File size: 16,822 Bytes
e9e75df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
from pathlib import Path
from typing import Tuple, Union
from unittest import SkipTest, TestCase

import numpy as np
import pytest
import torch
import torch.nn.functional as F

import chroma
from chroma.data import Protein
from chroma.layers.structure import backbone, rmsd
from chroma.layers.structure.diffusion import (
    GaussianNoiseSchedule,
    ReconstructionLosses,
)


class LegacyNoiseSchedule:
    """This is the legacy noise schedule code, we keep this as a reference to check
    known values"""

    def __init__(
        self,
        beta_min: float = 0.005,
        beta_max: float = 100,
        log_snr_range=(-7.0, 13.5),
        kind: str = "log",
    ):
        super().__init__()
        self.beta_min = beta_min
        self.beta_max = beta_max
        self.log_snr_range = log_snr_range
        self.kind = kind

    def alpha(self, t: Union[float, torch.Tensor]) -> torch.Tensor:
        """Compute alpha given time"""
        return torch.exp(self.log_alpha(t))

    def beta(self, t: Union[float, torch.Tensor]) -> torch.Tensor:
        """Compute beta given time"""
        if not isinstance(t, torch.Tensor):
            t = torch.Tensor([t]).float()
        b_min, b_max = self.beta_min, self.beta_max
        if self.kind == "log":
            beta = torch.exp(np.log(b_min) + t * np.log(b_max / b_min))
        elif self.kind == "linear":
            beta = b_min + t * (b_max - b_min)
        elif self.kind == "log_snr":
            l_range = self.log_snr_range
            snr = torch.exp((1 - t) * l_range[1] + t * l_range[0])
            beta = -(l_range[0] - l_range[1]) / (snr + 1)
        else:
            raise NotImplementedError(self.kind)
        return beta

    def log_alpha(self, t: Union[float, torch.Tensor]) -> torch.Tensor:
        """Compute log(alpha) given time"""
        if not isinstance(t, torch.Tensor):
            t = torch.Tensor([t]).float()
        b_min, b_max = self.beta_min, self.beta_max
        if self.kind == "log":
            log_alpha = -(
                torch.exp(np.log(b_min) + t * np.log(b_max / b_min)) - b_min
            ) / np.log(b_max / b_min)
        elif self.kind == "linear":
            log_alpha = -0.5 * t ** 2 * (b_max - b_min) - t * b_min
        elif self.kind == "log_snr":
            l_min, l_max = self.log_snr_range
            log_snr = (1 - t) * l_max + t * l_min
            log_alpha = log_snr - F.softplus(log_snr)
        else:
            raise NotImplementedError(self.kind)
        return log_alpha

    def log_alpha_inverse(self, log_alpha: Union[float, torch.Tensor]) -> torch.Tensor:
        """Compute time given log(alpha)"""
        if not isinstance(log_alpha, torch.Tensor):
            log_alpha = torch.Tensor([log_alpha]).float()
        b_min, b_max = self.beta_min, self.beta_max
        if self.kind == "log":
            t = (log_alpha * np.log(b_min / b_max) + b_min).log()
            t = (t - np.log(b_min)) / np.log(b_max / b_min)
        elif self.kind == "linear":
            # Applying the quadratic formula to
            #   0 = log_alpha + t * b_min + t**2 * (b_max - b_min) / 2
            # we select the positive root
            #       -b_min + sqrt(b_min**2 - 2 log_alpha (b_max - b_min))
            #   t = -----------------------------------------------------
            #                          b_max - b_min
            d = b_max - b_min
            t = ((b_min ** 2 - 2 * d * log_alpha).sqrt() - b_min) / d
        elif self.kind == "log_snr":
            l_min, l_max = self.log_snr_range
            log_snr = log_alpha - torch.log(-torch.expm1(log_alpha))
            t = (log_snr - l_max) / (l_min - l_max)
        else:
            raise NotImplementedError(self.kind)
        return t

