File size: 6,776 Bytes
e9e75df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
from unittest import TestCase

import pytest
import torch

from chroma.layers.structure.backbone import (
    BackboneBuilder,
    LossBackboneResidueDistance,
    ProteinBackbone,
    RigidTransform,
    RigidTransformer,
)


class TestProteinBackbone(TestCase):
    def test_cuda(self):
        if torch.cuda.is_available():
            try:
                protein_backbone = ProteinBackbone(1).cuda()
            except Exception:
                protein_backbone = None

            self.assertTrue(protein_backbone is not None)

    def test_sample(self):
        protein_backbone = ProteinBackbone(1)

        expected = torch.Tensor(
            [
                [
                    [
                        [0.1331, -1.6303, -0.7377],
                        [0.0414, -0.1759, -0.8080],
                        [-0.3710, 0.4114, 0.5376],
                        [0.1965, 1.3947, 1.0081],
                    ]
                ]
            ]
        )

        predicted = protein_backbone()
        self.assertEqual((1, 1, 4, 3), predicted.shape)
        self.assertTrue(torch.allclose(expected, predicted, rtol=1e-03))

    def test_random_init_backbone(self):
        protein_backbone = ProteinBackbone(1, init_state="")
        predicted = protein_backbone()
        self.assertEqual((1, 1, 4, 3), predicted.shape)

    def test_sample_cartesian(self):

        protein_backbone = ProteinBackbone(1, use_internal_coords=False)

        expected = torch.Tensor(
            [
                [
                    [
                        [0.1331, -1.6303, -0.7377],
                        [0.0414, -0.1759, -0.8080],
                        [-0.3710, 0.4114, 0.5376],
                        [0.1965, 1.3947, 1.0081],
                    ]
                ]
            ]
        )

        predicted = protein_backbone()
        self.assertEqual((1, 1, 4, 3), predicted.shape)
        self.assertTrue(torch.allclose(expected, predicted, rtol=1e-03))

    def test_initialized_sample(self):

        torch.manual_seed(7)
        input_x = torch.rand(1, 2, 4, 3)
        predicted = ProteinBackbone(1, use_internal_coords=False, X_init=input_x)()

        expected = torch.Tensor(
            [
                [
                    [
                        [-5.3644e-07, -2.6469e-01, 1.4716e-01],
                        [1.2197e-01, -2.3073e-01, -8.6988e-02],
                        [-3.2784e-01, 1.6625e-01, -1.4673e-01],
                        [3.1635e-01, 3.9145e-01, 3.8886e-02],
                    ],
                    [
                        [-2.4808e-01, -2.5717e-01, -6.6959e-02],
                        [-1.7564e-01, 2.5689e-01, -4.3900e-01],
                        [4.3500e-01, -3.5570e-01, 3.7083e-01],
                        [-1.2175e-01, 2.9370e-01, 1.8280e-01],
                    ],
                ]
            ]
        )

        self.assertTrue(torch.allclose(predicted, expected, rtol=1e-03))


class TestRigidTransform(TestCase):
    def test_sample(self):
        # Default behavior should be identity transformation
        rigid_transform = RigidTransform()
        torch.manual_seed(7)
        input_x = torch.rand(1, 1, 4, 3)
        predicted = rigid_transform(input_x)
        self.assertTrue(torch.allclose(predicted, input_x, rtol=1e-3))


class TestRigidTransformer(TestCase):
    def test_sample(self):
        rigid_transformer = RigidTransformer(center_rotation=True, keep_centered=True)

        input_x = torch.rand(1, 1, 4, 3)
        mean_centered = input_x - torch.mean(input_x.reshape(1, -1, 3), axis=-2)
        # Test Identity
        no_translation = torch.zeros(1, 3)
        identity_q = torch.Tensor([[1.0, 0, 0, 0]])

        predicted = rigid_transformer(input_x, no_translation, identity_q)
        self.assertTrue(torch.allclose(predicted, mean_centered, rtol=1e-3))

        # Test Translation
        x_translation = torch.Tensor([[1, 0, 0]])
        expected = mean_centered + x_translation

        predicted = rigid_transformer(input_x, x_translation, identity_q)
        self.assertTrue(torch.allclose(predicted, expected, rtol=1e-3))


class TestBackboneBuilder(TestCase):
    def test_sample(self):
        phi_tensor = torch.Tensor([[-1.0472]])
        psi_tensor = torch.Tensor([[-0.7854]])
        backbone_builder = BackboneBuilder()

        expected = torch.Tensor(
            [
                [
                    [
                        [-1.2286, 0.2223, -1.2286],
                        [-1.3203, 1.6767, -1.2989],
                        [-1.7327, 2.2640, 0.0468],
                        [-1.1652, 3.2473, 0.5172],
                    ]
                ]
            ]
        )

        predicted = backbone_builder(phi_tensor, psi_tensor)

        self.assertTrue(torch.allclose(expected, predicted, rtol=1e-3))

    def test_custom_sample(self):
        num_residues = 1
        phi_tensor = torch.Tensor([[-1.0472]])
        psi_tensor = torch.Tensor([[-0.7854]])
        backbone_builder = BackboneBuilder()

        expected = torch.Tensor(
            [
                [
                    [
                        [-1.2286, 0.2223, -1.2286],
                        [-1.3203, 1.6767, -1.2989],
                        [-1.7327, 2.2640, 0.0468],
                        [-1.1652, 3.2473, 0.5172],
                    ]
                ]
            ]
        )

        predicted = backbone_builder(phi_tensor, psi_tensor)

        lengths = torch.tensor(
            [[backbone_builder.lengths[key] for key in ["C_N", "N_CA", "CA_C"]]],
            dtype=torch.float32,
        )
        lengths = lengths.repeat(1, 1)  # (1,3)

        angles = torch.tensor(
            [[backbone_builder.angles[key] for key in ["CA_C_N", "C_N_CA", "N_CA_C"]]],
            dtype=torch.float32,
        )
        angles = angles.repeat(1, 1)  # (1,3)

        omega = backbone_builder.angles["omega"] * torch.ones(1, 1)  # (1,1)

        predicted = backbone_builder(phi_tensor, psi_tensor, omega, angles, lengths)
        self.assertTrue(torch.allclose(expected, predicted, rtol=1e-3))

        lengths = torch.tensor(
            [[backbone_builder.lengths[key] for key in ["C_N", "N_CA", "CA_C"]]],
            dtype=torch.float32,
        )
        lengths = lengths.repeat(1, num_residues)  # (1,3)

        angles = torch.tensor(
            [[backbone_builder.angles[key] for key in ["CA_C_N", "C_N_CA", "N_CA_C"]]],
            dtype=torch.float32,
        )
        angles = angles.repeat(1, num_residues)  # (1,3)

        omega = backbone_builder.angles["omega"] * torch.ones(1, num_residues)  # (1,1)

        predicted = backbone_builder(phi_tensor, psi_tensor, omega, angles, lengths)
        self.assertTrue(torch.allclose(expected, predicted, rtol=1e-3))