Spaces:
Sleeping
Sleeping
File size: 24,484 Bytes
e9e75df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 |
{
"cells": [
{
"cell_type": "markdown",
"id": "6db2e2b4",
"metadata": {
"id": "6db2e2b4"
},
"source": [
"## Build and Compose Conditioners\n",
"\n",
"### Overview\n",
"Protein design via Chroma is highly customizable and programmable. Our robust Conditioner framework enables automatic conditional sampling tailored to a diverse array of protein specifications. This can involve either restraints (which bias the distribution of states using classifier guidance) or constraints (that directly limit the scope of the underlying sampling process). For a detailed explanation, refer to Supplementary Appendix M in our paper. We offer a variety of pre-defined conditioners, including those for managing substructure, symmetry, shape, semantics, and even natural-language prompts (see `chroma.layers.structure.conditioners`). These conditioners can be utilized in any combination to suit your specific needs."
]
},
{
"cell_type": "markdown",
"id": "3b4c35a7",
"metadata": {
"id": "3b4c35a7"
},
"source": [
"### Composing Conditioners\n",
"\n",
"Conditioners in Chroma can be combined seamlessly using `conditioners.ComposedConditioner`, akin to how layers are sequenced in `torch.nn.Sequential`. You can define individual conditioners and then aggregate them into a single collective list which will sequentially apply constrained transformations.\n",
"\n",
"```python\n",
"composed_conditioner = conditioners.ComposedConditioner([conditioner1, conditioner2, conditioner3])\n",
"```"
]
},
{
"cell_type": "markdown",
"id": "b2lOsBQFhypc",
"metadata": {
"id": "b2lOsBQFhypc"
},
"source": [
"#### Setup"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "4db56efd",
"metadata": {
"id": "4db56efd"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Note: you may need to restart the kernel to use updated packages.\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0854e7da4ca04f71a86260c2e66bbfcc",
"version_major": 2,
"version_minor": 0
},
"text/plain": []
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import locale\n",
"locale.getpreferredencoding = lambda: \"UTF-8\"\n",
"%pip install generate-chroma > /dev/null 2>&1\n",
"from chroma import api\n",
"api.register_key(input(\"Enter API key: \"))"
]
},
{
"cell_type": "markdown",
"id": "f3ee7c51",
"metadata": {
"id": "f3ee7c51"
},
"source": [
"#### Example 1: Combining Symmetry and Secondary Structure\n",
"In this scenario, we initially apply guidance for secondary structure to condition the content accordingly. This is followed by incorporating Cyclic symmetry. This approach involves adding a secondary structure classifier to conditionally sample an Asymmetric unit (AU) that is beta-rich, followed by symmetrization."
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "37b9c48f",
"metadata": {
"id": "37b9c48f"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Using cached data from /tmp/chroma_weights/90e339502ae6b372797414167ce5a632/weights.pt\n",
"Loaded from cache\n",
"Using cached data from /tmp/chroma_weights/03a3a9af343ae74998768a2711c8b7ce/weights.pt\n",
"Loaded from cache\n",
"Data saved to /tmp/chroma_weights/3262b44702040b1dcfccd71ebbcf451d/weights.pt\n",
"Computing reference stats for 2g3n\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c67d34c17a45442cb2804cc3c8060222",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Integrating SDE: 0%| | 0/500 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "760cbac8cf3746919bff0644fd797491",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Potts Sampling: 0%| | 0/500 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a65f9ce5a38f4c21a66a0aacfe76b99d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Sequential decoding: 0%| | 0/300 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "dbbe249b2a304c30b440602527330c95",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"NGLWidget()"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from chroma.models import Chroma\n",
"from chroma.layers.structure import conditioners\n",
"\n",
"chroma = Chroma()\n",
"# Conditional on C=2 (mostly beta)\n",
"beta = conditioners.ProClassConditioner('cath', \"2\", weight=5, max_norm=20)\n",
"c_symmetry = conditioners.SymmetryConditioner(G=\"C_3\", num_chain_neighbors=2)\n",
"composed_cond = conditioners.ComposedConditioner([beta, c_symmetry])\n",
"\n",
"symm_beta = chroma.sample(chain_lengths=[100],\n",
" conditioner=composed_cond,\n",
" langevin_factor=8,\n",
" inverse_temperature=8,\n",
" sde_func=\"langevin\",\n",
" steps=500)\n",
"\n",
"symm_beta"
]
},
{
"cell_type": "markdown",
"id": "8b97d729",
"metadata": {
"id": "8b97d729"
},
"source": [
"#### Example 2: Merging Symmetry and Substructure\n",
"Here, our goal is to construct symmetric assemblies from a single-chain protein, partially redesigning it to merge three identical AUs into a Cyclic complex. We begin by defining the backbones targeted for redesign and then reposition the AU to prevent clashes during symmetrization. This is followed by the symmetrization operation itself.\n"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "35c78aad",
