File size: 84,626 Bytes
e9e75df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "zb9d5N92iMz2"
   },
   "source": [
    "# Chroma quickstart\n",
    "\n",
    "First, run the [setup cell](#setup) below. Then, run [this cell](#unconditional-chain) to get a Chroma sample. Further examples are below."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "cellView": "form",
    "id": "KaT878cbeOQm"
   },
   "outputs": [],
   "source": [
    "# @title Setup\n",
    "\n",
    "# @markdown [Get your API key here](https://chroma-weights.generatebiomedicines.com) and enter it below before running.\n",
    "\n",
    "import os\n",
    "\n",
    "os.environ[\"CUBLAS_WORKSPACE_CONFIG\"] = \":4096:8\"\n",
    "import contextlib\n",
    "\n",
    "api_key = \"2cdade6d058b4fd1b85fa5badb501312\"  # @param {type:\"string\"}\n",
    "\n",
    "\n",
    "import torch\n",
    "\n",
    "# torch.use_deterministic_algorithms(False)\n",
    "\n",
    "import warnings\n",
    "from tqdm import tqdm, TqdmExperimentalWarning\n",
    "\n",
    "warnings.filterwarnings(\"ignore\", category=TqdmExperimentalWarning)\n",
    "from functools import partialmethod\n",
    "\n",
    "tqdm.__init__ = partialmethod(tqdm.__init__, leave=False)\n",
    "\n",
    "import ipywidgets as widgets\n",
    "\n",
    "\n",
    "def create_button(filename, description=\"\"):\n",
    "    button = widgets.Button(description=description)\n",
    "    display(button)\n",
    "\n",
    "    def on_button_click(b):\n",
    "        files.download(filename)\n",
    "\n",
    "    button.on_click(on_button_click)\n",
    "\n",
    "\n",
    "def render(protein, trajectories, output=\"protein.cif\"):\n",
    "    display(protein)\n",
    "    print(protein)\n",
    "    protein.to_CIF(output)\n",
    "    traj_output = output.replace(\".cif\", \"_trajectory.cif\")\n",
    "    trajectories[\"trajectory\"].to_CIF(traj_output)\n",
    "    create_button(output, description=\"Download sample\")\n",
    "    create_button(traj_output, description=\"Download trajectory\")\n",
    "\n",
    "\n",
    "import locale\n",
    "\n",
    "locale.getpreferredencoding = lambda: \"UTF-8\"\n",
    "\n",
    "from chroma import Chroma, Protein, conditioners\n",
    "from chroma.models import graph_classifier, procap\n",
    "from chroma.utility.api import register_key\n",
    "from chroma.utility.chroma import letter_to_point_cloud, plane_split_protein\n",
    "\n",
    "register_key(api_key)\n",
    "device = \"cuda\"\n",
    "with contextlib.redirect_stdout(None):\n",
    "    chroma = Chroma(device=device)\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {
    "id": "sfNODIk5BZEH"
   },
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Integrating SDE:   0%|          | 0/200 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Potts Sampling:   0%|          | 0/500 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Sequential decoding:   0%|          | 0/160 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "57f832c5197d4f4ebfa2ed5fae343db3",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "NGLWidget()"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Protein: system\n",
      "> Chain A (160 residues)\n",
      "MRIEARTPEAARRAVDLAIKLKEKGYEVLLVLIGDPSNPELLEIARRLAEAGAKIRVIALVDDSPEAQAGVERLRQVCEELREKGADVELDVITAPLDDPEAQQRARELAEKYISEGEEEAKKKNKPFILILVRPSTDEEEAQREADEAEKKIEEYLKSL\n",
      "\n",
      "\n"
     ]
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "3385daceb5b0490092690b7f8bcbaccd",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Button(description='Download sample', style=ButtonStyle())"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "12e79378174b42f2890daf1102bfecea",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Button(description='Download trajectory', style=ButtonStyle())"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# @title Get a protein! <a name=\"unconditional-chain\"></a> {display-mode: \"form\"}\n",
    "\n",
    "# @markdown Specify the desired length. Chroma will output a fully designed single chain protein.\n",
    "# @markdown As with all examples in this notebook, the trajectory can also be downloaded.\n",
    "\n",
    "length = 160  # @param {type:\"slider\", min:50, max:250, step:10}\n",
    "\n",
    "protein, trajectories = chroma.sample(\n",
    "    chain_lengths=[length], steps=200, full_output=True\n",
    ")\n",
    "render(protein, trajectories, output=\" .cif\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "14AUlQHIxPle"
   },
   "source": [
    "## Conditional generation\n",
    "\n",
    "After running the setup at the top of the notebook, all examples are completely independent.\n",
    "\n",
    "[Single chain](#unconditional-chain): the simplest example of protein generation with Chroma.\n",
    "\n",
    "[Complex](#unconditional-complex): a protein with multiple chains.\n",
    "\n",
    "[Symmetry](#symmetry): a symmetric complex, where the symmetry group and subunit size can be input by the user.\n",
    "\n",
    "[Substructure](#substructure): infilling a PDB structure, where the residues to design can be specified by a PyMOL-style string.\n",
    "\n",
    "[Shape](#shape): Chroma generation conditioned on shape, using letters as an example.\n",
    "\n",
    "[Topology](#proclass-chain): chain-level conditioning using ProClass, where a CAT code can be specified.\n",
    "\n",
    "[Secondary structure](#proclass-residue): ProClass also provides conditioning of secondary structure, which can be input as a per-residue string.\n",
    "\n",
    "[Natural language](#procap): ProCap takes a user caption in order to condition Chroma generation.\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "KLbZia40CQhK"
   },
   "outputs": [],
   "source": [
    "# @title Complexes <a name=\"unconditional-complex\"></a> {display-mode: \"form\"}\n",
    "\n",
    "# @markdown Given the lengths of individual chains, Chroma can generate a complex.\n",
    "\n",
    "chain1_length = 400  # @param {type:\"slider\", min:100, max:500, step:10}\n",
    "chain2_length = 100  # @param {type:\"slider\", min:0, max:200, step:10}\n",
    "chain3_length = 100  # @param {type:\"slider\", min:0, max:200, step:10}\n",
    "chain4_length = 100  # @param {type:\"slider\", min:0, max:200, step:10}\n",
    "\n",
    "protein, trajectories = chroma.sample(\n",
    "    chain_lengths=[chain1_length, chain2_length, chain3_length, chain4_length],\n",
    "    steps=200,\n",
    "    full_output=True,\n",
    ")\n",
    "render(protein, trajectories, output=\"complex.cif\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "7FpA3VzWWTM_"
   },
   "outputs": [],
   "source": [
    "# @title Symmetry <a name=\"symmetry\"></a> {display-mode: \"form\"}\n",
    "\n",
    "# @markdown Specify the desired symmetry type and the size of a single subunit.\n",
    "\n",
    "symmetry_group = \"C_7\"  # @param [\"C_2\", \"C_3\", \"C_4\", \"C_5\", \"C_6\", \"C_7\", \"C_8\", \"D_2\", \"D_3\", \"D_4\", \"D_5\", \"D_6\", \"D_7\", \"D_8\", \"T\", \"O\", \"I\"]\n",
    "subunit_size = 100  # @param {type:\"slider\", min:10, max:150, step:5}\n",
    "knbr = 2\n",
    "\n",
    "conditioner = conditioners.SymmetryConditioner(\n",
    "    G=symmetry_group, num_chain_neighbors=knbr\n",
    ")\n",
    "symmetric_protein, trajectories = chroma.sample(\n",
    "    chain_lengths=[subunit_size],\n",
    "    conditioner=conditioner,\n",
    "    langevin_factor=8,\n",
    "    inverse_temperature=8,\n",
    "    sde_func=\"langevin\",\n",
    "    potts_symmetry_order=conditioner.potts_symmetry_order,\n",
    "    full_output=True,\n",
    ")\n",
    "render(symmetric_protein, trajectories, output=\"symmetric_protein.cif\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {
    "id": "BCTxghg19meL"
   },
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "29438c75064c436aa3cffff6876f9bf3",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "NGLWidget()"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Split protein by plane, masking 52.38 percent of residues.\n",
      "Error initializing conditioner! Falling back to masking 50% of residues.\n"
     ]
    },
    {
     "ename": "RuntimeError",
     "evalue": "expected scalar type Double but found Float",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mRuntimeError\u001b[0m                              Traceback (most recent call last)",
      "Cell \u001b[0;32mIn[9], line 24\u001b[0m\n\u001b[1;32m     23\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m---> 24\u001b[0m     conditioner \u001b[38;5;241m=\u001b[39m \u001b[43mconditioners\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mSubstructureConditioner\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m     25\u001b[0m \u001b[43m        \u001b[49m\u001b[43mprotein\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mbackbone_model\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mchroma\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mbackbone_network\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mselection\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mselection_string\u001b[49m\n\u001b[1;32m     26\u001b[0m \u001b[43m    \u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241m.\u001b[39mto(device)\n\u001b[1;32m     27\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m:\n",
