Spaces:
Sleeping
Sleeping
File size: 45,003 Bytes
ce7bf5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 |
# Copyright Generate Biomedicines, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Layers for building graph neural networks.
This module contains layers for building neural networks that can process
graph-structured data. The internal representations of these layers
are node and edge embeddings.
"""
from typing import Callable, List, Optional, Tuple
import torch
import torch.nn as nn
from torch.utils.checkpoint import checkpoint
from tqdm.autonotebook import tqdm
from chroma.layers.attention import Attention
class GraphNN(nn.Module):
"""Graph neural network with optional edge updates.
Args:
num_layers (int): Number of layers.
dim_nodes (int): Hidden dimension of node tensor.
dim_edges (int): Hidden dimension of edge tensor.
dropout (float): Dropout rate.
node_mlp_layers (int): Node update function, number of hidden layers.
Default is 1.
node_mlp_dim (int): Node update function, hidden dimension.
Default is to match MLP output dimension.
update_edge (Boolean): Include an edge-update step. Default: True
edge_mlp_layers (int): Edge update function, number of hidden layers.
Default is 1.
edge_mlp_dim (int): Edge update function, hidden dimension.
Default is to match MLP output dimension.
mlp_activation (str): MLP nonlinearity.
`'relu'`: Rectified linear unit.
`'softplus'`: Softplus.
norm (str): Which normalization function to apply between layers.
`'transformer'`: Default layernorm
`'layer'`: Masked Layer norm with shape (input.shape[1:])
`'instance'`: Masked Instance norm
scale (float): Scaling factor of edge input when updating node (default=1.0)
attentional (bool): If True, use attention for message aggregation function
instead of a sum. Default is False.
num_attention_heads (int): Number of attention heads (if attentional) to use.
Default is 4.
Inputs:
node_h (torch.Tensor): Node features with shape
`(num_batch, num_nodes, dim_nodes)`.
edge_h (torch.Tensor): Edge features with shape
`(num_batch, num_nodes, num_neighbors, dim_edges)`.
edge_idx (torch.LongTensor): Edge indices for neighbors with shape
`(num_batch, num_nodes, num_neighbors)`.
mask_i (tensor, optional): Node mask with shape `(num_batch, num_nodes)`
mask_ij (tensor, optional): Edge mask with shape
`(num_batch, num_nodes, num_neighbors)`
Outputs:
node_h_out (torch.Tensor): Updated node features with shape
`(num_batch, num_nodes, dim_nodes)`.
edge_h_out (torch.Tensor): Updated edge features with shape
`(num_batch, num_nodes, num_neighbors, dim_edges)`.
"""
def __init__(
self,
num_layers: int,
dim_nodes: int,
dim_edges: int,
node_mlp_layers: int = 1,
node_mlp_dim: Optional[int] = None,
edge_update: bool = True,
edge_mlp_layers: int = 1,
edge_mlp_dim: Optional[int] = None,
mlp_activation: str = "relu",
dropout: float = 0.0,
norm: str = "transformer",
scale: float = 1.0,
skip_connect_input: bool = False,
attentional: bool = False,
num_attention_heads: int = 4,
checkpoint_gradients: bool = False,
):
super(GraphNN, self).__init__()
## 残差网络
self.skip_connect_input = skip_connect_input
"""
优化内存:正常的训练过程中,为了计算梯度,需要存储前向传播中所有层的激活值。
使用梯度检查点时,只在特定层保留这些激活值,并在需要时重新计算它们
"""
self.checkpoint_gradients = checkpoint_gradients
self.layers = nn.ModuleList(
[
GraphLayer(
dim_nodes=dim_nodes,
dim_edges=dim_edges,
node_mlp_layers=node_mlp_layers,
node_mlp_dim=node_mlp_dim,
edge_update=edge_update,
edge_mlp_layers=edge_mlp_layers,
edge_mlp_dim=edge_mlp_dim,
mlp_activation=mlp_activation,
dropout=dropout,
norm=norm,
scale=scale,
attentional=attentional,
num_attention_heads=num_attention_heads,
)
for _ in range(num_layers)
]
)
def forward(
self,
node_h: torch.Tensor,
edge_h: torch.Tensor,
edge_idx: torch.LongTensor,
mask_i: Optional[torch.Tensor] = None,
mask_ij: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
# Run every layer sequentially
node_h_init = node_h
edge_h_init = edge_h
for i, layer in enumerate(self.layers):
if self.skip_connect_input:
node_h = node_h + node_h_init
edge_h = edge_h + edge_h_init
# Update edge and node
node_h, edge_h = self.checkpoint(
layer, node_h, edge_h, edge_idx, mask_i, mask_ij
)
if self.skip_connect_input:
node_h = node_h - node_h_init
edge_h = edge_h - edge_h_init
# If mask was provided, apply it
if mask_i is not None:
node_h = node_h * (mask_i.unsqueeze(-1) != 0).type(torch.float32)
if mask_ij is not None:
edge_h = edge_h * (mask_ij.unsqueeze(-1) != 0).type(torch.float32)
return node_h, edge_h
def checkpoint(self, layer, *args):
if self.checkpoint_gradients:
return checkpoint(layer, *args)
else:
return layer(*args)
def sequential(
self,
tensors: dict,
pre_step_function: Callable = None,
post_step_function: Callable = None,
) -> dict:
"""Decode the GNN sequentially along the node index `t`, with callbacks.