    def prob_alpha(self, alpha: Union[float, torch.Tensor]) -> torch.Tensor:
        """Compute probability density"""
        if self.kind == "log_snr":
            l_min, l_max = self.log_snr_range
            p_alpha = ((1 - alpha) * (alpha) * (l_max - l_min)).reciprocal()
        else:
            raise NotImplementedError(self.kind)
        return p_alpha

    def SNR(self, t: Union[float, torch.Tensor]) -> torch.Tensor:
        """Compute SNR given time"""
        alpha = self.alpha(t)
        return alpha / (1 - alpha)

    def SNR_derivative(self, t: Union[float, torch.Tensor]) -> torch.Tensor:
        alpha = self.alpha(t)
        beta = self.beta(t)
        return -(alpha * beta) / ((1 - alpha) ** 2)

    def SNR_inverse(self, SNR: Union[float, torch.Tensor]) -> torch.Tensor:
        """Compute time given SNR"""
        if not isinstance(SNR, torch.Tensor):
            SNR = torch.Tensor([SNR]).float()
        log_alpha = SNR.reciprocal().log1p().neg()
        t = self.log_alpha_inverse(log_alpha)
        return t


@pytest.fixture(params=["brownian", "globular"])
def gaussian_noise(request):
    from chroma.layers.structure.diffusion import DiffusionChainCov

    covariance_model = request.param
    return DiffusionChainCov(
        covariance_model=covariance_model,
        complex_scaling=False,
        noise_schedule="log_snr",
    )


@pytest.mark.parametrize("kind", ["log_snr"])
def test_noise_schedule_ssnr(kind):
    """for log_SNR scheudle SSNR(t) = alpht(t)^2"""
    noise_schedule = GaussianNoiseSchedule(kind=kind, log_snr_range=(-12, 12))
    t = torch.linspace(0, 1, 10)
    assert torch.allclose(noise_schedule.SSNR(t), noise_schedule.alpha(t).pow(2))


@pytest.mark.parametrize("kind", ["ot_linear", "log_snr"])
def test_noise_schedule_ssnr_inverse(kind):
    noise_schedule = GaussianNoiseSchedule(kind=kind, log_snr_range=(-12, 12))
    t = torch.linspace(0, 1, 10)
    SSNR = noise_schedule.SSNR(t)
    t2 = noise_schedule.SSNR_inv(
        SSNR
    )  # Note that inverse function map ssnr to t_tilde not t
    assert torch.allclose(t2, t, atol=1e-2)

    if kind == "ot_linear":
        tsingular = torch.Tensor([0.500001, 0.50001])
        t_tilde = noise_schedule.SSNR_inv(tsingular)
        assert not torch.isnan(t_tilde).any()


@pytest.mark.parametrize("kind", ["ot_linear", "log_snr"])
def test_noise_schedule_snr_range(kind):
    noise_schedule = GaussianNoiseSchedule(kind=kind, log_snr_range=(-20, 20))
    assert torch.allclose(
        noise_schedule.SNR(1.0).log(), torch.Tensor([-20.0]), atol=1e-2
    )
    assert torch.allclose(
        noise_schedule.SNR(0.0).log(), torch.Tensor([20.0]), atol=1e-2
    )


@pytest.mark.parametrize("kind", ["ot_linear", "log_snr"])
def test_noise_schedule_drift_coeff(kind):
    noise_schedule = GaussianNoiseSchedule(kind=kind, log_snr_range=(-6, 6))
    ts = torch.linspace(1e-2, 1 - 1e-2, 10)
    t_map = noise_schedule.t_map(ts)  # map time to the prescribed log_SNR range

    if kind == "log_snr":
        beta = noise_schedule.beta(ts)
        # compute true beta_t
        l_range = noise_schedule.log_snr_range
        snr = torch.exp((1 - t_map) * l_range[1] + t_map * l_range[0])
        beta_true = -(l_range[0] - l_range[1]) / (snr + 1)

        assert torch.allclose(beta, beta_true, atol=1e-4)

    if kind == "ot_linear":
        beta = noise_schedule.beta(ts)
        tlen = noise_schedule.t_max - noise_schedule.t_min
        beta_true = 2.0 / (1.0 - t_map)
        assert torch.allclose(beta, beta_true, atol=1e-4)


