Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,654 Bytes
be186ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
from typing import Any, Dict, List, Optional, Tuple
import torch
import torch.nn.functional as F
from torch import nn
from diffusers.utils import deprecate, logging
from diffusers.utils.torch_utils import maybe_allow_in_graph
from diffusers.models.activations import GEGLU, GELU, ApproximateGELU, FP32SiLU, SwiGLU
from diffusers.models.attention_processor import Attention, JointAttnProcessor2_0
from diffusers.models.normalization import AdaLayerNorm, AdaLayerNormContinuous, AdaLayerNormZero, RMSNorm
logger = logging.get_logger(__name__)
def zero_module(module):
"""
Zero out the parameters of a module and return it.
"""
for p in module.parameters():
p.detach().zero_()
return module
def _chunked_feed_forward(ff: nn.Module, hidden_states: torch.Tensor, chunk_dim: int, chunk_size: int):
# "feed_forward_chunk_size" can be used to save memory
if hidden_states.shape[chunk_dim] % chunk_size != 0:
raise ValueError(
f"`hidden_states` dimension to be chunked: {hidden_states.shape[chunk_dim]} has to be divisible by chunk size: {chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
)
num_chunks = hidden_states.shape[chunk_dim] // chunk_size
ff_output = torch.cat(
[ff(hid_slice) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)],
dim=chunk_dim,
)
return ff_output
@maybe_allow_in_graph
class SiamLayoutJointTransformerBlock(nn.Module):
def __init__(self, dim, num_attention_heads, attention_head_dim, context_pre_only=False,attention_type="default",bbox_pre_only=True,bbox_with_temb = False):
super().__init__()
# text
self.context_pre_only = context_pre_only
context_norm_type = "ada_norm_continous" if context_pre_only else "ada_norm_zero"
# bbox
self.bbox_pre_only = bbox_pre_only
if bbox_pre_only:
if bbox_with_temb:
bbox_norm_type = "ada_norm_continous"
else:
bbox_norm_type = "LayerNorm"
else:
bbox_norm_type = "ada_norm_zero"
self.bbox_norm_type = bbox_norm_type
# img
self.norm1 = AdaLayerNormZero(dim)
# text
if context_norm_type == "ada_norm_continous":
self.norm1_context = AdaLayerNormContinuous(
dim, dim, elementwise_affine=False, eps=1e-6, bias=True, norm_type="layer_norm"
)
elif context_norm_type == "ada_norm_zero":
self.norm1_context = AdaLayerNormZero(dim)
else:
raise ValueError(
f"Unknown context_norm_type: {context_norm_type}, currently only support `ada_norm_continous`, `ada_norm_zero`"
)
if hasattr(F, "scaled_dot_product_attention"):
processor = JointAttnProcessor2_0()
else:
raise ValueError(
"The current PyTorch version does not support the `scaled_dot_product_attention` function."
)
self.attn = Attention(
query_dim=dim,
cross_attention_dim=None,
added_kv_proj_dim=dim,
dim_head=attention_head_dim,
heads=num_attention_heads,
out_dim=dim,
context_pre_only=context_pre_only,
bias=True,
processor=processor,
)
self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
if not context_pre_only:
self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
self.ff_context = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
else:
self.norm2_context = None
self.ff_context = None
# let chunk size default to None
self._chunk_size = None
self._chunk_dim = 0
self.attention_type = attention_type
if self.attention_type == "layout":
self.bbox_fuser_block = Attention(
query_dim=dim,
cross_attention_dim=None,
added_kv_proj_dim=dim,
dim_head=attention_head_dim,
heads=num_attention_heads,
out_dim=dim,
context_pre_only=bbox_pre_only,
bias=True,
processor=processor,
)
self.bbox_forward = zero_module(nn.Linear(dim, dim))
self.bbox_pre_only = bbox_pre_only
if self.bbox_norm_type == "ada_norm_continous":
self.norm1_bbox = AdaLayerNormContinuous(
dim, dim, elementwise_affine=False, eps=1e-6, bias=True, norm_type="layer_norm"
)
elif self.bbox_norm_type == "LayerNorm":
self.norm1_bbox = nn.LayerNorm(dim)
elif self.bbox_norm_type == "ada_norm_zero":
self.norm1_bbox = AdaLayerNormZero(dim)
if not self.bbox_pre_only:
self.norm2_bbox = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
self.ff_bbox = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
else:
self.norm2_bbox = None
self.ff_bbox = None
# Copied from diffusers.models.attention.BasicTransformerBlock.set_chunk_feed_forward
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0):
# Sets chunk feed-forward
self._chunk_size = chunk_size
self._chunk_dim = dim
def forward(
self, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor, temb: torch.FloatTensor,bbox_hidden_states=None,bbox_scale=1.0
):
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb)
if self.context_pre_only:
norm_encoder_hidden_states = self.norm1_context(encoder_hidden_states, temb)
else:
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context(
encoder_hidden_states, emb=temb
)