Args:
tensors (dict): Initial set of state tensors. At minimum this should
include the arguments to `forward`, namely `node_h`, `edge_h`,
`edge_idx`, `mask_i`, and `mask_ij`.
pre_step_function (function, optional): Callback function that is
optionally applied to `tensors` before each sequential GNN step as
`tensors_new = pre_step_function(t, pre_step_function)` where `t` is
the node index being updated. It should update elements of the
`tensors` dictionary, and it can access and update the intermediate
GNN state cache via the keyed lists of tensors in `node_h_cache` and
`edge_h_cache`.
post_step_function (function, optional): Same as `pre_step_function`, but
optionally applied after each sequential GNN step.
Returns:
tensors (dict): Processed set of tensors.
"""
# Initialize the state cache
tensors["node_h_cache"], tensors["edge_h_cache"] = self.init_steps(
tensors["node_h"], tensors["edge_h"]
)
# Sequential iteration
num_steps = tensors["node_h"].size(1)
for t in tqdm(range(num_steps), desc="Sequential decoding"):
if pre_step_function is not None:
tensors = pre_step_function(t, tensors)
tensors["node_h_cache"], tensors["edge_h_cache"] = self.step(
t,
tensors["node_h_cache"],
tensors["edge_h_cache"],
tensors["edge_idx"],
tensors["mask_i"],
tensors["mask_ij"],
)
if post_step_function is not None:
tensors = post_step_function(t, tensors)
return tensors
def init_steps(
self, node_h: torch.Tensor, edge_h: torch.Tensor
) -> Tuple[List[torch.Tensor], List[torch.Tensor]]:
"""Initialize cached node and edge features.
Args:
node_h (torch.Tensor): Node features with shape
`(num_batch, num_nodes, dim_nodes)`.
edge_h (torch.Tensor): Edge features with shape
`(num_batch, num_nodes, num_neighbors, dim_edges)`.
Returns:
node_h_cache (torch.Tensor): List of cached node features with `num_layers + 1`
tensors of shape `(num_batch, num_nodes, dim_nodes)`.
edge_h_cache (torch.Tensor): List of cached edge features with `num_layers + 1`
tensors of shape `(num_batch, num_nodes, num_neighbors, dim_edges)`.
"""
num_layers = len(self.layers)
node_h_cache = [node_h.clone() for _ in range(num_layers + 1)]
edge_h_cache = [edge_h.clone() for _ in range(num_layers + 1)]
return node_h_cache, edge_h_cache
def step(
self,
t: int,
node_h_cache: List[torch.Tensor],
edge_h_cache: List[torch.Tensor],
edge_idx: torch.LongTensor,
mask_i: Optional[torch.Tensor] = None,
mask_ij: Optional[torch.Tensor] = None,
) -> Tuple[List[torch.Tensor], List[torch.Tensor]]:
"""Process GNN update for a specific node index t from cached intermediates.
Inputs:
t (int): Node index to decode.
node_h_cache (List[torch.Tensor]): List of cached node features with
`num_layers + 1` tensors of shape `(num_batch, num_nodes, dim_nodes)`.
edge_h_cache (List[torch.Tensor]): List of cached edge features with
`num_layers + 1` tensors of shape
`(num_batch, num_nodes, num_neighbors, dim_edges)`.
edge_idx (torch.LongTensor): Edge indices for neighbors with shape
`(num_batch, num_nodes, num_neighbors)`.
mask_i (torch.Tensor, optional): Node mask with shape
`(num_batch, num_nodes)`.
mask_ij (torch.Tensor, optional): Edge mask with shape
`(num_batch, num_nodes, num_neighbors)`.
Outputs:
node_h_cache (List[torch.Tensor]): Updated list of cached node features
with `num_layers + 1` tensors of shape
`(num_batch, num_nodes, dim_nodes)`. This method updates the tensors
in place for memory.
edge_h_cache (List[torch.Tensor]): Updated list of cached edge features
with `num_layers + 1` tensors of shape
`(num_batch, num_nodes, num_neighbors, dim_edges)`.
"""
if self.skip_connect_input:
raise NotImplementedError
for i, layer in enumerate(self.layers):
# Because the edge updates depend on the updated nodes,
# we need both the input node features node_h and also
# the previous output node states node_h
node_h = node_h_cache[i]
node_h_out = node_h_cache[i + 1]
edge_h = edge_h_cache[i]
# Update edge and node
node_h_t, edge_h_t = checkpoint(
layer.step, t, node_h, node_h_out, edge_h, edge_idx, mask_i, mask_ij
)
# Scatter them in place
node_h_cache[i + 1].scatter_(
1, (t * torch.ones_like(node_h_t)).long(), node_h_t
)
edge_h_cache[i + 1].scatter_(
1, (t * torch.ones_like(edge_h_t)).long(), edge_h_t
)
return node_h_cache, edge_h_cache
## GNNLayer
class GraphLayer(nn.Module):
"""Graph layer that updates each node i given adjacent nodes and edges.
Args:
dim_nodes (int): Hidden dimension of node tensor.
dim_edges (int): Hidden dimension of edge tensor.
node_mlp_layers (int): Node update function, number of hidden layers.
Default: 1.
node_mlp_dim (int): Node update function, hidden dimension.
Default: Matches MLP output dimension.
update_edge (Boolean): Include an edge-update step. Default: True
edge_mlp_layers (int): Edge update function, number of hidden layers.
