from typing import Any, Dict, List, Optional, Tuple import torch import torch.nn.functional as F from torch import nn from diffusers.utils import deprecate, logging from diffusers.utils.torch_utils import maybe_allow_in_graph from diffusers.models.activations import GEGLU, GELU, ApproximateGELU, FP32SiLU, SwiGLU from diffusers.models.attention_processor import Attention, JointAttnProcessor2_0 from diffusers.models.normalization import AdaLayerNorm, AdaLayerNormContinuous, AdaLayerNormZero, RMSNorm logger = logging.get_logger(__name__) def zero_module(module): """ Zero out the parameters of a module and return it. """ for p in module.parameters(): p.detach().zero_() return module def _chunked_feed_forward(ff: nn.Module, hidden_states: torch.Tensor, chunk_dim: int, chunk_size: int): # "feed_forward_chunk_size" can be used to save memory if hidden_states.shape[chunk_dim] % chunk_size != 0: raise ValueError( f"`hidden_states` dimension to be chunked: {hidden_states.shape[chunk_dim]} has to be divisible by chunk size: {chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`." ) num_chunks = hidden_states.shape[chunk_dim] // chunk_size ff_output = torch.cat( [ff(hid_slice) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)], dim=chunk_dim, ) return ff_output @maybe_allow_in_graph class SiamLayoutJointTransformerBlock(nn.Module): def __init__(self, dim, num_attention_heads, attention_head_dim, context_pre_only=False,attention_type="default",bbox_pre_only=True,bbox_with_temb = False): super().__init__() # text self.context_pre_only = context_pre_only context_norm_type = "ada_norm_continous" if context_pre_only else "ada_norm_zero" # bbox self.bbox_pre_only = bbox_pre_only if bbox_pre_only: if bbox_with_temb: bbox_norm_type = "ada_norm_continous" else: bbox_norm_type = "LayerNorm" else: bbox_norm_type = "ada_norm_zero" self.bbox_norm_type = bbox_norm_type # img self.norm1 = AdaLayerNormZero(dim) # text if context_norm_type == "ada_norm_continous": self.norm1_context = AdaLayerNormContinuous( dim, dim, elementwise_affine=False, eps=1e-6, bias=True, norm_type="layer_norm" ) elif context_norm_type == "ada_norm_zero": self.norm1_context = AdaLayerNormZero(dim) else: raise ValueError( f"Unknown context_norm_type: {context_norm_type}, currently only support `ada_norm_continous`, `ada_norm_zero`" ) if hasattr(F, "scaled_dot_product_attention"): processor = JointAttnProcessor2_0() else: raise ValueError( "The current PyTorch version does not support the `scaled_dot_product_attention` function." ) self.attn = Attention( query_dim=dim, cross_attention_dim=None, added_kv_proj_dim=dim, dim_head=attention_head_dim, heads=num_attention_heads, out_dim=dim, context_pre_only=context_pre_only, bias=True, processor=processor, ) self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate") if not context_pre_only: self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) self.ff_context = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate") else: self.norm2_context = None self.ff_context = None # let chunk size default to None self._chunk_size = None self._chunk_dim = 0 self.attention_type = attention_type if self.attention_type == "layout": self.bbox_fuser_block = Attention( query_dim=dim, cross_attention_dim=None, added_kv_proj_dim=dim, dim_head=attention_head_dim, heads=num_attention_heads, out_dim=dim, context_pre_only=bbox_pre_only, bias=True, processor=processor, ) self.bbox_forward = zero_module(nn.Linear(dim, dim)) self.bbox_pre_only = bbox_pre_only if self.bbox_norm_type == "ada_norm_continous": self.norm1_bbox = AdaLayerNormContinuous( dim, dim, elementwise_affine=False, eps=1e-6, bias=True, norm_type="layer_norm" ) elif self.bbox_norm_type == "LayerNorm": self.norm1_bbox = nn.LayerNorm(dim) elif self.bbox_norm_type == "ada_norm_zero": self.norm1_bbox = AdaLayerNormZero(dim) if not self.bbox_pre_only: self.norm2_bbox = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) self.ff_bbox = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate") else: self.norm2_bbox = None self.ff_bbox = None # Copied from diffusers.models.attention.BasicTransformerBlock.set_chunk_feed_forward def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0): # Sets chunk feed-forward self._chunk_size = chunk_size self._chunk_dim = dim def forward( self, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor, temb: torch.FloatTensor,bbox_hidden_states=None,bbox_scale=1.0 ): norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb) if self.context_pre_only: norm_encoder_hidden_states = self.norm1_context(encoder_hidden_states, temb) else: norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context( encoder_hidden_states, emb=temb ) # img-txt MM-Attention. attn_output, context_attn_output = self.attn( hidden_states=norm_hidden_states, encoder_hidden_states=norm_encoder_hidden_states ) attn_output = gate_msa.unsqueeze(1) * attn_output #gate_msa # Layout if self.attention_type == "layout" and bbox_scale!