      "File \u001b[0;32m~/anaconda3/envs/mlfold/lib/python3.8/site-packages/chroma/layers/structure/conditioners.py:881\u001b[0m, in \u001b[0;36mSubstructureConditioner.__init__\u001b[0;34m(self, protein, backbone_model, selection, rg, weight, tspan, weight_max, gamma, center_init)\u001b[0m\n\u001b[1;32m    880\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mnoise_schedule \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mbackbone_model\u001b[38;5;241m.\u001b[39mnoise_perturb\u001b[38;5;241m.\u001b[39mnoise_schedule\n\u001b[0;32m--> 881\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mconditional_distribution \u001b[38;5;241m=\u001b[39m \u001b[43mmvn\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mConditionalBackboneMVNGlobular\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m    882\u001b[0m \u001b[43m    \u001b[49m\u001b[43mcovariance_model\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mbase_distribution\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcovariance_model\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    883\u001b[0m \u001b[43m    \u001b[49m\u001b[43mcomplex_scaling\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mbase_distribution\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcomplex_scaling\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    884\u001b[0m \u001b[43m    \u001b[49m\u001b[43mX\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mX\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    885\u001b[0m \u001b[43m    \u001b[49m\u001b[43mC\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mC\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    886\u001b[0m \u001b[43m    \u001b[49m\u001b[43mD\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mD\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    887\u001b[0m \u001b[43m    \u001b[49m\u001b[43mgamma\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mgamma\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    888\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    889\u001b[0m X \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mconditional_distribution\u001b[38;5;241m.\u001b[39msample(\u001b[38;5;241m1\u001b[39m)\n",
      "File \u001b[0;32m~/anaconda3/envs/mlfold/lib/python3.8/site-packages/chroma/layers/structure/mvn.py:559\u001b[0m, in \u001b[0;36mConditionalBackboneMVNGlobular.__init__\u001b[0;34m(self, covariance_model, complex_scaling, sigma_translation, X, C, D, gamma, **kwargs)\u001b[0m\n\u001b[1;32m    558\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_check_C(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mC\u001b[38;5;241m.\u001b[39mabs())\n\u001b[0;32m--> 559\u001b[0m R, RRt \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_materialize_RRt\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mC\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    560\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mregister_buffer(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mR\u001b[39m\u001b[38;5;124m\"\u001b[39m, R)\n",
      "File \u001b[0;32m~/anaconda3/envs/mlfold/lib/python3.8/site-packages/chroma/layers/structure/mvn.py:648\u001b[0m, in \u001b[0;36mConditionalBackboneMVNGlobular._materialize_RRt\u001b[0;34m(self, C)\u001b[0m\n\u001b[1;32m    646\u001b[0m R_init \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_build_R_init(C_atom, b)\n\u001b[0;32m--> 648\u001b[0m R \u001b[38;5;241m=\u001b[39m \u001b[43ma\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mR_center\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m@\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mR_sum\u001b[49m \u001b[38;5;241m@\u001b[39m R_init\n\u001b[1;32m    649\u001b[0m RRt \u001b[38;5;241m=\u001b[39m R \u001b[38;5;241m@\u001b[39m R\u001b[38;5;241m.\u001b[39mt()\n",
      "\u001b[0;31mRuntimeError\u001b[0m: expected scalar type Double but found Float",
      "\nDuring handling of the above exception, another exception occurred:\n",
      "\u001b[0;31mRuntimeError\u001b[0m                              Traceback (most recent call last)",
      "Cell \u001b[0;32mIn[9], line 30\u001b[0m\n\u001b[1;32m     28\u001b[0m     \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mError initializing conditioner! Falling back to masking 50\u001b[39m\u001b[38;5;132;01m% o\u001b[39;00m\u001b[38;5;124mf residues.\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m     29\u001b[0m     selection_string \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mnamesel infilling_selection\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m---> 30\u001b[0m     conditioner \u001b[38;5;241m=\u001b[39m \u001b[43mconditioners\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mSubstructureConditioner\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m     31\u001b[0m \u001b[43m        \u001b[49m\u001b[43mprotein\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m     32\u001b[0m \u001b[43m        \u001b[49m\u001b[43mbackbone_model\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mchroma\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mbackbone_network\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m     33\u001b[0m \u001b[43m        \u001b[49m\u001b[43mselection\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mselection_string\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m     34\u001b[0m \u001b[43m        \u001b[49m\u001b[43mrg\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m     35\u001b[0m \u001b[43m    \u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241m.\u001b[39mto(device)\n\u001b[1;32m     37\u001b[0m infilled_protein, trajectories \u001b[38;5;241m=\u001b[39m chroma\u001b[38;5;241m.\u001b[39msample(\n\u001b[1;32m     38\u001b[0m     protein_init\u001b[38;5;241m=\u001b[39mprotein,\n\u001b[1;32m     39\u001b[0m     conditioner\u001b[38;5;241m=\u001b[39mconditioner,\n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m     45\u001b[0m     full_output\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m,\n\u001b[1;32m     46\u001b[0m )\n\u001b[1;32m     47\u001b[0m render(infilled_protein, trajectories, output\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124minfilled_protein.cif\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n",
      "File \u001b[0;32m~/anaconda3/envs/mlfold/lib/python3.8/site-packages/chroma/layers/structure/conditioners.py:881\u001b[0m, in \u001b[0;36mSubstructureConditioner.__init__\u001b[0;34m(self, protein, backbone_model, selection, rg, weight, tspan, weight_max, gamma, center_init)\u001b[0m\n\u001b[1;32m    879\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mbase_distribution \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mbackbone_model\u001b[38;5;241m.\u001b[39mnoise_perturb\u001b[38;5;241m.\u001b[39mbase_gaussian\n\u001b[1;32m    880\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mnoise_schedule \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mbackbone_model\u001b[38;5;241m.\u001b[39mnoise_perturb\u001b[38;5;241m.\u001b[39mnoise_schedule\n\u001b[0;32m--> 881\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mconditional_distribution \u001b[38;5;241m=\u001b[39m \u001b[43mmvn\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mConditionalBackboneMVNGlobular\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m    882\u001b[0m \u001b[43m    \u001b[49m\u001b[43mcovariance_model\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mbase_distribution\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcovariance_model\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    883\u001b[0m \u001b[43m    \u001b[49m\u001b[43mcomplex_scaling\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mbase_distribution\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcomplex_scaling\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    884\u001b[0m \u001b[43m    \u001b[49m\u001b[43mX\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mX\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    885\u001b[0m \u001b[43m    \u001b[49m\u001b[43mC\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mC\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    886\u001b[0m \u001b[43m    \u001b[49m\u001b[43mD\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mD\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    887\u001b[0m \u001b[43m    \u001b[49m\u001b[43mgamma\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mgamma\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    888\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    889\u001b[0m X \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mconditional_distribution\u001b[38;5;241m.\u001b[39msample(\u001b[38;5;241m1\u001b[39m)\n\u001b[1;32m    890\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtspan \u001b[38;5;241m=\u001b[39m tspan\n",
      "File \u001b[0;32m~/anaconda3/envs/mlfold/lib/python3.8/site-packages/chroma/layers/structure/mvn.py:559\u001b[0m, in \u001b[0;36mConditionalBackboneMVNGlobular.__init__\u001b[0;34m(self, covariance_model, complex_scaling, sigma_translation, X, C, D, gamma, **kwargs)\u001b[0m\n\u001b[1;32m    556\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mregister_buffer(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mD\u001b[39m\u001b[38;5;124m\"\u001b[39m, D\u001b[38;5;241m.\u001b[39mfloat())\n\u001b[1;32m    558\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_check_C(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mC\u001b[38;5;241m.\u001b[39mabs())\n\u001b[0;32m--> 559\u001b[0m R, RRt \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_materialize_RRt\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mC\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    560\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mregister_buffer(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mR\u001b[39m\u001b[38;5;124m\"\u001b[39m, R)\n\u001b[1;32m    561\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mregister_buffer(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mRRt\u001b[39m\u001b[38;5;124m\"\u001b[39m, RRt)\n",