Default: 1.
edge_mlp_dim (int): Edge update function, hidden dimension.
Default: Matches MLP output dimension.
mlp_activation (str): MLP nonlinearity.
`'relu'`: Rectified linear unit.
`'softplus'`: Softplus.
dropout (float): Dropout rate.
norm (str): Which normalization function to apply between layers.
`'transformer'`: Default layernorm
`'layer'`: Masked Layer norm with shape (input.shape[1:])
`'instance'`: Masked Instance norm
scale (float): Scaling factor of edge input when updating node (default=1.0)
Inputs:
node_h (torch.Tensor): Node features with shape
`(num_batch, num_nodes, dim_nodes)`.
edge_h (torch.Tensor): Edge features with shape
`(num_batch, num_nodes, num_neighbors, dim_edges)`.
edge_idx (torch.LongTensor): Edge indices for neighbors with shape
`(num_batch, num_nodes, num_neighbors)`.
mask_i (tensor, optional): Node mask with shape `(num_batch, num_nodes)`
mask_ij (tensor, optional): Edge mask with shape
`(num_batch, num_nodes, num_neighbors)`
Outputs:
node_h_out (torch.Tensor): Updated node features with shape
`(num_batch, num_nodes, dim_nodes)`.
edge_h_out (torch.Tensor): Updated edge features with shape
`(num_batch, num_nodes, num_neighbors, dim_nodes)`.
"""
def __init__(
self,
dim_nodes: int,
dim_edges: int,
node_mlp_layers: int = 1,
node_mlp_dim: Optional[int] = None,
edge_update: bool = True,
edge_mlp_layers: int = 1,
edge_mlp_dim: Optional[int] = None,
mlp_activation: str = "relu",
dropout: float = 0.0,
norm: str = "transformer",
scale: float = 1.0,
attentional: bool = False,
num_attention_heads: int = 4,
):
super(GraphLayer, self).__init__()
# Store scale
self.scale = scale
self.dim_nodes = dim_nodes
self.dim_edges = dim_edges
self.attentional = attentional
self.node_norm_layer = MaskedNorm(
dim=1, num_features=dim_nodes, affine=True, norm=norm
)
self.message_mlp = MLP(
dim_in=2 * dim_nodes + dim_edges,
dim_out=dim_nodes,
num_layers_hidden=edge_mlp_layers,
dim_hidden=edge_mlp_dim,
activation=mlp_activation,
dropout=dropout,
)
self.update_mlp = MLP(
dim_in=2 * dim_nodes,
dim_out=dim_nodes,
num_layers_hidden=node_mlp_layers,
dim_hidden=node_mlp_dim,
activation=mlp_activation,
dropout=dropout,
)
self.edge_update = edge_update
self.edge_norm_layer = MaskedNorm(
dim=2, num_features=dim_edges, affine=True, norm=norm
)
if self.edge_update:
self.edge_mlp = MLP(
dim_in=2 * dim_nodes + dim_edges,
dim_out=dim_edges,
num_layers_hidden=edge_mlp_layers,
dim_hidden=edge_mlp_dim,
activation=mlp_activation,
dropout=dropout,
)
if self.attentional:
self.attention = Attention(n_head=num_attention_heads, d_model=dim_nodes)
## attention
def attend(
self, node_h: torch.Tensor, messages: torch.Tensor, mask_ij: torch.Tensor
) -> torch.Tensor:
B, L, K, D = messages.size()
queries = node_h.reshape(-1, 1, D)
keys = messages.reshape(-1, K, D)
values = messages.reshape(-1, K, D)
mask = mask_ij.reshape(-1, 1, 1, K).bool() if mask_ij is not None else None
return self.attention(queries, keys, values, mask=mask).reshape(B, L, D)
## _normalize:Edge and node
def _normalize(self, node_h, edge_h, mask_i=None, mask_ij=None):
# Normalize node and edge embeddings
node_h_norm = self.node_norm_layer(node_h, mask_i)
edge_h_norm = self.edge_norm_layer(edge_h, mask_ij)