# img-txt MM-Attention.
attn_output, context_attn_output = self.attn(
hidden_states=norm_hidden_states, encoder_hidden_states=norm_encoder_hidden_states
)
attn_output = gate_msa.unsqueeze(1) * attn_output #gate_msa
# Layout
if self.attention_type == "layout" and bbox_scale!=0.0:
if self.bbox_pre_only:
norm_bbox_hidden_states = self.norm1_bbox(bbox_hidden_states, temb)
else:
norm_bbox_hidden_states, bbox_gate_msa, bbox_shift_mlp, bbox_scale_mlp, bbox_gate_mlp = self.norm1_bbox(
bbox_hidden_states, emb=temb
)
# img-bbox MM-Attention.
img_attn_output, bbox_attn_output = self.bbox_fuser_block(
hidden_states=norm_hidden_states, encoder_hidden_states=norm_bbox_hidden_states
)
attn_output = attn_output + bbox_scale*self.bbox_forward(img_attn_output)
if self.bbox_pre_only:
bbox_hidden_states = None
else:
bbox_attn_output = bbox_gate_msa.unsqueeze(1) * bbox_attn_output
bbox_hidden_states = bbox_hidden_states + bbox_attn_output
norm_bbox_hidden_states = self.norm2_bbox(bbox_hidden_states)
norm_bbox_hidden_states = norm_bbox_hidden_states * (1 + bbox_scale_mlp[:, None]) + bbox_shift_mlp[:, None]
if self._chunk_size is not None:
# "feed_forward_chunk_size" can be used to save memory
bbox_ff_output = _chunked_feed_forward(
self.ff_bbox, norm_bbox_hidden_states, self._chunk_dim, self._chunk_size
)
else:
bbox_ff_output = self.ff_bbox(norm_bbox_hidden_states)
bbox_hidden_states = bbox_hidden_states + bbox_gate_mlp.unsqueeze(1) * bbox_ff_output
# Process attention outputs for the `hidden_states`.
hidden_states = hidden_states + attn_output
norm_hidden_states = self.norm2(hidden_states)
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
if self._chunk_size is not None:
# "feed_forward_chunk_size" can be used to save memory
ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
else:
ff_output = self.ff(norm_hidden_states)
ff_output = gate_mlp.unsqueeze(1) * ff_output
hidden_states = hidden_states + ff_output
# Process attention outputs for the `encoder_hidden_states`.
if self.context_pre_only:
encoder_hidden_states = None
else:
context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output
encoder_hidden_states = encoder_hidden_states + context_attn_output
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
if self._chunk_size is not None:
# "feed_forward_chunk_size" can be used to save memory
context_ff_output = _chunked_feed_forward(
self.ff_context, norm_encoder_hidden_states, self._chunk_dim, self._chunk_size
)
else:
context_ff_output = self.ff_context(norm_encoder_hidden_states)
encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output
return encoder_hidden_states, hidden_states,bbox_hidden_states
class FeedForward(nn.Module):
r"""
A feed-forward layer.
Parameters:
dim (`int`): The number of channels in the input.
dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
final_dropout (`bool` *optional*, defaults to False): Apply a final dropout.
bias (`bool`, defaults to True): Whether to use a bias in the linear layer.
"""
def __init__(
self,
dim: int,
dim_out: Optional[int] = None,
mult: int = 4,
dropout: float = 0.0,
activation_fn: str = "geglu",
final_dropout: bool = False,
inner_dim=None,
bias: bool = True,
):
super().__init__()
if inner_dim is None:
inner_dim = int(dim * mult)
dim_out = dim_out if dim_out is not None else dim
if activation_fn == "gelu":
act_fn = GELU(dim, inner_dim, bias=bias)
if activation_fn == "gelu-approximate":
act_fn = GELU(dim, inner_dim, approximate="tanh", bias=bias)
elif activation_fn == "geglu":
act_fn = GEGLU(dim, inner_dim, bias=bias)
elif activation_fn == "geglu-approximate":
act_fn = ApproximateGELU(dim, inner_dim, bias=bias)
elif activation_fn == "swiglu":
act_fn = SwiGLU(dim, inner_dim, bias=bias)
self.net = nn.ModuleList([])
# project in
self.net.append(act_fn)
# project dropout
self.net.append(nn.Dropout(dropout))
# project out
self.net.append(nn.Linear(inner_dim, dim_out, bias=bias))
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
if final_dropout:
self.net.append(nn.Dropout(dropout))
def forward(self, hidden_states: torch.Tensor, *args, **kwargs) -> torch.Tensor:
if len(args) > 0 or kwargs.get("scale", None) is not None:
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
deprecate("scale", "1.0.0", deprecation_message)
for module in self.net:
hidden_states = module(hidden_states)
return hidden_states
|