Spaces:
Sleeping
Sleeping
Update ag4masses/alphageometry/decoder_stack.py
Browse files
ag4masses/alphageometry/decoder_stack.py
CHANGED
@@ -1,55 +1,55 @@
|
|
1 |
-
# Copyright 2023 DeepMind Technologies Limited
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
# ==============================================================================
|
15 |
-
|
16 |
-
"""The decoder stack in inference mode."""
|
17 |
-
|
18 |
-
from typing import Any, Tuple
|
19 |
-
|
20 |
-
import gin
|
21 |
-
from
|
22 |
-
import transformer_layer as tl
|
23 |
-
|
24 |
-
|
25 |
-
struct = decoder_stack.struct
|
26 |
-
nn_components = decoder_stack.nn_components
|
27 |
-
position = decoder_stack.position
|
28 |
-
jnp = decoder_stack.jnp
|
29 |
-
attention = decoder_stack.attention
|
30 |
-
|
31 |
-
DStackWindowState = decoder_stack.DStackWindowState
|
32 |
-
|
33 |
-
Array = Any
|
34 |
-
|
35 |
-
TransformerTaskConfig = decoder_stack.TransformerTaskConfig
|
36 |
-
|
37 |
-
DStackDecoderState = Tuple[tl.DecoderState, ...]
|
38 |
-
|
39 |
-
|
40 |
-
@gin.configurable
|
41 |
-
class DecoderStackGenerate(decoder_stack.DecoderStack):
|
42 |
-
"""Stack of transformer decoder layers."""
|
43 |
-
|
44 |
-
layer_factory = tl.TransformerLayerGenerate
|
45 |
-
|
46 |
-
def init_decoder_state_vanilla(
|
47 |
-
self, sequence_length: int, start_of_sequence: Array
|
48 |
-
) -> DStackDecoderState:
|
49 |
-
"""Return initial state for autoregressive generation."""
|
50 |
-
return tuple(
|
51 |
-
[
|
52 |
-
layer.init_decoder_state_vanilla(sequence_length, start_of_sequence)
|
53 |
-
for layer in self.transformer_layers
|
54 |
-
]
|
55 |
-
)
|
|
|
1 |
+
# Copyright 2023 DeepMind Technologies Limited
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# ==============================================================================
|
15 |
+
|
16 |
+
"""The decoder stack in inference mode."""
|
17 |
+
|
18 |
+
from typing import Any, Tuple
|
19 |
+
|
20 |
+
import gin
|
21 |
+
from aglib.meliad.transformer import decoder_stack
|
22 |
+
import transformer_layer as tl
|
23 |
+
|
24 |
+
|
25 |
+
struct = decoder_stack.struct
|
26 |
+
nn_components = decoder_stack.nn_components
|
27 |
+
position = decoder_stack.position
|
28 |
+
jnp = decoder_stack.jnp
|
29 |
+
attention = decoder_stack.attention
|
30 |
+
|
31 |
+
DStackWindowState = decoder_stack.DStackWindowState
|
32 |
+
|
33 |
+
Array = Any
|
34 |
+
|
35 |
+
TransformerTaskConfig = decoder_stack.TransformerTaskConfig
|
36 |
+
|
37 |
+
DStackDecoderState = Tuple[tl.DecoderState, ...]
|
38 |
+
|
39 |
+
|
40 |
+
@gin.configurable
|
41 |
+
class DecoderStackGenerate(decoder_stack.DecoderStack):
|
42 |
+
"""Stack of transformer decoder layers."""
|
43 |
+
|
44 |
+
layer_factory = tl.TransformerLayerGenerate
|
45 |
+
|
46 |
+
def init_decoder_state_vanilla(
|
47 |
+
self, sequence_length: int, start_of_sequence: Array
|
48 |
+
) -> DStackDecoderState:
|
49 |
+
"""Return initial state for autoregressive generation."""
|
50 |
+
return tuple(
|
51 |
+
[
|
52 |
+
layer.init_decoder_state_vanilla(sequence_length, start_of_sequence)
|
53 |
+
for layer in self.transformer_layers
|
54 |
+
]
|
55 |
+
)
|