return node_h_norm, edge_h_norm
## ?
def _normalize_t(
self, edge_node_stack_t, mask_ij_t, include_nodes=True, include_edges=True
):
# Apply normalization (since we have only normalized time t information)
node_i_t = edge_node_stack_t[:, :, :, : self.dim_nodes]
node_j_t = edge_node_stack_t[:, :, :, self.dim_nodes : 2 * self.dim_nodes]
edge_h_t = edge_node_stack_t[:, :, :, 2 * self.dim_nodes :]
if include_nodes:
node_i_t = self.node_norm_layer(node_i_t, mask_ij_t)
node_j_t = self.node_norm_layer(node_j_t, mask_ij_t)
if include_edges:
edge_h_t = self.edge_norm_layer(edge_h_t, mask_ij_t)
edge_node_stack_t = torch.cat([node_i_t, node_j_t, edge_h_t], -1)
return edge_node_stack_t
def _update_nodes(
self, node_h, node_h_norm, edge_h_norm, edge_idx, mask_i=None, mask_ij=None
):
"""Update nodes given adjacent nodes and edges"""
# Compute messages at each ij
edge_node_stack = pack_edges(node_h_norm, edge_h_norm, edge_idx)
messages = self.message_mlp(edge_node_stack)
if mask_ij is not None:
messages = messages * mask_ij.unsqueeze(-1)
# Aggregate messages
if self.attentional:
message = self.attend(node_h_norm, messages, mask_ij)
else:
message = messages.sum(2) / self.scale
node_stack = torch.cat([node_h_norm, message], -1)
# Update nodes given aggregated messages
node_h_out = node_h + self.update_mlp(node_stack)
if mask_i is not None:
node_h_out = node_h_out * mask_i.unsqueeze(-1)
return node_h_out
def _update_nodes_t(
self,
t,
node_h,
node_h_norm_t,
edge_h_norm_t,
edge_idx_t,
mask_i_t=None,
mask_ij_t=None,
):
"""Update nodes at index t given adjacent nodes and edges"""
# Compute messages at each ij
edge_node_stack_t = mask_ij_t.unsqueeze(-1) * pack_edges_step(
t, node_h, edge_h_norm_t, edge_idx_t
)
# Apply normalization of gathered tensors
edge_node_stack_t = self._normalize_t(
edge_node_stack_t, mask_ij_t, include_edges=False
)
messages_t = self.message_mlp(edge_node_stack_t)
if mask_ij_t is not None:
messages_t = messages_t * mask_ij_t.unsqueeze(-1)
# Aggregate messages
if self.attentional:
message_t = self.attend(node_h_norm_t, messages_t, mask_ij_t)
else:
message_t = messages_t.sum(2) / self.scale
node_stack_t = torch.cat([node_h_norm_t, message_t], -1)
# Update nodes given aggregated messages
node_h_t = node_h[:, t, :].unsqueeze(1)
node_h_out_t = node_h_t + self.update_mlp(node_stack_t)
if mask_i_t is not None:
node_h_out_t = node_h_out_t * mask_i_t.unsqueeze(-1)
return node_h_out_t
def _update_edges(self, edge_h, node_h_out, edge_h_norm, edge_idx, mask_ij):
"""Update edges given adjacent nodes and edges"""
edge_node_stack = pack_edges(node_h_out, edge_h_norm, edge_idx)
edge_h_out = edge_h + self.edge_mlp(edge_node_stack)
if mask_ij is not None:
edge_h_out = edge_h_out * mask_ij.unsqueeze(-1)
return edge_h_out
def _update_edges_t(
self, t, edge_h_t, node_h_out, edge_h_t_norm, edge_idx_t, mask_ij_t
):
"""Update edges given adjacent nodes and edges"""
edge_node_stack_t = pack_edges_step(t, node_h_out, edge_h_t_norm, edge_idx_t)
edge_h_out_t = edge_h_t + self.edge_mlp(edge_node_stack_t)
if mask_ij_t is not None:
edge_h_out_t = edge_h_out_t * mask_ij_t.unsqueeze(-1)
return edge_h_out_t
def forward(
self,
node_h: torch.Tensor,
edge_h: torch.Tensor,
edge_idx: torch.LongTensor,
mask_i: Optional[torch.Tensor] = None,
mask_ij: Optional[torch.Tensor] = None,
):
node_h_norm, edge_h_norm = self._normalize(node_h, edge_h, mask_i, mask_ij)
if mask_i is not None:
mask_i = (mask_i != 0).type(torch.float32)
if mask_ij is not None:
mask_ij = (mask_ij != 0).type(torch.float32)
node_h_out = self._update_nodes(
node_h, node_h_norm, edge_h_norm, edge_idx, mask_i, mask_ij
)
edge_h_out = None
if self.edge_update:
edge_h_out = self._update_edges(
edge_h, node_h_out, edge_h_norm, edge_idx, mask_ij
)
return node_h_out, edge_h_out
def step(
self,
t: int,
node_h: torch.Tensor,
node_h_out: torch.Tensor,
edge_h: torch.Tensor,
edge_idx: torch.LongTensor,
mask_i: Optional[torch.Tensor] = None,
mask_ij: Optional[torch.Tensor] = None,
):
"""Compute update for a single node index `t`.
This function can be useful for sequential computation of graph
updates, for example with autoregressive architectures.
Args:
t (int): Index of node dimension to update
node_h (torch.Tensor): Node features with shape
`(num_batch, num_nodes, dim_nodes)`.
node_h_out (torch.Tensor): Cached outputs of preceding steps with shape
`(num_batch, num_nodes, dim_nodes)`.
edge_h (torch.Tensor): Edge features with shape
`(num_batch, num_nodes, num_neighbors, dim_edges)`.
edge_idx (torch.LongTensor): Edge indices for neighbors with shape
`(num_batch, num_nodes, num_neighbors)`.
mask_i (tensor, optional): Node mask with shape `(num_batch, num_nodes)`
mask_ij (tensor, optional): Edge mask with shape
`(num_batch, num_nodes, num_neighbors)`
Resturns:
node_h_t (torch.Tensor): Updated node features with shape
`(num_batch, 1, dim_nodes)`.
edge_h_t (torch.Tensor): Updated edge features with shape
`(num_batch, 1, num_neighbors, dim_nodes)`.
"""
node_h_t = node_h[:, t, :].unsqueeze(1)
edge_h_t = edge_h[:, t, :, :].unsqueeze(1)
edge_idx_t = edge_idx[:, t, :].unsqueeze(1)
mask_i_t = mask_i[:, t].unsqueeze(1)
mask_ij_t = mask_ij[:, t, :].unsqueeze(1)
""" For a single step we need to apply the normalization both at node t and
also for all of the neighborhood tensors that feed in at t.
