Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import AutoModelForImageClassification, AutoFeatureExtractor | |
import torch | |
from PIL import Image | |
import requests | |
# Cargar el modelo y el extractor de características | |
model_name = "microsoft/swin-small-patch4-window7-224" | |
model = AutoModelForImageClassification.from_pretrained(model_name) | |
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name) | |
def predict(image): | |
# Preprocesar la imagen | |
inputs = feature_extractor(images=image, return_tensors="pt") | |
outputs = model(**inputs) | |
logits = outputs.logits | |
# Obtener las predicciones | |
probs = torch.nn.functional.softmax(logits, dim=-1) | |
top_probs, top_labels = torch.topk(probs, 3) | |
top_probs = top_probs.detach().numpy().flatten() | |
top_labels = top_labels.detach().numpy().flatten() | |
# Convertir las etiquetas a nombres | |
id2label = model.config.id2label | |
labels = [id2label[label] for label in top_labels] | |
return {labels[i]: float(top_probs[i]) for i in range(len(labels))} | |
titulo = "Mi primer demo con Hugging Face" | |
descripcion = "Este es un demo ejecutado durante la clase de Hugo Martinez." | |
demo = gr.Interface( | |
fn=predict, | |
inputs=gr.Image(label="Carga una imagen aquí"), | |
outputs=gr.Label(num_top_classes=3), | |
title=titulo, | |
description=descripcion | |
) | |
demo.launch() |