.key_features
query = jnp.moveaxis(query, source=1, destination=0)
# Process different heads sequentially
selected_keys, selected_values, topk_scores, topk_indices = lax.map(
lambda x: _retrieve_topk_gatherless(*x, num_neighbors),
(query, self.key_db.value, self.value_db.value))
if self.report_scores_and_indices:
# TODO(mrabe): These variable updates may not work perfectly yet. Find out
# why Flax does not like them.
self.retrieved_indices.value = topk_indices
self.retrieved_indices_scores.value = topk_scores
assert selected_keys.ndim == selected_values.ndim == 4
selected_keys = jnp.moveaxis(selected_keys, source=0, destination=1)
selected_values = jnp.moveaxis(selected_values, source=0, destination=1)
return selected_keys, selected_values
def reset(self, datasets: Array) -> int:
"""Resets specified datasets."""
datasets = lax.stop_gradient(datasets)
assert datasets.shape == (self.num_datasets,)
assert datasets.dtype == jnp.bool_
def _reset_single_dataset(input_tuple):
"""Resets a single head; reset is a single bool."""
database, reset = input_tuple
assert reset.shape == tuple(), reset.shape
assert reset.dtype == jnp.bool_
return database * (1 - reset)
self.db_index.value = self.db_index.value * (1 - datasets)
self.key_db.value = lax.map(
_reset_single_dataset, xs=(self.key_db.value, datasets))
self.value_db.value = lax.map(
_reset_single_dataset, xs=(self.value_db.value, datasets))
return 0
|