"metadata": {
"id": "35c78aad"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Using cached data from /tmp/chroma_weights/90e339502ae6b372797414167ce5a632/weights.pt\n",
"Loaded from cache\n",
"Using cached data from /tmp/chroma_weights/03a3a9af343ae74998768a2711c8b7ce/weights.pt\n",
"Loaded from cache\n"
]
},
{
"ename": "RuntimeError",
"evalue": "torch.linalg.cholesky: The factorization could not be completed because the input is not positive-definite (the leading minor of order 27 is not positive-definite).",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mRuntimeError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[14], line 8\u001b[0m\n\u001b[1;32m 6\u001b[0m protein \u001b[38;5;241m=\u001b[39m Protein(PDB_ID, canonicalize\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m, device\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mcuda\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[1;32m 7\u001b[0m \u001b[38;5;66;03m# regenerate residues with X coord < 25 A and y coord < 25 A\u001b[39;00m\n\u001b[0;32m----> 8\u001b[0m substruct_conditioner \u001b[38;5;241m=\u001b[39m \u001b[43mconditioners\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mSubstructureConditioner\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 9\u001b[0m \u001b[43m \u001b[49m\u001b[43mprotein\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mbackbone_model\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mchroma\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mbackbone_network\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mselection\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mx < 25 and y < 25\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 11\u001b[0m \u001b[38;5;66;03m# C_3 symmetry\u001b[39;00m\n\u001b[1;32m 12\u001b[0m c_symmetry \u001b[38;5;241m=\u001b[39m conditioners\u001b[38;5;241m.\u001b[39mSymmetryConditioner(G\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mC_3\u001b[39m\u001b[38;5;124m\"\u001b[39m, num_chain_neighbors\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m3\u001b[39m)\n",
"File \u001b[0;32m~/anaconda3/envs/mlfold/lib/python3.8/site-packages/chroma/layers/structure/conditioners.py:881\u001b[0m, in \u001b[0;36mSubstructureConditioner.__init__\u001b[0;34m(self, protein, backbone_model, selection, rg, weight, tspan, weight_max, gamma, center_init)\u001b[0m\n\u001b[1;32m 879\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mbase_distribution \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mbackbone_model\u001b[38;5;241m.\u001b[39mnoise_perturb\u001b[38;5;241m.\u001b[39mbase_gaussian\n\u001b[1;32m 880\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mnoise_schedule \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mbackbone_model\u001b[38;5;241m.\u001b[39mnoise_perturb\u001b[38;5;241m.\u001b[39mnoise_schedule\n\u001b[0;32m--> 881\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mconditional_distribution \u001b[38;5;241m=\u001b[39m \u001b[43mmvn\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mConditionalBackboneMVNGlobular\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 882\u001b[0m \u001b[43m \u001b[49m\u001b[43mcovariance_model\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mbase_distribution\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcovariance_model\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 883\u001b[0m \u001b[43m \u001b[49m\u001b[43mcomplex_scaling\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mbase_distribution\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcomplex_scaling\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 884\u001b[0m \u001b[43m \u001b[49m\u001b[43mX\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mX\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 885\u001b[0m \u001b[43m \u001b[49m\u001b[43mC\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mC\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 886\u001b[0m \u001b[43m \u001b[49m\u001b[43mD\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mD\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 887\u001b[0m \u001b[43m \u001b[49m\u001b[43mgamma\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mgamma\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 888\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 889\u001b[0m X \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mconditional_distribution\u001b[38;5;241m.\u001b[39msample(\u001b[38;5;241m1\u001b[39m)\n\u001b[1;32m 890\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtspan \u001b[38;5;241m=\u001b[39m tspan\n",