      "File \u001b[0;32m~/anaconda3/envs/mlfold/lib/python3.8/site-packages/chroma/layers/structure/mvn.py:648\u001b[0m, in \u001b[0;36mConditionalBackboneMVNGlobular._materialize_RRt\u001b[0;34m(self, C)\u001b[0m\n\u001b[1;32m    645\u001b[0m R_sum \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_build_R_sum(C_atom, b)\n\u001b[1;32m    646\u001b[0m R_init \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_build_R_init(C_atom, b)\n\u001b[0;32m--> 648\u001b[0m R \u001b[38;5;241m=\u001b[39m \u001b[43ma\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mR_center\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m@\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mR_sum\u001b[49m \u001b[38;5;241m@\u001b[39m R_init\n\u001b[1;32m    649\u001b[0m RRt \u001b[38;5;241m=\u001b[39m R \u001b[38;5;241m@\u001b[39m R\u001b[38;5;241m.\u001b[39mt()\n\u001b[1;32m    650\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m R, RRt\n",
      "\u001b[0;31mRuntimeError\u001b[0m: expected scalar type Double but found Float"
     ]
    }
   ],
   "source": [
    "# @title Substructure <a name=\"substructure\"></a> {display-mode: \"form\"}\n",
    "\n",
    "# @markdown Enter a PDB ID and a selection string corresponding to designable positions.\n",
    "# @markdown Using a substructure conditioner, Chroma can design at these positions while holding the rest of the structure fixed.\n",
    "# @markdown The default selection cuts the protein in half and fills it in.\n",
    "# @markdown Other selections, by position or proximity, are also allowed.\n",
    "\n",
    "pdb_id = \"5SV5\"  # @param ['5SV5', '6QAZ', '3BDI'] {allow-input:true}\n",
    "\n",
    "try:\n",
    "    protein = Protein.from_PDBID(pdb_id, canonicalize=True, device=device)\n",
    "    display(protein)\n",
    "except FileNotFoundError:\n",
    "    print(\"Invalid PDB ID! Using 3BDI\")\n",
    "    pdb_id = \"3BDI\"\n",
    "    protein = Protein.from_PDBID(pdb_id, canonicalize=True, device=device)\n",
    "\n",
    "X, C, _ = protein.to_XCS()\n",
    "selection_string = \"namesel infilling_selection\"  # @param ['namesel infilling_selection', 'z > 16', '(resid 50) around 10'] {allow-input:true}\n",
    "residues_to_design = plane_split_protein(X, C, protein, 0.5).nonzero()[:, 1].tolist()\n",
    "protein.sys.save_selection(gti=residues_to_design, selname=\"infilling_selection\")\n",
    "\n",
    "try:\n",
    "    conditioner = conditioners.SubstructureConditioner(\n",
    "        protein, backbone_model=chroma.backbone_network, selection=selection_string\n",
    "    ).to(device)\n",
    "except Exception:\n",
    "    print(\"Error initializing conditioner! Falling back to masking 50% of residues.\")\n",
    "    selection_string = \"namesel infilling_selection\"\n",
    "    conditioner = conditioners.SubstructureConditioner(\n",
    "        protein,\n",
    "        backbone_model=chroma.backbone_network,\n",
    "        selection=selection_string,\n",
    "        rg=True,\n",
    "    ).to(device)\n",
    "\n",
    "infilled_protein, trajectories = chroma.sample(\n",
    "    protein_init=protein,\n",
    "    conditioner=conditioner,\n",
    "    langevin_factor=4.0,\n",
    "    langevin_isothermal=True,\n",
    "    inverse_temperature=8.0,\n",
    "    steps=500,\n",
    "    sde_func=\"langevin\",\n",
    "    full_output=True,\n",
    ")\n",
    "render(infilled_protein, trajectories, output=\"infilled_protein.cif\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "print(device)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "h5C-SrJEBqIs"
   },
   "outputs": [],
   "source": [
    "# @title Shape <a name=\"shape\"></a> {display-mode: \"form\"}\n",
    "\n",
    "# @markdown Create a protein in the shape of a desired character of arbitrary length.\n",
    "\n",
    "character = \"G\"  # @param {type:\"string\"}\n",
    "if len(character) > 1:\n",
    "    character = character[:1]\n",
    "    print(f\"Keeping only first character ({character})!\")\n",
    "length = 1000  # @param {type:\"slider\", min:100, max:1500, step:100}\n",
    "\n",
    "letter_point_cloud = letter_to_point_cloud(character)\n",
    "conditioner = conditioners.ShapeConditioner(\n",
    "    letter_point_cloud,\n",
    "    chroma.backbone_network.noise_schedule,\n",
    "    autoscale_num_residues=length,\n",
    ").to(device)\n",
    "\n",
    "shaped_protein, trajectories = chroma.sample(\n",
    "    chain_lengths=[length], conditioner=conditioner, full_output=True\n",
    ")\n",
    "\n",
    "render(shaped_protein, trajectories, output=\"shaped_protein.cif\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {
    "id": "M-5X_saooA6J"
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Using cached data from /tmp/chroma_weights/3262b44702040b1dcfccd71ebbcf451d/weights.pt\n",
      "Loaded from cache\n"
     ]
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "9264434606184578a8bda0e8dcd33c0b",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Integrating SDE:   0%|          | 0/500 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "80717e8b2395434d8af0d2667bf9005a",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Potts Sampling:   0%|          | 0/500 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "743e20adbb814b01a94d92498c3f9a1f",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Sequential decoding:   0%|          | 0/130 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "46c25647fdc947128e4df00f6c343fd0",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "NGLWidget()"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Protein: system\n",
      "> Chain A (130 residues)\n",
      "MIPPFIPKKLLDELKKLAEKYGATIEFMPFEEAAQKHLSPEALARPIRDLLKELEDKINEAINEFYSLLPKDIEVKPVTLSIVFPEMPEEELKRFIDEIKTLINKVIDEYKSLPKEERQKEALELIKELF\n",
      "\n",
      "\n"
     ]
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "2e40f62022b143ba83ee29b13831ceb7",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Button(description='Download sample', style=ButtonStyle())"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "542ef56229e8423dbb0069bddcb2fccd",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Button(description='Download trajectory', style=ButtonStyle())"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# @title Fold <a name=\"proclass-chain\"></a> {display-mode: \"form\"}\n",
    "\n",
    "# @markdown Input a [CATH number](https://cathdb.info/browse) to get chain-level conditioning, e.g. `3.40.50` for a Rossmann fold or `2` for mainly beta.\n",
    "\n",
    "CATH = \"3.40.50\"  # @param {type:\"string\"}\n",
    "length = 130  # @param {type:\"slider\", min:50, max:250, step:10}\n",
    "\n",
    "proclass_model = graph_classifier.load_model(\"named:public\", device=device)\n",
    "conditioner = conditioners.ProClassConditioner(\"cath\", CATH, model=proclass_model)\n",
    "cath_conditioned_protein, trajectories = chroma.sample(\n",
    "    conditioner=conditioner, chain_lengths=[length], full_output=True\n",
    ")\n",
    "render(cath_conditioned_protein, trajectories, output=\"cath_conditioned_protein.cif\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "A2012-PnoTHf"
   },
   "outputs": [],
   "source": [
    "# @title Secondary structure <a name=\"proclass-residue\"></a> {display-mode: \"form\"}\n",
    "\n",
    "# @markdown Enter a string to specify residue-level secondary structure conditioning: H = helix, E = strand, T = turn.\n",
    "\n",
    "SS = \"HHHHHHHTTTHHHHHHHTTTEEEEEETTTEEEEEEEETTTTHHHHHHHH\"  # @param {type:\"string\"}\n",
    "\n",
    "proclass_model = graph_classifier.load_model(\"named:public\", device=device)\n",
    "conditioner = conditioners.ProClassConditioner(\n",
    "    \"secondary_structure\", SS, max_norm=None, model=proclass_model\n",
    ")\n",
    "ss_conditioned_protein, trajectories = chroma.sample(\n",
    "    steps=500, conditioner=conditioner, chain_lengths=[len(SS)], full_output=True\n",
    ")\n",
    "render(ss_conditioned_protein, trajectories, output=\"ss_conditioned_protein.cif\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {
    "id": "ix41mhyEbLTF"
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Using cached data from /tmp/chroma_weights/87243729397de5f93afc4f392662d1b5/weights.pt\n"
     ]
    },
    {
     "ename": "OSError",
     "evalue": "We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like EleutherAI/gpt-neo-125m is not the path to a directory containing a file named config.json.\nCheckout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'.",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mOSError\u001b[0m                                   Traceback (most recent call last)",
      "File \u001b[0;32m~/anaconda3/envs/mlfold/lib/python3.8/site-packages/urllib3/connection.py:174\u001b[0m, in \u001b[0;36mHTTPConnection._new_conn\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m    173\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 174\u001b[0m     conn \u001b[38;5;241m=\u001b[39m \u001b[43mconnection\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcreate_connection\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m    175\u001b[0m \u001b[43m        \u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_dns_host\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mport\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtimeout\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mextra_kw\u001b[49m\n\u001b[1;32m    176\u001b[0m \u001b[43m    \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    178\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m SocketTimeout:\n",