"""
node_h_t_norm, edge_h_t_norm = self._normalize(
node_h_t, edge_h_t, mask_i_t, mask_ij_t
)
node_h_t = self._update_nodes_t(
t, node_h, node_h_t_norm, edge_h_t_norm, edge_idx_t, mask_i_t, mask_ij_t
)
if self.edge_update:
node_h_out = node_h_out.scatter(
1, (t * torch.ones_like(node_h_t)).long(), node_h_t
)
edge_h_t = self._update_edges_t(
t, edge_h_t, node_h_out, edge_h_t_norm, edge_idx_t, mask_ij_t
)
return node_h_t, edge_h_t
## 单纯进行线性变换:Equivariance
class MLP(nn.Module):
"""Multilayer perceptron with variable input, hidden, and output dims.
Args:
dim_in (int): Feature dimension of input tensor.
dim_hidden (int or None): Feature dimension of intermediate layers.
Defaults to matching output dimension.
dim_out (int or None): Feature dimension of output tensor.
Defaults to matching input dimension.
num_layers_hidden (int): Number of hidden MLP layers.
activation (str): MLP nonlinearity.
`'relu'`: Rectified linear unit.
`'softplus'`: Softplus.
dropout (float): Dropout rate. Default is 0.
Inputs:
h (torch.Tensor): Input tensor with shape `(..., dim_in)`
Outputs:
h (torch.Tensor): Input tensor with shape `(..., dim_in)`
"""
def __init__(
self,
dim_in: int,
dim_hidden: Optional[int] = None,
dim_out: Optional[int] = None,
num_layers_hidden: int = 1,
activation: str = "relu",
dropout: float = 0.0,
):
super(MLP, self).__init__()
# Default is dimension preserving
dim_out = dim_out if dim_out is not None else dim_in
dim_hidden = dim_hidden if dim_hidden is not None else dim_out
nonlinearites = {"relu": nn.ReLU, "softplus": nn.Softplus}
activation_func = nonlinearites[activation]
if num_layers_hidden == 0:
layers = [nn.Linear(dim_in, dim_out)]
else:
layers = []
for i in range(num_layers_hidden):
d_1 = dim_in if i == 0 else dim_hidden
layers = layers + [
nn.Linear(d_1, dim_hidden),
activation_func(),
nn.Dropout(dropout),
]
layers = layers + [nn.Linear(dim_hidden, dim_out)]
self.layers = nn.Sequential(*layers)
def forward(self, h: torch.Tensor) -> torch.Tensor:
return self.layers(h)
def collect_neighbors(node_h: torch.Tensor, edge_idx: torch.Tensor) -> torch.Tensor:
"""Collect neighbor node features as edge features.
For each node i, collect the embeddings of neighbors {j in N(i)} as edge
features neighbor_ij.
Args:
node_h (torch.Tensor): Node features with shape
`(num_batch, num_nodes, num_features)`.
edge_idx (torch.LongTensor): Edge indices for neighbors with shape
`(num_batch, num_nodes, num_neighbors)`.
Returns:
neighbor_h (torch.Tensor): Edge features containing neighbor node information
with shape `(num_batch, num_nodes, num_neighbors, num_features)`.
"""
num_batch, num_nodes, num_neighbors = edge_idx.shape
num_features = node_h.shape[2]
# Flatten for the gather operation then reform the full tensor
idx_flat = edge_idx.reshape([num_batch, num_nodes * num_neighbors, 1])
idx_flat = idx_flat.expand(-1, -1, num_features)
neighbor_h = torch.gather(node_h, 1, idx_flat)
neighbor_h = neighbor_h.reshape((num_batch, num_nodes, num_neighbors, num_features))
return neighbor_h
def collect_edges(
edge_h_dense: torch.Tensor, edge_idx: torch.LongTensor
) -> torch.Tensor:
"""Collect sparse edge features from a dense pairwise tensor.
Args:
edge_h_dense (torch.Tensor): Dense edges features with shape
`(num_batch, num_nodes, num_nodes, num_features)`.
edge_idx (torch.LongTensor): Edge indices for neighbors with shape
`(num_batch, num_nodes, num_neighbors)`.
Returns:
edge_h (torch.Tensor): Edge features with shape
(num_batch, num_nodes, num_neighbors, num_features)`.
"""
gather_idx = edge_idx.unsqueeze(-1).expand(-1, -1, -1, edge_h_dense.size(-1))
edge_h = torch.gather(edge_h_dense, 2, gather_idx)
return edge_h
def collect_edges_transpose(
edge_h: torch.Tensor, edge_idx: torch.LongTensor, mask_ij: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Collect edge embeddings of reversed (transposed) edges in-place.
Args:
edge_h (torch.Tensor): Edge features with shape
`(num_batch, num_nodes, num_neighbors, num_features_edges)`.
edge_idx (torch.LongTensor): Edge indices for neighbors with shape
`(num_batch, num_nodes, num_neighbors)`.
mask_ij (torch.Tensor): Edge mask with shape
`(num_batch, num_nodes, num_neighbors)`
Returns:
edge_h_transpose (torch.Tensor): Edge features of transpose with shape
`(num_batch, num_nodes, num_neighbors, num_features_edges)`.
mask_ji (torch.Tensor): Mask indicating presence of reversed edge with shape
`(num_batch, num_nodes, num_neighbors)`.