@pytest.mark.parametrize("kind", ["ot_linear", "log_snr"])
def test_noise_schedule_diffusion_coeff(kind):
    noise_schedule = GaussianNoiseSchedule(kind=kind, log_snr_range=(-6, 6))
    ts = torch.linspace(1e-2, 1 - 1e-2, 10)
    t_map = noise_schedule.t_map(ts)  # map time to the prescribed log_SNR range

    if kind == "log_snr":
        g = noise_schedule.g(ts)

        # compute true beta_t
        l_range = noise_schedule.log_snr_range
        snr = torch.exp((1 - t_map) * l_range[1] + t_map * l_range[0])
        g_true = (-(l_range[0] - l_range[1]) / (snr + 1)).sqrt()

        assert torch.allclose(g, g_true, atol=1e-4)

    if kind == "ot_linear":
        g = noise_schedule.g(ts)
        g_true = (2.0 * t_map / (1.0 - t_map)).sqrt()
        assert torch.allclose(g, g_true, atol=1e-4)


def test_gaussian_noise_schedule():
    from chroma.layers.structure.diffusion import GaussianNoiseSchedule

    ot_noise = GaussianNoiseSchedule(kind="ot_linear")

    log_snr_noise = GaussianNoiseSchedule(kind="log_snr")
    noise = LegacyNoiseSchedule(kind="log_snr")

    assert torch.allclose(
        noise.alpha(torch.linspace(0, 1, 20)),
        log_snr_noise.SSNR(torch.linspace(0, 1, 20)),
    )
    assert torch.allclose(
        noise.alpha(torch.linspace(0, 1, 20)),
        log_snr_noise.alpha(torch.linspace(0, 1, 20)).pow(2),
    )
    assert torch.allclose(
        noise.beta(torch.linspace(0, 1, 20)).sqrt(),
        log_snr_noise.g(torch.linspace(0, 1, 20)),
        atol=5e-4,
    )

    assert torch.allclose(
        noise.beta(torch.linspace(0, 1, 20)),
        log_snr_noise.beta(torch.linspace(0, 1, 20)),
        atol=5e-4,
    )

    # SNR_derivative from previous impelementation is susceptible from floating point error,
    # commenting out this test.
    # assert torch.allclose(
    #     noise.SNR_derivative(torch.linspace(0, 1, 20)),
    #     log_snr_noise.SNR_derivative(torch.linspace(0, 1, 20)),
    #     atol=5e-4,
    # )

    assert torch.allclose(ot_noise.log_SNR(1.0), torch.Tensor([-7.00]))
    assert torch.allclose(ot_noise.log_SNR(0.0), torch.Tensor([13.50]))
    assert torch.allclose(
        log_snr_noise.prob_SSNR(torch.linspace(0.01, 0.99, 5)),
        noise.prob_alpha(torch.linspace(0.01, 0.99, 5)),
    )


@pytest.fixture(scope="session")
def XCS():
    repo = Path(chroma.__file__).parent.parent
    test_cif = str(Path(repo, "tests", "resources", "6wgl.cif"))
    X, C, S = Protein(test_cif).to_XCS()
    return X, C, S


@pytest.mark.parametrize("kind", ["log", "linear", "log_snr"])
def test_noise_schedule_log_alpha_inverse(kind):
    noise_schedule = LegacyNoiseSchedule(kind=kind)
    t = torch.tensor([0.05, 0.1, 0.2, 0.5, 0.8, 0.9, 0.95])
    log_alpha = noise_schedule.log_alpha(t)
    t2 = noise_schedule.log_alpha_inverse(log_alpha)
    assert torch.allclose(t2, t, atol=1e-2)