      "File \u001b[0;32m~/anaconda3/envs/mlfold/lib/python3.8/site-packages/urllib3/util/connection.py:95\u001b[0m, in \u001b[0;36mcreate_connection\u001b[0;34m(address, timeout, source_address, socket_options)\u001b[0m\n\u001b[1;32m     94\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m err \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m---> 95\u001b[0m     \u001b[38;5;28;01mraise\u001b[39;00m err\n\u001b[1;32m     97\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m socket\u001b[38;5;241m.\u001b[39merror(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mgetaddrinfo returns an empty list\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n",
      "File \u001b[0;32m~/anaconda3/envs/mlfold/lib/python3.8/site-packages/urllib3/util/connection.py:85\u001b[0m, in \u001b[0;36mcreate_connection\u001b[0;34m(address, timeout, source_address, socket_options)\u001b[0m\n\u001b[1;32m     84\u001b[0m     sock\u001b[38;5;241m.\u001b[39mbind(source_address)\n\u001b[0;32m---> 85\u001b[0m \u001b[43msock\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mconnect\u001b[49m\u001b[43m(\u001b[49m\u001b[43msa\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m     86\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m sock\n",
      "\u001b[0;31mOSError\u001b[0m: [Errno 101] Network is unreachable",
      "\nDuring handling of the above exception, another exception occurred:\n",
      "\u001b[0;31mNewConnectionError\u001b[0m                        Traceback (most recent call last)",
      "File \u001b[0;32m~/anaconda3/envs/mlfold/lib/python3.8/site-packages/urllib3/connectionpool.py:715\u001b[0m, in \u001b[0;36mHTTPConnectionPool.urlopen\u001b[0;34m(self, method, url, body, headers, retries, redirect, assert_same_host, timeout, pool_timeout, release_conn, chunked, body_pos, **response_kw)\u001b[0m\n\u001b[1;32m    714\u001b[0m \u001b[38;5;66;03m# Make the request on the httplib connection object.\u001b[39;00m\n\u001b[0;32m--> 715\u001b[0m httplib_response \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_make_request\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m    716\u001b[0m \u001b[43m    \u001b[49m\u001b[43mconn\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    717\u001b[0m \u001b[43m    \u001b[49m\u001b[43mmethod\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    718\u001b[0m \u001b[43m    \u001b[49m\u001b[43murl\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    719\u001b[0m \u001b[43m    \u001b[49m\u001b[43mtimeout\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtimeout_obj\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    720\u001b[0m \u001b[43m    \u001b[49m\u001b[43mbody\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mbody\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    721\u001b[0m \u001b[43m    \u001b[49m\u001b[43mheaders\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mheaders\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    722\u001b[0m \u001b[43m    \u001b[49m\u001b[43mchunked\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mchunked\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    723\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    725\u001b[0m \u001b[38;5;66;03m# If we're going to release the connection in ``finally:``, then\u001b[39;00m\n\u001b[1;32m    726\u001b[0m \u001b[38;5;66;03m# the response doesn't need to know about the connection. Otherwise\u001b[39;00m\n\u001b[1;32m    727\u001b[0m \u001b[38;5;66;03m# it will also try to release it and we'll have a double-release\u001b[39;00m\n\u001b[1;32m    728\u001b[0m \u001b[38;5;66;03m# mess.\u001b[39;00m\n",
      "File \u001b[0;32m~/anaconda3/envs/mlfold/lib/python3.8/site-packages/urllib3/connectionpool.py:404\u001b[0m, in \u001b[0;36mHTTPConnectionPool._make_request\u001b[0;34m(self, conn, method, url, timeout, chunked, **httplib_request_kw)\u001b[0m\n\u001b[1;32m    403\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 404\u001b[0m     \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_validate_conn\u001b[49m\u001b[43m(\u001b[49m\u001b[43mconn\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    405\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m (SocketTimeout, BaseSSLError) \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m    406\u001b[0m     \u001b[38;5;66;03m# Py2 raises this as a BaseSSLError, Py3 raises it as socket timeout.\u001b[39;00m\n",
      "File \u001b[0;32m~/anaconda3/envs/mlfold/lib/python3.8/site-packages/urllib3/connectionpool.py:1058\u001b[0m, in \u001b[0;36mHTTPSConnectionPool._validate_conn\u001b[0;34m(self, conn)\u001b[0m\n\u001b[1;32m   1057\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28mgetattr\u001b[39m(conn, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124msock\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;28;01mNone\u001b[39;00m):  \u001b[38;5;66;03m# AppEngine might not have  `.sock`\u001b[39;00m\n\u001b[0;32m-> 1058\u001b[0m     \u001b[43mconn\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mconnect\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m   1060\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m conn\u001b[38;5;241m.\u001b[39mis_verified:\n",
      "File \u001b[0;32m~/anaconda3/envs/mlfold/lib/python3.8/site-packages/urllib3/connection.py:363\u001b[0m, in \u001b[0;36mHTTPSConnection.connect\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m    361\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mconnect\u001b[39m(\u001b[38;5;28mself\u001b[39m):\n\u001b[1;32m    362\u001b[0m     \u001b[38;5;66;03m# Add certificate verification\u001b[39;00m\n\u001b[0;32m--> 363\u001b[0m     \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39msock \u001b[38;5;241m=\u001b[39m conn \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_new_conn\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    364\u001b[0m     hostname \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhost\n",
      "File \u001b[0;32m~/anaconda3/envs/mlfold/lib/python3.8/site-packages/urllib3/connection.py:186\u001b[0m, in \u001b[0;36mHTTPConnection._new_conn\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m    185\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m SocketError \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[0;32m--> 186\u001b[0m     \u001b[38;5;28;01mraise\u001b[39;00m NewConnectionError(\n\u001b[1;32m    187\u001b[0m         \u001b[38;5;28mself\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mFailed to establish a new connection: \u001b[39m\u001b[38;5;132;01m%s\u001b[39;00m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;241m%\u001b[39m e\n\u001b[1;32m    188\u001b[0m     )\n\u001b[1;32m    190\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m conn\n",
      "\u001b[0;31mNewConnectionError\u001b[0m: <urllib3.connection.HTTPSConnection object at 0x7f7d6e2d6c70>: Failed to establish a new connection: [Errno 101] Network is unreachable",
      "\nDuring handling of the above exception, another exception occurred:\n",
      "\u001b[0;31mMaxRetryError\u001b[0m                             Traceback (most recent call last)",
      "File \u001b[0;32m~/anaconda3/envs/mlfold/lib/python3.8/site-packages/requests/adapters.py:486\u001b[0m, in \u001b[0;36mHTTPAdapter.send\u001b[0;34m(self, request, stream, timeout, verify, cert, proxies)\u001b[0m\n\u001b[1;32m    485\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 486\u001b[0m     resp \u001b[38;5;241m=\u001b[39m \u001b[43mconn\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43murlopen\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m    487\u001b[0m \u001b[43m        \u001b[49m\u001b[43mmethod\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrequest\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmethod\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    488\u001b[0m \u001b[43m        \u001b[49m\u001b[43murl\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43murl\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    489\u001b[0m \u001b[43m        \u001b[49m\u001b[43mbody\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrequest\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mbody\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    490\u001b[0m \u001b[43m        \u001b[49m\u001b[43mheaders\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrequest\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mheaders\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    491\u001b[0m \u001b[43m        \u001b[49m\u001b[43mredirect\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m    492\u001b[0m \u001b[43m        \u001b[49m\u001b[43massert_same_host\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m    493\u001b[0m \u001b[43m        \u001b[49m\u001b[43mpreload_content\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m    494\u001b[0m \u001b[43m        \u001b[49m\u001b[43mdecode_content\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m    495\u001b[0m \u001b[43m        \u001b[49m\u001b[43mretries\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmax_retries\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    496\u001b[0m \u001b[43m        \u001b[49m\u001b[43mtimeout\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtimeout\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    497\u001b[0m \u001b[43m        \u001b[49m\u001b[43mchunked\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mchunked\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    498\u001b[0m \u001b[43m    \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    500\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m (ProtocolError, \u001b[38;5;167;01mOSError\u001b[39;00m) \u001b[38;5;28;01mas\u001b[39;00m err:\n",