"""
num_batch, num_residues, num_k, num_features = list(edge_h.size())
# Get indices of reverse edges
ij_to_ji, mask_ji = transpose_edge_idx(edge_idx, mask_ij)
# Gather features at reverse edges
edge_h_flat = edge_h.reshape(num_batch, num_residues * num_k, -1)
ij_to_ji = ij_to_ji.unsqueeze(-1).expand(-1, -1, num_features)
edge_h_transpose = torch.gather(edge_h_flat, 1, ij_to_ji)
edge_h_transpose = edge_h_transpose.reshape(
num_batch, num_residues, num_k, num_features
)
edge_h_transpose = mask_ji.unsqueeze(-1) * edge_h_transpose
return edge_h_transpose, mask_ji
def scatter_edges(edge_h: torch.Tensor, edge_idx: torch.LongTensor) -> torch.Tensor:
"""Scatter sparse edge features into a dense pairwise tensor.
Args:
edge_h (torch.Tensor): Edge features with shape
`(num_batch, num_nodes, num_neighbors, num_features_edges)`.
edge_idx (torch.LongTensor): Edge indices for neighbors with shape
`(num_batch, num_nodes, num_neighbors)`.
Returns:
edge_h_dense (torch.Tensor): Dense edge features with shape
`(batch_size, num_nodes, num_nodes, dimensions)`.
"""
assert edge_h.dim() == 4
assert edge_idx.dim() == 3
bs, nres, _, dim = edge_h.size()
edge_indices = edge_idx.unsqueeze(-1).repeat(1, 1, 1, dim)
result = torch.zeros(
size=(bs, nres, nres, dim), dtype=edge_h.dtype, device=edge_h.device,
)
return result.scatter(dim=2, index=edge_indices, src=edge_h)
def pack_edges(
node_h: torch.Tensor, edge_h: torch.Tensor, edge_idx: torch.LongTensor
) -> torch.Tensor:
"""Pack nodes and edge features into edge features.
Expands each edge_ij by packing node i, node j, and edge ij into
{node,node,edge}_ij.
Args:
node_h (torch.Tensor): Node features with shape
`(num_batch, num_nodes, num_features_nodes)`.
edge_h (torch.Tensor): Edge features with shape
`(num_batch, num_nodes, num_neighbors, num_features_edges)`.
edge_idx (torch.LongTensor): Edge indices for neighbors with shape
`(num_batch, num_nodes, num_neighbors)`.
Returns:
edge_packed (torch.Tensor): Concatenated node and edge features with shape
(num_batch, num_nodes, num_neighbors, num_features_nodes
+ 2*num_features_edges)`.
"""
num_neighbors = edge_h.shape[2]
node_i = node_h.unsqueeze(2).expand(-1, -1, num_neighbors, -1)
node_j = collect_neighbors(node_h, edge_idx)
edge_packed = torch.cat([node_i, node_j, edge_h], -1)
return edge_packed
def pack_edges_step(
t: int, node_h: torch.Tensor, edge_h_t: torch.Tensor, edge_idx_t: torch.LongTensor
) -> torch.Tensor:
"""Pack node and edge features into edge features for a single node index t.
Expands each edge_ij by packing node i, node j, and edge ij into
{node,node,edge}_ij.
Args:
t (int): Node index to decode.
node_h (torch.Tensor): Node features at all positions with shape
`(num_batch, num_nodes, num_features_nodes)`.
edge_h_t (torch.Tensor): Edge features at index `t` with shape
`(num_batch, 1, num_neighbors, num_features_edges)`.
edge_idx_t (torch.LongTensor): Edge indices at index `t` for neighbors with shape
`(num_batch, 1, num_neighbors)`.
Returns:
edge_packed (torch.Tensor): Concatenated node and edge features
for index `t` with shape
(num_batch, 1, num_neighbors, num_features_nodes
+ 2*num_features_edges)`.
"""
num_nodes_i = node_h.shape[1]
num_neighbors = edge_h_t.shape[2]
node_h_t = node_h[:, t, :].unsqueeze(1)
node_i = node_h_t.unsqueeze(2).expand(-1, -1, num_neighbors, -1)
node_j = collect_neighbors(node_h, edge_idx_t)
edge_packed = torch.cat([node_i, node_j, edge_h_t], -1)
return edge_packed
def transpose_edge_idx(
edge_idx: torch.LongTensor, mask_ij: torch.Tensor
) -> Tuple[torch.LongTensor, torch.Tensor]:
"""Collect edge indices of reverse edges in-place at each edge.
The tensor `edge_idx` stores a directed graph topology as a tensor of
neighbor indices, where an element `edge_idx[b,i,k]` corresponds to the
node index of neighbor `k` of node `i` in batch member `b`.
This function takes a directed graph topology and returns an index tensor
that maps, in-place, to the reversed edges (if they exist). The indices
correspond to the contracted dimension of `edge_index` when it is viewed as
`(num_batch, num_nodes * num_neighbors)`. These indices can be used in
conjunction with `torch.gather` to collect edge embeddings of `j->i` at
`i->j`. See `collect_edges_transpose` for an example.
For reverse `j->i` edges that do not exist in the directed graph, the
function also returns a binary mask `mask_ji` indicating which edges
have both `i->j` and `j->i` present in the graph.