"File \u001b[0;32m~/anaconda3/envs/mlfold/lib/python3.8/site-packages/chroma/layers/structure/mvn.py:563\u001b[0m, in \u001b[0;36mConditionalBackboneMVNGlobular.__init__\u001b[0;34m(self, covariance_model, complex_scaling, sigma_translation, X, C, D, gamma, **kwargs)\u001b[0m\n\u001b[1;32m 560\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mregister_buffer(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mR\u001b[39m\u001b[38;5;124m\"\u001b[39m, R)\n\u001b[1;32m 561\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mregister_buffer(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mRRt\u001b[39m\u001b[38;5;124m\"\u001b[39m, RRt)\n\u001b[0;32m--> 563\u001b[0m R_clamp, RRt_clamp \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_condition_RRt\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mRRt\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mD\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 564\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mregister_buffer(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mR_clamp\u001b[39m\u001b[38;5;124m\"\u001b[39m, R_clamp)\n\u001b[1;32m 565\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mregister_buffer(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mRRt_clamp\u001b[39m\u001b[38;5;124m\"\u001b[39m, RRt_clamp)\n",
"File \u001b[0;32m~/anaconda3/envs/mlfold/lib/python3.8/site-packages/chroma/layers/structure/mvn.py:712\u001b[0m, in \u001b[0;36mConditionalBackboneMVNGlobular._condition_RRt\u001b[0;34m(self, RRt, D)\u001b[0m\n\u001b[1;32m 709\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mregister_buffer(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mS22\u001b[39m\u001b[38;5;124m\"\u001b[39m, RRt[\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mnonzero_indices][:, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mnonzero_indices])\n\u001b[1;32m 711\u001b[0m S_clamp \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mS11 \u001b[38;5;241m-\u001b[39m ((\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mS12 \u001b[38;5;241m@\u001b[39m torch\u001b[38;5;241m.\u001b[39mlinalg\u001b[38;5;241m.\u001b[39mpinv(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mS22) \u001b[38;5;241m@\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mS21))\n\u001b[0;32m--> 712\u001b[0m R_clamp \u001b[38;5;241m=\u001b[39m \u001b[43mtorch\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mlinalg\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcholesky\u001b[49m\u001b[43m(\u001b[49m\u001b[43mS_clamp\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 713\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mregister_buffer(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mRRt_clamp_restricted\u001b[39m\u001b[38;5;124m\"\u001b[39m, R_clamp \u001b[38;5;241m@\u001b[39m R_clamp\u001b[38;5;241m.\u001b[39mt())\n\u001b[1;32m 714\u001b[0m RRt_clamp \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_scatter(\n\u001b[1;32m 715\u001b[0m torch\u001b[38;5;241m.\u001b[39mzeros_like(RRt), \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mzero_indices, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mRRt_clamp_restricted\n\u001b[1;32m 716\u001b[0m )\n",
"\u001b[0;31mRuntimeError\u001b[0m: torch.linalg.cholesky: The factorization could not be completed because the input is not positive-definite (the leading minor of order 27 is not positive-definite)."
]
}
],
"source": [
"from chroma.data import Protein\n",
"\n",
"PDB_ID = '3BDI'\n",
"chroma = Chroma()\n",
"\n",
"protein = Protein(PDB_ID, canonicalize=True, device='cuda')\n",
"# regenerate residues with X coord < 25 A and y coord < 25 A\n",
"substruct_conditioner = conditioners.SubstructureConditioner(\n",
" protein, backbone_model=chroma.backbone_network, selection=\"x < 25 and y < 25\")\n",
"\n",
"# C_3 symmetry\n",
"c_symmetry = conditioners.SymmetryConditioner(G=\"C_3\", num_chain_neighbors=3)\n",
"\n",
"# Composing\n",
"composed_cond = conditioners.ComposedConditioner([substruct_conditioner, c_symmetry])\n",
"\n",
"protein, trajectories = chroma.sample(\n",
" protein_init=protein,\n",
" conditioner=composed_cond,\n",
" langevin_factor=4.0,\n",
" langevin_isothermal=True,\n",
" inverse_temperature=8.0,\n",
" sde_func='langevin',\n",
" steps=500,\n",
" full_output=True,\n",
")\n",
"\n",
"protein"
]
},
{
"cell_type": "markdown",
"id": "de3c2b97",
"metadata": {
"id": "de3c2b97"
},
"source": [
"### Build your own conditioners: 2D protein lattices\n",
"\n",
"An attractive aspect of this conditioner framework is that it is very general, enabling both constraints (which involve operations on $x$) and restraints (which amount to changes to $U$). At the same time, generation under restraints can still be (and often is) challenging, as the resulting effective energy landscape can become arbitrarily rugged and difficult to integrate. We therefore advise caution when using and developing new conditioners or conditioner combinations. We find that inspecting diffusition trajectories (including unconstrained and denoised trajectories, $\\hat{x}_t$ and $\\tilde{x}_t$) can be a good tool for identifying integration challenges and defining either better conditioner forms or better sampling regimes.\n",
"\n",
"Here we present how to build a conditioner that generates a periodic 2D lattice. You can easily extend this code snippet to generate 3D protein materials."