      "File \u001b[0;32m~/anaconda3/envs/mlfold/lib/python3.8/site-packages/urllib3/connectionpool.py:799\u001b[0m, in \u001b[0;36mHTTPConnectionPool.urlopen\u001b[0;34m(self, method, url, body, headers, retries, redirect, assert_same_host, timeout, pool_timeout, release_conn, chunked, body_pos, **response_kw)\u001b[0m\n\u001b[1;32m    797\u001b[0m     e \u001b[38;5;241m=\u001b[39m ProtocolError(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mConnection aborted.\u001b[39m\u001b[38;5;124m\"\u001b[39m, e)\n\u001b[0;32m--> 799\u001b[0m retries \u001b[38;5;241m=\u001b[39m \u001b[43mretries\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mincrement\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m    800\u001b[0m \u001b[43m    \u001b[49m\u001b[43mmethod\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43murl\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43merror\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43me\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m_pool\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m_stacktrace\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43msys\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mexc_info\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;241;43m2\u001b[39;49m\u001b[43m]\u001b[49m\n\u001b[1;32m    801\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    802\u001b[0m retries\u001b[38;5;241m.\u001b[39msleep()\n",
      "File \u001b[0;32m~/anaconda3/envs/mlfold/lib/python3.8/site-packages/urllib3/util/retry.py:592\u001b[0m, in \u001b[0;36mRetry.increment\u001b[0;34m(self, method, url, response, error, _pool, _stacktrace)\u001b[0m\n\u001b[1;32m    591\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m new_retry\u001b[38;5;241m.\u001b[39mis_exhausted():\n\u001b[0;32m--> 592\u001b[0m     \u001b[38;5;28;01mraise\u001b[39;00m MaxRetryError(_pool, url, error \u001b[38;5;129;01mor\u001b[39;00m ResponseError(cause))\n\u001b[1;32m    594\u001b[0m log\u001b[38;5;241m.\u001b[39mdebug(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mIncremented Retry for (url=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;132;01m%s\u001b[39;00m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m): \u001b[39m\u001b[38;5;132;01m%r\u001b[39;00m\u001b[38;5;124m\"\u001b[39m, url, new_retry)\n",
      "\u001b[0;31mMaxRetryError\u001b[0m: HTTPSConnectionPool(host='huggingface.co', port=443): Max retries exceeded with url: /EleutherAI/gpt-neo-125m/resolve/main/config.json (Caused by NewConnectionError('<urllib3.connection.HTTPSConnection object at 0x7f7d6e2d6c70>: Failed to establish a new connection: [Errno 101] Network is unreachable'))",
      "\nDuring handling of the above exception, another exception occurred:\n",
      "\u001b[0;31mConnectionError\u001b[0m                           Traceback (most recent call last)",
      "File \u001b[0;32m~/anaconda3/envs/mlfold/lib/python3.8/site-packages/huggingface_hub/file_download.py:1238\u001b[0m, in \u001b[0;36mhf_hub_download\u001b[0;34m(repo_id, filename, subfolder, repo_type, revision, library_name, library_version, cache_dir, local_dir, local_dir_use_symlinks, user_agent, force_download, force_filename, proxies, etag_timeout, resume_download, token, local_files_only, legacy_cache_layout, endpoint)\u001b[0m\n\u001b[1;32m   1237\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m-> 1238\u001b[0m     metadata \u001b[38;5;241m=\u001b[39m \u001b[43mget_hf_file_metadata\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m   1239\u001b[0m \u001b[43m        \u001b[49m\u001b[43murl\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43murl\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1240\u001b[0m \u001b[43m        \u001b[49m\u001b[43mtoken\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtoken\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1241\u001b[0m \u001b[43m        \u001b[49m\u001b[43mproxies\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mproxies\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1242\u001b[0m \u001b[43m        \u001b[49m\u001b[43mtimeout\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43metag_timeout\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1243\u001b[0m \u001b[43m        \u001b[49m\u001b[43mlibrary_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mlibrary_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1244\u001b[0m \u001b[43m        \u001b[49m\u001b[43mlibrary_version\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mlibrary_version\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1245\u001b[0m \u001b[43m        \u001b[49m\u001b[43muser_agent\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43muser_agent\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1246\u001b[0m \u001b[43m    \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m   1247\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m EntryNotFoundError \u001b[38;5;28;01mas\u001b[39;00m http_error:\n\u001b[1;32m   1248\u001b[0m     \u001b[38;5;66;03m# Cache the non-existence of the file and raise\u001b[39;00m\n",
      "File \u001b[0;32m~/anaconda3/envs/mlfold/lib/python3.8/site-packages/huggingface_hub/utils/_validators.py:118\u001b[0m, in \u001b[0;36mvalidate_hf_hub_args.<locals>._inner_fn\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m    116\u001b[0m     kwargs \u001b[38;5;241m=\u001b[39m smoothly_deprecate_use_auth_token(fn_name\u001b[38;5;241m=\u001b[39mfn\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m, has_token\u001b[38;5;241m=\u001b[39mhas_token, kwargs\u001b[38;5;241m=\u001b[39mkwargs)\n\u001b[0;32m--> 118\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfn\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[0;32m~/anaconda3/envs/mlfold/lib/python3.8/site-packages/huggingface_hub/file_download.py:1631\u001b[0m, in \u001b[0;36mget_hf_file_metadata\u001b[0;34m(url, token, proxies, timeout, library_name, library_version, user_agent)\u001b[0m\n\u001b[1;32m   1630\u001b[0m \u001b[38;5;66;03m# Retrieve metadata\u001b[39;00m\n\u001b[0;32m-> 1631\u001b[0m r \u001b[38;5;241m=\u001b[39m \u001b[43m_request_wrapper\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m   1632\u001b[0m \u001b[43m    \u001b[49m\u001b[43mmethod\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mHEAD\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1633\u001b[0m \u001b[43m    \u001b[49m\u001b[43murl\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43murl\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1634\u001b[0m \u001b[43m    \u001b[49m\u001b[43mheaders\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mheaders\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1635\u001b[0m \u001b[43m    \u001b[49m\u001b[43mallow_redirects\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m   1636\u001b[0m \u001b[43m    \u001b[49m\u001b[43mfollow_relative_redirects\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m   1637\u001b[0m \u001b[43m    \u001b[49m\u001b[43mproxies\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mproxies\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1638\u001b[0m \u001b[43m    \u001b[49m\u001b[43mtimeout\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtimeout\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1639\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m   1640\u001b[0m hf_raise_for_status(r)\n",
      "File \u001b[0;32m~/anaconda3/envs/mlfold/lib/python3.8/site-packages/huggingface_hub/file_download.py:385\u001b[0m, in \u001b[0;36m_request_wrapper\u001b[0;34m(method, url, follow_relative_redirects, **params)\u001b[0m\n\u001b[1;32m    384\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m follow_relative_redirects:\n\u001b[0;32m--> 385\u001b[0m     response \u001b[38;5;241m=\u001b[39m \u001b[43m_request_wrapper\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m    386\u001b[0m \u001b[43m        \u001b[49m\u001b[43mmethod\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmethod\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    387\u001b[0m \u001b[43m        \u001b[49m\u001b[43murl\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43murl\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    388\u001b[0m \u001b[43m        \u001b[49m\u001b[43mfollow_relative_redirects\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m    389\u001b[0m \u001b[43m        \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mparams\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    390\u001b[0m \u001b[43m    \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    392\u001b[0m     \u001b[38;5;66;03m# If redirection, we redirect only relative paths.\u001b[39;00m\n\u001b[1;32m    393\u001b[0m     \u001b[38;5;66;03m# This is useful in case of a renamed repository.\u001b[39;00m\n",
      "File \u001b[0;32m~/anaconda3/envs/mlfold/lib/python3.8/site-packages/huggingface_hub/file_download.py:408\u001b[0m, in \u001b[0;36m_request_wrapper\u001b[0;34m(method, url, follow_relative_redirects, **params)\u001b[0m\n\u001b[1;32m    407\u001b[0m \u001b[38;5;66;03m# Perform request and return if status_code is not in the retry list.\u001b[39;00m\n\u001b[0;32m--> 408\u001b[0m response \u001b[38;5;241m=\u001b[39m \u001b[43mget_session\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrequest\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmethod\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmethod\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43murl\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43murl\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mparams\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    409\u001b[0m hf_raise_for_status(response)\n",