Args:
edge_idx (torch.LongTensor): Edge indices for neighbors with shape
`(num_batch, num_nodes, num_neighbors)`.
mask_ij (torch.Tensor): Edge mask with shape
`(num_batch, num_nodes, num_neighbors)`
Returns:
ij_to_ji (torch.LongTensor): Flat indices for indexing ji in-place at ij with
shape `(num_batch, num_nodes * num_neighbors)`.
mask_ji (torch.Tensor): Mask indicating presence of reversed edge with shape
`(num_batch, num_nodes, num_neighbors)`.
"""
num_batch, num_residues, num_k = list(edge_idx.size())
# 1. Collect neighbors of neighbors
edge_idx_flat = edge_idx.reshape([num_batch, num_residues * num_k, 1]).expand(
-1, -1, num_k
)
edge_idx_neighbors = torch.gather(edge_idx, 1, edge_idx_flat)
# (b,i,j,k) gives the kth neighbor of the jth neighbor of i
edge_idx_neighbors = edge_idx_neighbors.reshape(
[num_batch, num_residues, num_k, num_k]
)
# 2. Determine which k at j maps back to i (if it exists)
residue_i = torch.arange(num_residues, device=edge_idx.device).reshape(
(1, -1, 1, 1)
)
edge_idx_match = (edge_idx_neighbors == residue_i).type(torch.float32)
return_mask, return_idx = torch.max(edge_idx_match, -1)
# 3. Build flat indices
ij_to_ji = edge_idx * num_k + return_idx
ij_to_ji = ij_to_ji.reshape(num_batch, -1)
# 4. Transpose mask
mask_ji = torch.gather(mask_ij.reshape(num_batch, -1), -1, ij_to_ji)
mask_ji = mask_ji.reshape(num_batch, num_residues, num_k)
mask_ji = mask_ij * return_mask * mask_ji
return ij_to_ji, mask_ji
def permute_tensor(
tensor: torch.Tensor, dim: int, permute_idx: torch.LongTensor
) -> torch.Tensor:
"""Permute a tensor along a dimension given a permutation vector.
Args:
tensor (torch.Tensor): Input tensor with shape
`([batch_dims], permutation_length, [content_dims])`.
dim (int): Dimension to permute along.
permute_idx (torch.LongTensor): Permutation index tensor with shape
`([batch_dims], permutation_length)`.
Returns:
tensor_permute (torch.Tensor): Permuted node features with shape
`([batch_dims], permutation_length, [content_dims])`.
"""
# Resolve absolute dimension
dim = range(len(list(tensor.shape)))[dim]
# Flatten content dimensions
shape = list(tensor.shape)
batch_dims, permute_length = shape[:dim], shape[dim]
tensor_flat = tensor.reshape(batch_dims + [permute_length] + [-1])
# Exap content dimensions
permute_idx_expand = permute_idx.unsqueeze(-1).expand(tensor_flat.shape)
tensor_permute_flat = torch.gather(tensor_flat, dim, permute_idx_expand)
tensor_permute = tensor_permute_flat.reshape(tensor.shape)
return tensor_permute
def permute_graph_embeddings(
node_h: torch.Tensor,
edge_h: torch.Tensor,
edge_idx: torch.LongTensor,
mask_i: torch.Tensor,
mask_ij: torch.Tensor,
permute_idx: torch.LongTensor,
) -> Tuple[torch.Tensor, torch.Tensor, torch.LongTensor, torch.Tensor, torch.Tensor]:
"""Permute graph embeddings given a permutation vector.
Args:
node_h (torch.Tensor): Node features with shape
`(num_batch, num_nodes, dim_nodes)`.
edge_h (torch.Tensor): Edge features with shape
`(num_batch, num_nodes, num_neighbors, dim_edges)`.
edge_idx (torch.LongTensor): Edge indices for neighbors with shape
`(num_batch, num_nodes, num_neighbors)`.
mask_i (tensor, optional): Node mask with shape `(num_batch, num_nodes)`
mask_ij (tensor, optional): Edge mask with shape
`(num_batch, num_nodes, num_neighbors)`.
permute_idx (torch.LongTensor): Permutation vector with shape
`(num_batch, num_nodes)`.
Returns:
node_h_permute (torch.Tensor): Permuted node features with shape
`(num_batch, num_nodes, dim_nodes)`.
edge_h_permute (torch.Tensor): Permuted edge features with shape
`(num_batch, num_nodes, num_neighbors, dim_edges)`.
edge_idx_permute (torch.LongTensor): Permuted edge indices for neighbors with shape
`(num_batch, num_nodes, num_neighbors)`.
mask_i_permute (tensor, optional): Permuted node mask with shape `(num_batch, num_nodes)`
mask_ij_permute (tensor, optional): Permuted edge mask with shape
`(num_batch, num_nodes, num_neighbors)`.
"""
# Permuting one-dimensional objects is straightforward gathering
node_h_permute = permute_tensor(node_h, 1, permute_idx)
edge_h_permute = permute_tensor(edge_h, 1, permute_idx)
mask_i_permute = permute_tensor(mask_i, 1, permute_idx)
mask_ij_permute = permute_tensor(mask_ij, 1, permute_idx)
"""
For edge_idx, there are two-dimensions set each edge idx that
previously pointed to j to now point to the new location
of j which is p^(-1)[j]
edge^(p)[i,k] = p^(-1)[edge[p(i),k]]
"""
# First, permute on the i dimension
edge_idx_permute_1 = permute_tensor(edge_idx, 1, permute_idx)
# Second, permute on the j dimension by using the inverse
permute_idx_inverse = torch.argsort(permute_idx, dim=-1)
edge_idx_1_flat = edge_idx_permute_1.reshape([edge_idx.shape[0], -1])
edge_idx_permute_flat = torch.gather(permute_idx_inverse, 1, edge_idx_1_flat)
edge_idx_permute = edge_idx_permute_flat.reshape(edge_idx.shape)
return (
node_h_permute,
edge_h_permute,
edge_idx_permute,
mask_i_permute,
mask_ij_permute,
)
def edge_mask_causal(edge_idx: torch.LongTensor, mask_ij: torch.Tensor) -> torch.Tensor:
"""Make an edge mask causal with mask_ij = 0 for j >= i.
