Spaces:
Sleeping
Sleeping
File size: 15,568 Bytes
ce7bf5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 |
# Copyright Generate Biomedicines, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Models for generating protein backbone structure via diffusion.
"""
from types import SimpleNamespace
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
from chroma.data.xcs import validate_XC
from chroma.layers import basic, graph
from chroma.layers.structure import backbone, diffusion, transforms
from chroma.models.graph_design import BackboneEncoderGNN
from chroma.utility.model import load_model as utility_load_model
class GraphBackbone(nn.Module):
"""Graph-based backbone generation for protein complexes.
GraphBackbone parameterizes a generative model of the backbone coordinates
of protein complexes.
Args:
See documention of `layers.structure.protein_graph.ProteinFeatureGraph`,
`graph.GraphNN`, `layers.structure.backbone.GraphBackboneUpdate` and
`layers.structure.diffusion.DiffusionChainCov` for more details on
hyperparameters.
Inputs:
X (Tensor): Backbone coordinates with shape
`(num_batch, num_residues, num_atoms, 3)`.
C (LongTensor): Chain map with shape `(num_batch, num_residues)`.
Outputs:
neglogp (Tensor): Sum of `neglogp_S` and `neglogp_chi`.
"""
def __init__(
self,
dim_nodes: int = 128,
dim_edges: int = 128,
num_neighbors: int = 30,
node_features: Tuple = (("internal_coords", {"log_lengths": True}),),
edge_features: Tuple = (
"distances_2mer",
"orientations_2mer",
"distances_chain",
),
num_layers: int = 3,
dropout: float = 0.1,
node_mlp_layers: int = 1,
node_mlp_dim: Optional[int] = None,
edge_update: bool = True,
edge_mlp_layers: int = 1,
edge_mlp_dim: Optional[int] = None,
skip_connect_input: bool = False,
mlp_activation: str = "softplus",
decoder_num_hidden: int = 512,
graph_criterion: str = "knn",
graph_random_min_local: int = 20,
backbone_update_method: str = "neighbor",
backbone_update_iterations: int = 1,
backbone_update_num_weights: int = 1,
backbone_update_unconstrained: bool = True,
use_time_features: bool = True,
time_feature_type: str = "t",
time_log_feature_scaling: float = 0.05,
noise_schedule: str = "log_snr",
noise_covariance_model: str = "brownian",
noise_beta_min: float = 0.2,
noise_beta_max: float = 70.0,
noise_log_snr_range: Tuple[float] = (-7.0, 13.5),
noise_complex_scaling: bool = False,
loss_scale: float = 10.0,
loss_scale_ssnr_cutoff: float = 0.99,
loss_function: str = "squared_fape",
checkpoint_gradients: bool = False,
prediction_type: str = "X0",
num_graph_cycles: int = 1,
**kwargs,
):
"""Initialize GraphBackbone network."""
super(GraphBackbone, self).__init__()
# Save configuration in kwargs
self.kwargs = locals()
self.kwargs.pop("self")
for key in list(self.kwargs.keys()):
if key.startswith("__") and key.endswith("__"):
self.kwargs.pop(key)
args = SimpleNamespace(**self.kwargs)
# Important global options
self.dim_nodes = args.dim_nodes
self.dim_edges = args.dim_edges
# Encoder GNN process backbone
self.num_graph_cycles = args.num_graph_cycles
self.encoders = nn.ModuleList(
[
BackboneEncoderGNN(
dim_nodes=args.dim_nodes,
dim_edges=args.dim_edges,
num_neighbors=args.num_neighbors,
node_features=args.node_features,
edge_features=args.edge_features,
num_layers=args.num_layers,
node_mlp_layers=args.node_mlp_layers,
node_mlp_dim=args.node_mlp_dim,
edge_update=args.edge_update,
edge_mlp_layers=args.edge_mlp_layers,
edge_mlp_dim=args.edge_mlp_dim,
mlp_activation=args.mlp_activation,
dropout=args.dropout,
skip_connect_input=args.skip_connect_input,
graph_criterion=args.graph_criterion,
graph_random_min_local=args.graph_random_min_local,
checkpoint_gradients=checkpoint_gradients,
)
for i in range(self.num_graph_cycles)
]
)
self.backbone_updates = nn.ModuleList(
[
backbone.GraphBackboneUpdate(
dim_nodes=args.dim_nodes,
dim_edges=args.dim_edges,
method=args.backbone_update_method,
iterations=args.backbone_update_iterations,
num_transform_weights=args.backbone_update_num_weights,
unconstrained=args.backbone_update_unconstrained,
)
for i in range(self.num_graph_cycles)
]
)
self.use_time_features = args.use_time_features