=0.0: if self.bbox_pre_only: norm_bbox_hidden_states = self.norm1_bbox(bbox_hidden_states, temb) else: norm_bbox_hidden_states, bbox_gate_msa, bbox_shift_mlp, bbox_scale_mlp, bbox_gate_mlp = self.norm1_bbox( bbox_hidden_states, emb=temb ) # img-bbox MM-Attention. img_attn_output, bbox_attn_output = self.bbox_fuser_block( hidden_states=norm_hidden_states, encoder_hidden_states=norm_bbox_hidden_states ) attn_output = attn_output + bbox_scale*self.bbox_forward(img_attn_output) if self.bbox_pre_only: bbox_hidden_states = None else: bbox_attn_output = bbox_gate_msa.unsqueeze(1) * bbox_attn_output bbox_hidden_states = bbox_hidden_states + bbox_attn_output norm_bbox_hidden_states = self.norm2_bbox(bbox_hidden_states) norm_bbox_hidden_states = norm_bbox_hidden_states * (1 + bbox_scale_mlp[:, None]) + bbox_shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory bbox_ff_output = _chunked_feed_forward( self.ff_bbox, norm_bbox_hidden_states, self._chunk_dim, self._chunk_size ) else: bbox_ff_output = self.ff_bbox(norm_bbox_hidden_states) bbox_hidden_states = bbox_hidden_states + bbox_gate_mlp.unsqueeze(1) * bbox_ff_output # Process attention outputs for the `hidden_states`. hidden_states = hidden_states + attn_output norm_hidden_states = self.norm2(hidden_states) norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size) else: ff_output = self.ff(norm_hidden_states) ff_output = gate_mlp.unsqueeze(1) * ff_output hidden_states = hidden_states + ff_output # Process attention outputs for the `encoder_hidden_states`. if self.context_pre_only: encoder_hidden_states = None else: context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output encoder_hidden_states = encoder_hidden_states + context_attn_output norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states) norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory context_ff_output = _chunked_feed_forward( self.ff_context, norm_encoder_hidden_states, self._chunk_dim, self._chunk_size ) else: context_ff_output = self.ff_context(norm_encoder_hidden_states) encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output return encoder_hidden_states, hidden_states,bbox_hidden_states class FeedForward(nn.Module): r""" A feed-forward layer. Parameters: dim (`int`): The number of channels in the input. dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`. mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension. dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. final_dropout (`bool` *optional*, defaults to False): Apply a final dropout. bias (`bool`, defaults to True): Whether to use a bias in the linear layer. """ def __init__( self, dim: int, dim_out: Optional[int] = None, mult: int = 4, dropout: float = 0.0, activation_fn: str = "geglu", final_dropout: bool = False, inner_dim=None, bias: bool = True, ): super().__init__() if inner_dim is None: inner_dim = int(dim * mult) dim_out = dim_out if dim_out is not None else dim if activation_fn == "gelu": act_fn = GELU(dim, inner_dim, bias=bias) if activation_fn == "gelu-approximate": act_fn = GELU(dim, inner_dim, approximate="tanh", bias=bias) elif activation_fn == "geglu": act_fn = GEGLU(dim, inner_dim, bias=bias) elif activation_fn == "geglu-approximate": act_fn = ApproximateGELU(dim, inner_dim, bias=bias) elif activation_fn == "swiglu": act_fn = SwiGLU(dim, inner_dim, bias=bias) self.net = nn.ModuleList([]) # project in self.net.append(act_fn) # project dropout self.net.append(nn.Dropout(dropout)) # project out self.net.append(nn.Linear(inner_dim, dim_out, bias=bias)) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(dropout)) def forward(self, hidden_states: torch.Tensor, *args, **kwargs) -> torch.Tensor: if len(args) > 0 or kwargs.get("scale", None) is not None: deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." deprecate("scale", "1.0.0", deprecation_message) for module in self.net: hidden_states = module(hidden_states) return hidden_states