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "2bb9dcf3",
"metadata": {
"id": "2bb9dcf3"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Using cached data from /tmp/chroma_weights/90e339502ae6b372797414167ce5a632/weights.pt\n",
"Loaded from cache\n",
"Using cached data from /tmp/chroma_weights/03a3a9af343ae74998768a2711c8b7ce/weights.pt\n",
"Loaded from cache\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "14663b93ee8a48d3932635b073d60eda",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Integrating SDE: 0%| | 0/500 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4a123abffdcc4b6b84062d85ba3d4ead",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Potts Sampling: 0%| | 0/500 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3cc618db756747d1993075205fa455cd",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Sequential decoding: 0%| | 0/720 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "08f4338906a744d6bfcf78868f4853f3",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"NGLWidget()"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import torch\n",
"\n",
"class Lattice2DConditioner(conditioners.Conditioner):\n",
" def __init__(self, M, N, cell):\n",
" super().__init__()\n",
" # Setup the coordinates of a 2D lattice\n",
" self.order = M*N\n",
" x = torch.arange(M) * cell[0]\n",
" y = torch.arange(N) * cell[1]\n",
" xx, yy = torch.meshgrid(x, y, indexing=\"ij\")\n",
" dX = torch.stack([xx.flatten(), yy.flatten(), torch.zeros(M * N)], dim=1)\n",
" self.register_buffer(\"dX\", dX)\n",
"\n",
" def forward(self, X, C, O, U, t):\n",
" # Tesselate the unit cell on the lattice\n",
" X = (X[:,None,...] + self.dX[None,:,None,None]).reshape(1, -1, 4, 3)\n",
" C = torch.cat([C + C.unique().max() * i for i in range(self.dX.shape[0])], dim=1)\n",
" # Average the gradient\n",
" X.register_hook(lambda gradX: gradX / self.order)\n",
" return X, C, O, U, t\n",
"\n",
"chroma = Chroma()\n",
"M, N = 3, 3\n",
"conditioner = Lattice2DConditioner(M=M, N=N, cell=[25., 25.]).cuda()\n",
"protein, trajectories = chroma.sample(\n",
" chain_lengths=[80], conditioner=conditioner, sde_func='langevin',\n",
" potts_symmetry_order=conditioner.order,\n",
" full_output=True\n",
")\n",
"\n",
"protein"
]
},
{
"cell_type": "markdown",
"id": "4ecf48ff",
"metadata": {
"id": "4ecf48ff"
},
"source": [
"#### Notes on Troubleshooting\n",
"1. The sequence in which you apply conditioners is crucial. Generally, it's best to apply stringent and all-encompassing constraints towards the end. For instance, symmetry, a constraint that affects the entire complex, should be implemented last in the conditioner list.\n",
"When troubleshooting a conditioner, it's helpful to test it on a singular protein state. This helps in verifying if the resulting transformation aligns with your expectations.\n",
"2. If your conditioner, like the SymmetryConditioner, make copies of a single protein multiple times, it's important to divide the pull-back gradients by the number of protein copies. This prevents excessive gradient accumulation on the protein asymmetric unit, similar to what occurs in the Lattice2DConditioner. Refer to Appendix M for more details.\n",
"3. Adjusting sampling hyperparameters may be necessary when experimenting with new conditioners. Key parameters to consider include the langevin_factor, inverse_temperature, isothermal settings, steps, and guidance scale (especially when applying restraints). For dealing with hard constraints, it's usually advisable to use sde_func='langevin'."
]
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"gpuType": "T4",
"provenance": [],
"toc_visible": true
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.0"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|