@pytest.mark.parametrize("kind", ["log", "linear"])
def test_noise_schedule_SNR_inverse(kind):
    noise_schedule = LegacyNoiseSchedule(kind=kind)
    t = torch.tensor([0.05, 0.1, 0.2, 0.5, 0.8, 0.9, 0.95])
    SNR = noise_schedule.SNR(t)
    t2 = noise_schedule.SNR_inverse(SNR)
    assert torch.allclose(t2, t, rtol=1e-4)


def debug_importance_weights_alpha(debug_plot=False):
    """Debug plot"""
    noise_schedule = LegacyNoiseSchedule(kind="log_snr")
    # Difficult to integrate numerically, but the below simulations check out
    alpha = torch.Tensor(np.linspace(0.01, 0.99, 1000))
    prob_alpha = noise_schedule.prob_alpha(alpha)

    if debug_plot:
        from matplotlib import pyplot as plt

        T = torch.Tensor(np.linspace(1e-3, 1.0 - 1e-3, 1000))
        alpha = noise_schedule.alpha(T)
        prob_alpha = noise_schedule.prob_alpha(alpha)

        plt.subplot(3, 1, 1)
        plt.plot(T.data.numpy(), alpha.data.numpy())
        plt.xlim([0, 1])
        plt.xlabel("t")
        plt.ylabel("alpha")

        plt.subplot(3, 1, 2)
        plt.hist(alpha.data.numpy(), bins=100, density=True)
        plt.plot(alpha, prob_alpha.data.numpy())
        plt.xlim([0, 1])
        plt.ylim([0, 10])
        plt.xlabel("alpha")
        plt.ylabel("p(alpha)")

        plt.subplot(3, 1, 3)
        plt.plot(T.data.numpy(), (1.0 / prob_alpha).data.numpy())
        plt.xlim([0, 1])
        plt.xlabel("t")
        plt.ylabel("importance weights")
        plt.tight_layout()
        plt.show()
    return


def test_invertibility_X_Z(gaussian_noise, XCS):
    """Test the forward and inverse transforms for the Diffusion MVN."""
    X_native, C, S = XCS

    t = 0.5
    # Sample something with noise
    X = gaussian_noise(X_native, C, t=t)
    alpha = gaussian_noise.noise_schedule.alpha(t=t)
    sigma = gaussian_noise.noise_schedule.sigma(t=t)

    # Cycle constraint
    Z = gaussian_noise._X_to_Z(X, X_native, C, alpha, sigma)
    X_cycle = gaussian_noise._Z_to_X(Z, X_native, C, alpha, sigma)
    Z_cycle = gaussian_noise._X_to_Z(X_cycle, X_native, C, alpha, sigma)
    X_cycle = gaussian_noise._Z_to_X(Z_cycle, X_native, C, alpha, sigma)
    Z_cycle = gaussian_noise._X_to_Z(X_cycle, X_native, C, alpha, sigma)

    X = backbone.impute_masked_X(X, C)
    X_cycle = backbone.impute_masked_X(X_cycle, C)

    assert torch.allclose(X, X_cycle, atol=1e-3)
    assert torch.allclose(Z, Z_cycle, atol=1e-3)


@pytest.mark.parametrize("sde_func", ["reverse_sde", "ode"])
def test_sample_sde(gaussian_noise, XCS, sde_func):
    X_native, C, S = XCS

    def X0_func(X, C, t):
        return X_native

    out = gaussian_noise.sample_sde(
        X0_func=X0_func, C=C, X_init=None, N=40, sde_func=sde_func
    )
    _, rmsd_val = rmsd.BackboneRMSD().align(out["X_sample"], X_native, C=C)
    assert rmsd_val < 0.2


def test_elbo(gaussian_noise, XCS):
    X_native, C, S = XCS

    def X0_func(X, C, t):
        return X_native

    elbo = gaussian_noise.estimate_elbo(X0_func, X_native, C)