Args:
edge_idx (torch.LongTensor): Edge indices for neighbors with shape
`(num_batch, num_nodes, num_neighbors)`.
mask_ij (torch.Tensor): Edge mask with shape
`(num_batch, num_nodes, num_neighbors)`.
Returns:
mask_ij_causal (torch.Tensor): Causal edge mask with shape
`(num_batch, num_nodes, num_neighbors)`.
"""
idx = torch.arange(edge_idx.size(1), device=edge_idx.device)
idx_expand = idx.reshape([1, -1, 1])
mask_ij_causal = (edge_idx < idx_expand).float() * mask_ij
return mask_ij_causal
class MaskedNorm(nn.Module):
"""Masked normalization layer.
Args:
dim (int): Dimensionality of the normalization. Can be 1 for 1D
normalization along dimension 1 or 2 for 2D normalization along
dimensions 1 and 2.
num_features (int): Channel dimension; only needed if `affine` is True.
affine (bool): If True, inclde a learnable affine transformation
post-normalization. Default is False.
norm (str): Type of normalization, can be `instance`, `layer`, or
`transformer`.
eps (float): Small number for numerical stability.
Inputs:
data (torch.Tensor): Input tensor with shape
`(num_batch, num_nodes, num_channels)` (1D) or
`(num_batch, num_nodes, num_nodes, num_channels)` (2D).
mask (torch.Tensor): Mask tensor with shape
`(num_batch, num_nodes)` (1D) or
`(num_batch, num_nodes, num_nodes)` (2D).
Outputs:
norm_data (torch.Tensor): Mask-normalized tensor with shape
`(num_batch, num_nodes, num_channels)` (1D) or
`(num_batch, num_nodes, num_nodes, num_channels)` (2D).
"""
def __init__(
self,
dim: int,
num_features: int = -1,
affine: bool = False,
norm: str = "instance",
eps: float = 1e-5,
):
super(MaskedNorm, self).__init__()
self.norm_type = norm
self.dim = dim
self.norm = norm + str(dim)
self.affine = affine
self.eps = eps
# Dimension to sum
if self.norm == "instance1":
self.sum_dims = [1]
elif self.norm == "layer1":
self.sum_dims = [1, 2]
elif self.norm == "transformer1":
self.sum_dims = [-1]
elif self.norm == "instance2":
self.sum_dims = [1, 2]
elif self.norm == "layer2":
self.sum_dims = [1, 2, 3]
elif self.norm == "transformer2":
self.sum_dims = [-1]
else:
raise NotImplementedError
# Number of features, only required if affine
self.num_features = num_features
# Affine transformation is a linear layer on the C channel
if self.affine:
self.weights = nn.Parameter(torch.rand(self.num_features))
self.bias = nn.Parameter(torch.zeros(self.num_features))
def forward(
self, data: torch.Tensor, mask: Optional[torch.Tensor] = None
) -> torch.Tensor:
# Add optional trailing singleton dimension and expand if necessary
if mask is not None:
if len(mask.shape) == len(data.shape) - 1:
mask = mask.unsqueeze(-1)
if data.shape != mask.shape:
mask = mask.expand(data.shape)
# Input shape is Batch, Channel, Dim1, (dim2 if 2d)
dims = self.sum_dims
if (mask is None) or (self.norm_type == "transformer"):
mask_mean = data.mean(dim=dims, keepdim=True)
mask_std = torch.sqrt(
(((data - mask_mean)).pow(2)).mean(dim=dims, keepdim=True) + self.eps
)
# Norm
norm_data = (data - mask_mean) / mask_std
else:
# Zeroes vector to sum all mask data
norm_data = torch.zeros_like(data).to(data.device).type(data.dtype)
for mask_id in mask.unique():
# Skip zero, since real mask
if mask_id == 0:
continue
# Transform mask to temp mask that match mask id
tmask = (mask == mask_id).type(torch.float32)
# Sum mask for mean
mask_sum = tmask.sum(dim=dims, keepdim=True)
# Data is tmask, so that mean is only for unmasked pos
mask_mean = (data * tmask).sum(dim=dims, keepdim=True) / mask_sum
mask_std = torch.sqrt(
(((data - mask_mean) * tmask).pow(2)).sum(dim=dims, keepdim=True)
/ mask_sum
+ self.eps
)
# Calculate temp norm, apply mask
tnorm = ((data - mask_mean) / mask_std) * tmask
# Sometime mask is empty, so generate nan that are conversted to 0
tnorm[tnorm != tnorm] = 0
# Add to init zero norm data
norm_data += tnorm
# Apply affine
if self.affine:
norm_data = norm_data * self.weights + self.bias
# If mask, apply mask
if mask is not None:
norm_data = norm_data * (mask != 0).type(data.dtype)
return norm_data
|