      "File \u001b[0;32m~/anaconda3/envs/mlfold/lib/python3.8/site-packages/requests/sessions.py:589\u001b[0m, in \u001b[0;36mSession.request\u001b[0;34m(self, method, url, params, data, headers, cookies, files, auth, timeout, allow_redirects, proxies, hooks, stream, verify, cert, json)\u001b[0m\n\u001b[1;32m    588\u001b[0m send_kwargs\u001b[38;5;241m.\u001b[39mupdate(settings)\n\u001b[0;32m--> 589\u001b[0m resp \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msend\u001b[49m\u001b[43m(\u001b[49m\u001b[43mprep\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43msend_kwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    591\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m resp\n",
      "File \u001b[0;32m~/anaconda3/envs/mlfold/lib/python3.8/site-packages/requests/sessions.py:703\u001b[0m, in \u001b[0;36mSession.send\u001b[0;34m(self, request, **kwargs)\u001b[0m\n\u001b[1;32m    702\u001b[0m \u001b[38;5;66;03m# Send the request\u001b[39;00m\n\u001b[0;32m--> 703\u001b[0m r \u001b[38;5;241m=\u001b[39m \u001b[43madapter\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msend\u001b[49m\u001b[43m(\u001b[49m\u001b[43mrequest\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    705\u001b[0m \u001b[38;5;66;03m# Total elapsed time of the request (approximately)\u001b[39;00m\n",
      "File \u001b[0;32m~/anaconda3/envs/mlfold/lib/python3.8/site-packages/huggingface_hub/utils/_http.py:67\u001b[0m, in \u001b[0;36mUniqueRequestIdAdapter.send\u001b[0;34m(self, request, *args, **kwargs)\u001b[0m\n\u001b[1;32m     66\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m---> 67\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43msuper\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msend\u001b[49m\u001b[43m(\u001b[49m\u001b[43mrequest\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m     68\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m requests\u001b[38;5;241m.\u001b[39mRequestException \u001b[38;5;28;01mas\u001b[39;00m e:\n",
      "File \u001b[0;32m~/anaconda3/envs/mlfold/lib/python3.8/site-packages/requests/adapters.py:519\u001b[0m, in \u001b[0;36mHTTPAdapter.send\u001b[0;34m(self, request, stream, timeout, verify, cert, proxies)\u001b[0m\n\u001b[1;32m    517\u001b[0m         \u001b[38;5;28;01mraise\u001b[39;00m SSLError(e, request\u001b[38;5;241m=\u001b[39mrequest)\n\u001b[0;32m--> 519\u001b[0m     \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mConnectionError\u001b[39;00m(e, request\u001b[38;5;241m=\u001b[39mrequest)\n\u001b[1;32m    521\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m ClosedPoolError \u001b[38;5;28;01mas\u001b[39;00m e:\n",
      "\u001b[0;31mConnectionError\u001b[0m: (MaxRetryError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Max retries exceeded with url: /EleutherAI/gpt-neo-125m/resolve/main/config.json (Caused by NewConnectionError('<urllib3.connection.HTTPSConnection object at 0x7f7d6e2d6c70>: Failed to establish a new connection: [Errno 101] Network is unreachable'))\"), '(Request ID: ecd4f2fa-3a5d-4a13-b144-91df9440bd15)')",
      "\nThe above exception was the direct cause of the following exception:\n",
      "\u001b[0;31mLocalEntryNotFoundError\u001b[0m                   Traceback (most recent call last)",
      "File \u001b[0;32m~/anaconda3/envs/mlfold/lib/python3.8/site-packages/transformers/utils/hub.py:409\u001b[0m, in \u001b[0;36mcached_file\u001b[0;34m(path_or_repo_id, filename, cache_dir, force_download, resume_download, proxies, use_auth_token, revision, local_files_only, subfolder, user_agent, _raise_exceptions_for_missing_entries, _raise_exceptions_for_connection_errors, _commit_hash)\u001b[0m\n\u001b[1;32m    407\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m    408\u001b[0m     \u001b[38;5;66;03m# Load from URL or cache if already cached\u001b[39;00m\n\u001b[0;32m--> 409\u001b[0m     resolved_file \u001b[38;5;241m=\u001b[39m \u001b[43mhf_hub_download\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m    410\u001b[0m \u001b[43m        \u001b[49m\u001b[43mpath_or_repo_id\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    411\u001b[0m \u001b[43m        \u001b[49m\u001b[43mfilename\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    412\u001b[0m \u001b[43m        \u001b[49m\u001b[43msubfolder\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mif\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43mlen\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43msubfolder\u001b[49m\u001b[43m)\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m==\u001b[39;49m\u001b[43m \u001b[49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01melse\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43msubfolder\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    413\u001b[0m \u001b[43m        \u001b[49m\u001b[43mrevision\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrevision\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    414\u001b[0m \u001b[43m        \u001b[49m\u001b[43mcache_dir\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcache_dir\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    415\u001b[0m \u001b[43m        \u001b[49m\u001b[43muser_agent\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43muser_agent\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    416\u001b[0m \u001b[43m        \u001b[49m\u001b[43mforce_download\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mforce_download\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    417\u001b[0m \u001b[43m        \u001b[49m\u001b[43mproxies\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mproxies\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    418\u001b[0m \u001b[43m        \u001b[49m\u001b[43mresume_download\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mresume_download\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    419\u001b[0m \u001b[43m        \u001b[49m\u001b[43muse_auth_token\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43muse_auth_token\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    420\u001b[0m \u001b[43m        \u001b[49m\u001b[43mlocal_files_only\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mlocal_files_only\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    421\u001b[0m \u001b[43m    \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    423\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m RepositoryNotFoundError:\n",
      "File \u001b[0;32m~/anaconda3/envs/mlfold/lib/python3.8/site-packages/huggingface_hub/utils/_validators.py:118\u001b[0m, in \u001b[0;36mvalidate_hf_hub_args.<locals>._inner_fn\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m    116\u001b[0m     kwargs \u001b[38;5;241m=\u001b[39m smoothly_deprecate_use_auth_token(fn_name\u001b[38;5;241m=\u001b[39mfn\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m, has_token\u001b[38;5;241m=\u001b[39mhas_token, kwargs\u001b[38;5;241m=\u001b[39mkwargs)\n\u001b[0;32m--> 118\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfn\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[0;32m~/anaconda3/envs/mlfold/lib/python3.8/site-packages/huggingface_hub/file_download.py:1371\u001b[0m, in \u001b[0;36mhf_hub_download\u001b[0;34m(repo_id, filename, subfolder, repo_type, revision, library_name, library_version, cache_dir, local_dir, local_dir_use_symlinks, user_agent, force_download, force_filename, proxies, etag_timeout, resume_download, token, local_files_only, legacy_cache_layout, endpoint)\u001b[0m\n\u001b[1;32m   1369\u001b[0m     \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m   1370\u001b[0m         \u001b[38;5;66;03m# Otherwise: most likely a connection issue or Hub downtime => let's warn the user\u001b[39;00m\n\u001b[0;32m-> 1371\u001b[0m         \u001b[38;5;28;01mraise\u001b[39;00m LocalEntryNotFoundError(\n\u001b[1;32m   1372\u001b[0m             \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mAn error happened while trying to locate the file on the Hub and we cannot find the requested files\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m   1373\u001b[0m             \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m in the local cache. Please check your connection and try again or make sure your Internet connection\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m   1374\u001b[0m             \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m is on.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m   1375\u001b[0m         ) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mhead_call_error\u001b[39;00m\n\u001b[1;32m   1377\u001b[0m \u001b[38;5;66;03m# From now on, etag and commit_hash are not None.\u001b[39;00m\n",
      "\u001b[0;31mLocalEntryNotFoundError\u001b[0m: An error happened while trying to locate the file on the Hub and we cannot find the requested files in the local cache. Please check your connection and try again or make sure your Internet connection is on.",
      "\nDuring handling of the above exception, another exception occurred:\n",
      "\u001b[0;31mOSError\u001b[0m                                   Traceback (most recent call last)",