    assert elbo > 5.0  # the likelihood of dirac delta approaches infinity

    elbo = gaussian_noise.estimate_elbo(
        X0_func, X_native + torch.randn_like(X_native), C
    )

    assert elbo < 0.0  # the likelihood of dirac delta approaches infinity


def test_logp(gaussian_noise, XCS):
    X_native, C, S = XCS

    # imputation
    X_native = backbone.center_X(X_native, C)
    X_native = backbone.impute_masked_X(X_native, C)
    C = C

    def X0_func(X, C, t):
        return X_native

    logp = gaussian_noise.estimate_logp(X0_func, X_native, C, N=50)

    assert logp > 5.0  # the likelihood of dirac delta approaches infinity

    logp = gaussian_noise.estimate_logp(
        X0_func, X_native + torch.randn_like(X_native), C, N=50
    )

    assert logp < 0.0


def test_reconloss(gaussian_noise, XCS):
    X_native, C, S = XCS
    loss_func = ReconstructionLosses(diffusion=gaussian_noise)
    loss_func(X_native, X_native, C, 0.5)


def test_score_function(gaussian_noise):
    """Test the forward and inverse transforms for the Diffusion MVN."""
    t = 0.9

    # Sample something with nois
    from chroma.layers.structure.backbone import ProteinBackbone

    length_backbones = [100]
    X_native = ProteinBackbone(
        num_batch=1, num_residues=sum(length_backbones), init_state="alpha",
    )()

    C = torch.cat(
        [torch.full([rep], i + 1) for i, rep in enumerate(length_backbones)]
    ).expand(X_native.shape[0], -1)

    S = torch.zeros_like(C)

    X = gaussian_noise(X_native, C, t=t)

    def X0_func(X, C, t):
        return X_native

    score_autodiff = gaussian_noise.score(X, X0_func, C, t=t)
    score_direct = gaussian_noise._score_direct(X, X0_func, C, t=t)

    assert torch.allclose(score_autodiff, score_direct, atol=1e-1)

    # Sanity checks
    if False:
        from chroma.data import xcs
        from chroma.layers.structure.diffusion import (
            _debug_viz_gradients,
            _debug_viz_XZC,
        )

        covariance_model = noise.base_gaussian.covariance_model
        xcs.XCS_to_system(X, C, S).writeCIF("test_noise.cif", "")
        _debug_viz_gradients(
            f"test_{covariance_model}_score_autodiff.pml",
            [X],
            [score_autodiff],
            C,
            S,
            name="score_autodiff",
            color="red",
        )
        _debug_viz_gradients(
            f"test_{covariance_model}_score_icov.pml",
            [X],
            [score_icov],
            C,
            S,
            name="score_icov",
            color="blue",
        )

        from matplotlib import pyplot as plt

        plt.figure()
        plt.subplot(3, 1, 1)
        plt.plot((score_autodiff - score_icov).data.numpy().flatten())
        plt.subplot(3, 1, 2)
        plt.plot(score_icov.data.numpy().flatten())
        plt.subplot(3, 1, 3)
        plt.plot(C.data.numpy().flatten())
        plt.savefig(f"test_{covariance_model}_scores.pdf")

        # mask = (C > 0).float().reshape(C.shape[0], C.shape[1], 1, 1)
        # score_decorrelate = mask * noise.base_gaussian.multiply_covariance(score_autodiff, C)
        # _debug_viz_gradients("term_repulsion.pml", [X], [X_centered], C, S)
        # _debug_viz_gradients("term_score_function.pml", [X], [score_decorrelate], C, S)
        # X_impute = backbone.impute_masked_X(X, C)
        # flow_gradient = noise.flow_gradient(score_autodiff, X_impute, C, t=t)
        # _debug_viz_gradients("term_net.pml", [X], [flow_gradient], C, S)

    # TODO: Diagnose and fix tiny boundary discrepancies
    # at missing change edges which make this test fail
    # assert torch.allclose(score_autodiff, score_icov, atol=1e-1)