File size: 5,961 Bytes
15bcbe6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# Copyright 2022 Google.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Class for T5 relative position biases.

Adapted from flaxformer.components.relative_position_biases.py
"""

from typing import Any, Callable, Optional

from flax import linen as nn
import gin
from jax import lax
import jax.numpy as jnp
from transformer import position
import numpy as np


Array = Any


@gin.configurable
class T5RelativePositionBiases(nn.Module):
  """Adds T5-style relative positional embeddings to the attention logits.

  Attributes:
    num_buckets: Number of buckets to bucket distances between key and query
      positions into.
    max_distance: Maximum distance before everything is lumped into the last
      distance bucket.
    num_heads: Number of heads in the attention layer. Each head will get a
      different relative position weighting.
    dtype: Type of arrays through this module.
    embedding_init: initializer for relative embedding table.
  """
  num_buckets: int
  max_distance: int
  num_heads: int
  dtype: Any
  embedding_init: Callable[..., Array] = nn.linear.default_embed_init

  @staticmethod
  def _relative_position_bucket(relative_position,
                                bidirectional=True,
                                num_buckets=32,
                                max_distance=128):
    """Translate relative position to a bucket number for relative attention.

    The relative position is defined as memory_position - query_position, i.e.
    the distance in tokens from the attending position to the attended-to
    position.  If bidirectional=False, then positive relative positions are
    invalid.
    We use smaller buckets for small absolute relative_position and larger
    buckets for larger absolute relative_positions.  All relative
    positions >=max_distance  map to the same bucket.  All relative
    positions <=-max_distance map to the same bucket.  This should allow for
    more graceful generalization to longer sequences than the model has been
    trained on.

    Args:
      relative_position: an int32 array
      bidirectional: a boolean - whether the attention is bidirectional
      num_buckets: an integer
      max_distance: an integer

    Returns:
      a Tensor with the same shape as relative_position, containing int32
        values in the range [0, num_buckets)
    """
    ret = 0
    n = -relative_position
    if bidirectional:
      num_buckets //= 2
      ret += (n < 0).astype(np.int32) * num_buckets
      n = np.abs(n)
    else:
      n = np.maximum(n, 0)
    # now n is in the range [0, inf)
    max_exact = num_buckets // 2
    is_small = (n < max_exact)
    val_if_large = max_exact + (
        np.log(n.astype(np.float32) / max_exact + np.finfo(np.float32).eps) /
        np.log(max_distance / max_exact) *
        (num_buckets - max_exact)).astype(np.int32)
    val_if_large = np.minimum(val_if_large, num_buckets - 1)
    ret += np.where(is_small, n, val_if_large)
    return ret

  @nn.compact
  def __call__(self, num_queries, num_keys, offset: Optional[int]=None,
               bidirectional=True):
    """Produce relative position embedding attention biases.

    Args:
      num_queries: Number of queries.
      num_keys: Number of keys.
      offset: Offset of the first query with respect to the first key.
              (See position.relative_positions() for more info.)
      bidirectional: whether to allow positive memory-query relative position
        embeddings.

    Returns:
      output: `(1, num_heads, num_queries, num_keys)` attention bias
    """

    # Find the distance between each query and each key.
    # This is where this implementation differs from the T5 implementation;
    # this version lines the /last/ N queries up with the /last/ N keys,
    # (which is appropriate for XL/sliding window) while the T5 version lines
    # up the /first/ N queries with the first N keys, in cases where the
    # number of keys and queries differ.
    relative_position = position.relative_positions_np(
        num_queries=num_queries, num_keys=num_keys, offset=offset)

    rp_bucket = self._relative_position_bucket(
        relative_position,
        bidirectional=bidirectional,
        num_buckets=self.num_buckets,
        max_distance=self.max_distance)
    relative_attention_bias = self.param('rel_embedding', self.embedding_init,
                                         (self.num_heads, self.num_buckets),
                                         jnp.float32)

    relative_attention_bias = jnp.asarray(relative_attention_bias, self.dtype)
    # Instead of using a slow gather, we create a leading-dimension one-hot
    # array from rp_bucket and use it to perform the gather-equivalent via a
    # contraction, i.e.:
    # (num_head, num_buckets) x (num_buckets one-hot, num_queries, num_keys).
    # This is equivalent to relative_attention_bias[:, rp_bucket]
    bcast_iota = lax.broadcasted_iota(jnp.int32, (self.num_buckets, 1, 1), 0)
    rp_bucket_one_hot = jnp.array(
        rp_bucket[jnp.newaxis, ...] == bcast_iota, dtype=self.dtype)
    # --> shape (num_queries, num_keys, num_heads)
    values = lax.dot_general(
        relative_attention_bias,
        rp_bucket_one_hot,
        (
            ((1,), (0,)),  # rhs, lhs contracting dims
            ((), ())))  # no batched dims
    # Add a singleton batch dimension.
    # --> shape (1, num_heads, num_queries, num_keys)
    out = values[jnp.newaxis, ...]

    return out