      "Cell \u001b[0;32mIn[5], line 8\u001b[0m\n\u001b[1;32m      5\u001b[0m length \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m110\u001b[39m  \u001b[38;5;66;03m# @param {type:\"slider\", min:50, max:250, step:10}\u001b[39;00m\n\u001b[1;32m      6\u001b[0m caption \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCrystal structure of SH2 domain\u001b[39m\u001b[38;5;124m\"\u001b[39m  \u001b[38;5;66;03m# @param {type:\"string\"}\u001b[39;00m\n\u001b[0;32m----> 8\u001b[0m procap_model \u001b[38;5;241m=\u001b[39m \u001b[43mprocap\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mload_model\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mnamed:public\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdevice\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdevice\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m      9\u001b[0m conditioner \u001b[38;5;241m=\u001b[39m conditioners\u001b[38;5;241m.\u001b[39mProCapConditioner(caption, \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m, model\u001b[38;5;241m=\u001b[39mprocap_model)\n\u001b[1;32m     10\u001b[0m caption_conditioned_protein, trajectories \u001b[38;5;241m=\u001b[39m chroma\u001b[38;5;241m.\u001b[39msample(\n\u001b[1;32m     11\u001b[0m     steps\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m200\u001b[39m, chain_lengths\u001b[38;5;241m=\u001b[39m[length], conditioner\u001b[38;5;241m=\u001b[39mconditioner, full_output\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m\n\u001b[1;32m     12\u001b[0m )\n",
      "File \u001b[0;32m~/anaconda3/envs/mlfold/lib/python3.8/site-packages/chroma/models/procap.py:729\u001b[0m, in \u001b[0;36mload_model\u001b[0;34m(weight_file, device, strict, strict_unexpected)\u001b[0m\n\u001b[1;32m    704\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mload_model\u001b[39m(\n\u001b[1;32m    705\u001b[0m     weight_file: \u001b[38;5;28mstr\u001b[39m,\n\u001b[1;32m    706\u001b[0m     device: \u001b[38;5;28mstr\u001b[39m \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcpu\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[1;32m    707\u001b[0m     strict: \u001b[38;5;28mbool\u001b[39m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mFalse\u001b[39;00m,\n\u001b[1;32m    708\u001b[0m     strict_unexpected: \u001b[38;5;28mbool\u001b[39m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m,\n\u001b[1;32m    709\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m ProteinCaption:\n\u001b[1;32m    710\u001b[0m \u001b[38;5;250m    \u001b[39m\u001b[38;5;124;03m\"\"\"Loads a ProCap model.\u001b[39;00m\n\u001b[1;32m    711\u001b[0m \n\u001b[1;32m    712\u001b[0m \u001b[38;5;124;03m    Args:\u001b[39;00m\n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m    727\u001b[0m \u001b[38;5;124;03m            with `model.eval()`.\u001b[39;00m\n\u001b[1;32m    728\u001b[0m \u001b[38;5;124;03m    \"\"\"\u001b[39;00m\n\u001b[0;32m--> 729\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mutility_load_model\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m    730\u001b[0m \u001b[43m        \u001b[49m\u001b[43mweight_file\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    731\u001b[0m \u001b[43m        \u001b[49m\u001b[43mProteinCaption\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    732\u001b[0m \u001b[43m        \u001b[49m\u001b[43mdevice\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdevice\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    733\u001b[0m \u001b[43m        \u001b[49m\u001b[43mstrict\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstrict\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    734\u001b[0m \u001b[43m        \u001b[49m\u001b[43mstrict_unexpected\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstrict_unexpected\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    735\u001b[0m \u001b[43m    \u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[0;32m~/anaconda3/envs/mlfold/lib/python3.8/site-packages/chroma/utility/model.py:107\u001b[0m, in \u001b[0;36mload_model\u001b[0;34m(weights, model_class, device, strict, strict_unexpected, verbose)\u001b[0m\n\u001b[1;32m    105\u001b[0m \u001b[38;5;66;03m# load model weights\u001b[39;00m\n\u001b[1;32m    106\u001b[0m params \u001b[38;5;241m=\u001b[39m torch\u001b[38;5;241m.\u001b[39mload(weights, map_location\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcpu\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m--> 107\u001b[0m model \u001b[38;5;241m=\u001b[39m \u001b[43mmodel_class\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mparams\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43minit_kwargs\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241m.\u001b[39mto(device)\n\u001b[1;32m    108\u001b[0m missing_keys, unexpected_keys \u001b[38;5;241m=\u001b[39m model\u001b[38;5;241m.\u001b[39mload_state_dict(\n\u001b[1;32m    109\u001b[0m     params[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmodel_state_dict\u001b[39m\u001b[38;5;124m\"\u001b[39m], strict\u001b[38;5;241m=\u001b[39mstrict\n\u001b[1;32m    110\u001b[0m )\n\u001b[1;32m    111\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m strict_unexpected \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;28mlen\u001b[39m(unexpected_keys) \u001b[38;5;241m>\u001b[39m \u001b[38;5;241m0\u001b[39m:\n",
      "File \u001b[0;32m~/anaconda3/envs/mlfold/lib/python3.8/site-packages/chroma/models/procap.py:198\u001b[0m, in \u001b[0;36mProteinCaption.__init__\u001b[0;34m(self, lm_id, gnn_dim_edges, context_size, context_per_chain, gnn_num_neighbors, gnn_num_layers, only_encode_caption_chain, gnn_embed_ratio, graph_criterion, node_mlp_layers, node_mlp_dim, noise_schedule, covariance_model, noise_complex_scaling, noiseless, normalize_context_embeddings, standardize_context_embeddings, time_feature_type, time_log_feature_scaling, use_transformer, classifier_checkpoint, direct_gnn, classifier_kwargs)\u001b[0m\n\u001b[1;32m    195\u001b[0m     \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mnormalize_context_embeddings \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mFalse\u001b[39;00m\n\u001b[1;32m    197\u001b[0m \u001b[38;5;66;03m# Use Pretrained Tokenizer From Hugging Face\u001b[39;00m\n\u001b[0;32m--> 198\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtokenizer \u001b[38;5;241m=\u001b[39m \u001b[43mtransformers\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mAutoTokenizer\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_pretrained\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m    199\u001b[0m \u001b[43m    \u001b[49m\u001b[43mlm_id\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    200\u001b[0m \u001b[43m    \u001b[49m\u001b[43madditional_special_tokens\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43m<|pdb|>\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43m<|unconditioned|>\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    201\u001b[0m \u001b[43m    \u001b[49m\u001b[43meos_token\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43m<|endoftext|>\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m    202\u001b[0m \u001b[43m    \u001b[49m\u001b[43mpad_token\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43m<|pad|>\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m    203\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    205\u001b[0m \u001b[38;5;66;03m# Use Pretrained Language Model From Hugging Face\u001b[39;00m\n\u001b[1;32m    206\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mlanguage_model \u001b[38;5;241m=\u001b[39m transformers\u001b[38;5;241m.\u001b[39mAutoModelForCausalLM\u001b[38;5;241m.\u001b[39mfrom_pretrained(lm_id)\n",
      "File \u001b[0;32m~/anaconda3/envs/mlfold/lib/python3.8/site-packages/transformers/models/auto/tokenization_auto.py:575\u001b[0m, in \u001b[0;36mAutoTokenizer.from_pretrained\u001b[0;34m(cls, pretrained_model_name_or_path, *inputs, **kwargs)\u001b[0m\n\u001b[1;32m    573\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m config_tokenizer_class \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m    574\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(config, PretrainedConfig):\n\u001b[0;32m--> 575\u001b[0m         config \u001b[38;5;241m=\u001b[39m \u001b[43mAutoConfig\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_pretrained\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m    576\u001b[0m \u001b[43m            \u001b[49m\u001b[43mpretrained_model_name_or_path\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtrust_remote_code\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtrust_remote_code\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\n\u001b[1;32m    577\u001b[0m \u001b[43m        \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    578\u001b[0m     config_tokenizer_class \u001b[38;5;241m=\u001b[39m config\u001b[38;5;241m.\u001b[39mtokenizer_class\n\u001b[1;32m    579\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mhasattr\u001b[39m(config, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mauto_map\u001b[39m\u001b[38;5;124m\"\u001b[39m) \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mAutoTokenizer\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;129;01min\u001b[39;00m config\u001b[38;5;241m.\u001b[39mauto_map:\n",
      "File \u001b[0;32m~/anaconda3/envs/mlfold/lib/python3.8/site-packages/transformers/models/auto/configuration_auto.py:776\u001b[0m, in \u001b[0;36mAutoConfig.from_pretrained\u001b[0;34m(cls, pretrained_model_name_or_path, **kwargs)\u001b[0m\n\u001b[1;32m    774\u001b[0m kwargs[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mname_or_path\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m pretrained_model_name_or_path\n\u001b[1;32m    775\u001b[0m trust_remote_code \u001b[38;5;241m=\u001b[39m kwargs\u001b[38;5;241m.\u001b[39mpop(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtrust_remote_code\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;28;01mFalse\u001b[39;00m)\n\u001b[0;32m--> 776\u001b[0m config_dict, unused_kwargs \u001b[38;5;241m=\u001b[39m \u001b[43mPretrainedConfig\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget_config_dict\u001b[49m\u001b[43m(\u001b[49m\u001b[43mpretrained_model_name_or_path\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    777\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mauto_map\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;129;01min\u001b[39;00m config_dict \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mAutoConfig\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;129;01min\u001b[39;00m config_dict[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mauto_map\u001b[39m\u001b[38;5;124m\"\u001b[39m]:\n\u001b[1;32m    778\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m trust_remote_code:\n",
      "File \u001b[0;32m~/anaconda3/envs/mlfold/lib/python3.8/site-packages/transformers/configuration_utils.py:559\u001b[0m, in \u001b[0;36mPretrainedConfig.get_config_dict\u001b[0;34m(cls, pretrained_model_name_or_path, **kwargs)\u001b[0m\n\u001b[1;32m    557\u001b[0m original_kwargs \u001b[38;5;241m=\u001b[39m copy\u001b[38;5;241m.\u001b[39mdeepcopy(kwargs)\n\u001b[1;32m    558\u001b[0m \u001b[38;5;66;03m# Get config dict associated with the base config file\u001b[39;00m\n\u001b[0;32m--> 559\u001b[0m config_dict, kwargs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mcls\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_get_config_dict\u001b[49m\u001b[43m(\u001b[49m\u001b[43mpretrained_model_name_or_path\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    560\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m_commit_hash\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;129;01min\u001b[39;00m config_dict:\n\u001b[1;32m    561\u001b[0m     original_kwargs[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m_commit_hash\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m config_dict[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m_commit_hash\u001b[39m\u001b[38;5;124m\"\u001b[39m]\n",
      "File \u001b[0;32m~/anaconda3/envs/mlfold/lib/python3.8/site-packages/transformers/configuration_utils.py:614\u001b[0m, in \u001b[0;36mPretrainedConfig._get_config_dict\u001b[0;34m(cls, pretrained_model_name_or_path, **kwargs)\u001b[0m\n\u001b[1;32m    610\u001b[0m configuration_file \u001b[38;5;241m=\u001b[39m kwargs\u001b[38;5;241m.\u001b[39mpop(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m_configuration_file\u001b[39m\u001b[38;5;124m\"\u001b[39m, CONFIG_NAME)\n\u001b[1;32m    612\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m    613\u001b[0m     \u001b[38;5;66;03m# Load from local folder or from cache or download from model Hub and cache\u001b[39;00m\n\u001b[0;32m--> 614\u001b[0m     resolved_config_file \u001b[38;5;241m=\u001b[39m \u001b[43mcached_file\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m    615\u001b[0m \u001b[43m        \u001b[49m\u001b[43mpretrained_model_name_or_path\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    616\u001b[0m \u001b[43m        \u001b[49m\u001b[43mconfiguration_file\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    617\u001b[0m \u001b[43m        \u001b[49m\u001b[43mcache_dir\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcache_dir\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    618\u001b[0m \u001b[43m        \u001b[49m\u001b[43mforce_download\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mforce_download\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    619\u001b[0m \u001b[43m        \u001b[49m\u001b[43mproxies\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mproxies\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    620\u001b[0m \u001b[43m        \u001b[49m\u001b[43mresume_download\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mresume_download\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    621\u001b[0m \u001b[43m        \u001b[49m\u001b[43mlocal_files_only\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mlocal_files_only\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    622\u001b[0m \u001b[43m        \u001b[49m\u001b[43muse_auth_token\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43muse_auth_token\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    623\u001b[0m \u001b[43m        \u001b[49m\u001b[43muser_agent\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43muser_agent\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    624\u001b[0m \u001b[43m        \u001b[49m\u001b[43mrevision\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrevision\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    625\u001b[0m \u001b[43m        \u001b[49m\u001b[43msubfolder\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43msubfolder\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    626\u001b[0m \u001b[43m        \u001b[49m\u001b[43m_commit_hash\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcommit_hash\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    627\u001b[0m \u001b[43m    \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    628\u001b[0m     commit_hash \u001b[38;5;241m=\u001b[39m extract_commit_hash(resolved_config_file, commit_hash)\n\u001b[1;32m    629\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mEnvironmentError\u001b[39;00m:\n\u001b[1;32m    630\u001b[0m     \u001b[38;5;66;03m# Raise any environment error raise by `cached_file`. It will have a helpful error message adapted to\u001b[39;00m\n\u001b[1;32m    631\u001b[0m     \u001b[38;5;66;03m# the original exception.\u001b[39;00m\n",
      "File \u001b[0;32m~/anaconda3/envs/mlfold/lib/python3.8/site-packages/transformers/utils/hub.py:443\u001b[0m, in \u001b[0;36mcached_file\u001b[0;34m(path_or_repo_id, filename, cache_dir, force_download, resume_download, proxies, use_auth_token, revision, local_files_only, subfolder, user_agent, _raise_exceptions_for_missing_entries, _raise_exceptions_for_connection_errors, _commit_hash)\u001b[0m\n\u001b[1;32m    441\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m _raise_exceptions_for_missing_entries \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m _raise_exceptions_for_connection_errors:\n\u001b[1;32m    442\u001b[0m         \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m--> 443\u001b[0m     \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mEnvironmentError\u001b[39;00m(\n\u001b[1;32m    444\u001b[0m         \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mWe couldn\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mt connect to \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mHUGGINGFACE_CO_RESOLVE_ENDPOINT\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m to load this file, couldn\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mt find it in the\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m    445\u001b[0m         \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m cached files and it looks like \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mpath_or_repo_id\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m is not the path to a directory containing a file named\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m    446\u001b[0m         \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mfull_filename\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m.\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124mCheckout your internet connection or see how to run the library in offline mode at\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m    447\u001b[0m         \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mhttps://huggingface.co/docs/transformers/installation#offline-mode\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m    448\u001b[0m     )\n\u001b[1;32m    449\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m EntryNotFoundError:\n\u001b[1;32m    450\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m _raise_exceptions_for_missing_entries:\n",
      "\u001b[0;31mOSError\u001b[0m: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like EleutherAI/gpt-neo-125m is not the path to a directory containing a file named config.json.\nCheckout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'."
     ]
    }
   ],
   "source": [
    "# @title Natural text <a name=\"procap\"></a> {display-mode: \"form\"}\n",
    "\n",
    "# @markdown ProCap uses natural language captions to condition samples.\n",
    "\n",
    "length = 110  # @param {type:\"slider\", min:50, max:250, step:10}\n",
    "caption = \"Crystal structure of SH2 domain\"  # @param {type:\"string\"}\n",
    "\n",
    "procap_model = procap.load_model(\"named:public\", device=device)\n",
    "conditioner = conditioners.ProCapConditioner(caption, -1, model=procap_model)\n",
    "caption_conditioned_protein, trajectories = chroma.sample(\n",
    "    steps=200, chain_lengths=[length], conditioner=conditioner, full_output=True\n",
    ")\n",
    "render(\n",
    "    caption_conditioned_protein, trajectories, output=\"caption_conditioned_protein.cif\"\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "accelerator": "GPU",
  "colab": {
   "gpuType": "T4",
   "provenance": [],
   "toc_visible": true
  },
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.0"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}