self.time_feature_type = args.time_feature_type
self.time_log_feature_scaling = time_log_feature_scaling
if self.use_time_features:
self.time_features = basic.FourierFeaturization(
d_input=1, d_model=dim_nodes, trainable=False, scale=16.0
)
self.noise_perturb = diffusion.DiffusionChainCov(
noise_schedule=args.noise_schedule,
beta_min=args.noise_beta_min,
beta_max=args.noise_beta_max,
log_snr_range=args.noise_log_snr_range,
covariance_model=args.noise_covariance_model,
complex_scaling=args.noise_complex_scaling,
)
self.noise_schedule = self.noise_perturb.noise_schedule
method = "symeig"
self.loss_scale = args.loss_scale
self.loss_scale_ssnr_cutoff = loss_scale_ssnr_cutoff
self.loss_function = args.loss_function
self.prediction_type = args.prediction_type
self._loss_eps = 1e-5
self.loss_diffusion = diffusion.ReconstructionLosses(
diffusion=self.noise_perturb, rmsd_method=method, loss_scale=args.loss_scale
)
if self.prediction_type.startswith("scale"):
self.mlp_W = graph.MLP(
dim_in=args.dim_nodes, num_layers_hidden=args.node_mlp_layers, dim_out=1
)
# Wrap sampling functions
_X0_func = lambda X, C, t: self.denoise(X, C, t)
self.sample_sde = lambda C, **kwargs: self.noise_perturb.sample_sde(
_X0_func, C, **kwargs
)
self.sample_baoab = lambda C, **kwargs: self.noise_perturb.sample_baoab(
_X0_func, C, **kwargs
)
self.sample_ode = lambda C, **kwargs: self.noise_perturb.sample_ode(
_X0_func, C, **kwargs
)
self.estimate_metrics = lambda X, C, **kwargs: self.loss_diffusion.estimate_metrics(
_X0_func, X, C, **kwargs
)
self.estimate_elbo = lambda X, C, **kwargs: self.noise_perturb.estimate_elbo(
_X0_func, X, C, **kwargs
)
self.estimate_pseudoelbo_X = lambda X, C, **kwargs: self.noise_perturb.estimate_pseudoelbo_X(
_X0_func, X, C, **kwargs
)
def _time_features(self, t):
h = {"t": lambda: t, "log_snr": lambda: self.noise_schedule.log_SNR(t)}[
self.time_feature_type
]()
if "log" in self.time_feature_type:
h = self.time_log_feature_scaling * h
time_h = self.time_features(h[:, None, None])
return time_h
@validate_XC()
def denoise(
self,
X: torch.Tensor,
C: torch.Tensor,
t: Optional[Union[float, torch.Tensor]] = None,
return_geometry: bool = False,
):
if not isinstance(t, torch.Tensor):
t = torch.Tensor([t]).float().to(X.device)
if t.shape == torch.Size([]):
t = t.unsqueeze(-1)
time_h = self._time_features(t) if self.use_time_features else None
node_h = time_h
edge_h, edge_idx, mask_ij = [None] * 3
# Normalize minimum average C-alpha distances
X_update = X
for i in range(self.num_graph_cycles):
# Encode as graph
node_h, edge_h, edge_idx, mask_i, mask_ij = self.encoders[i](
X_update,
C,
node_h_aux=node_h,
edge_h_aux=edge_h,
edge_idx=edge_idx,
mask_ij=mask_ij,
)
# Update backbone
X_update, R_ji, t_ji, logit_ji = self.backbone_updates[i](
X_update, C, node_h, edge_h, edge_idx, mask_i, mask_ij
)
# Shrink towards the input
if time_h is None:
time_h = torch.zeros(
[node_h.shape[0], 1, node_h.shape[2]], device=node_h.device
)
if self.prediction_type == "scale":
scale_shift = self.mlp_W(time_h)
ssnr = self.noise_perturb.noise_schedule.SSNR(t)
logit_bias = torch.logit(torch.sqrt(1 - ssnr))
scale = torch.sigmoid(scale_shift + logit_bias[:, None, None])[..., None]
X_update = scale * X_update + (1 - scale) * X
elif self.prediction_type == "scale_cutoff":
# Scale below a given hard-coded noise floor cutoff
scale_shift = self.mlp_W(time_h)
ssnr = self.noise_perturb.noise_schedule.SSNR(t)
logit_bias = torch.logit(torch.sqrt(1 - ssnr))
scale = torch.sigmoid(scale_shift + logit_bias[:, None, None])[..., None]
# Skip connect for values of alpha close to 1
skip = (1 - scale) * (ssnr > self.loss_scale_ssnr_cutoff).float().reshape(
scale.shape
)
X_update = skip * X + (1 - skip) * X_update
if not return_geometry:
return X_update
else:
return X_update, R_ji, t_ji, logit_ji, edge_idx, mask_ij
@validate_XC(all_atom=False)
def _debug_plot_denoising_geometry(self, X, C, t=None):
"""Debug plots for analyzing denoising geometry"""
if t is None:
X_noise, t = self.noise_perturb(X, C)
else:
X_noise = self.noise_perturb(X, C, t=t)
# Compute denoised geometry
(
X_denoise,
R_ji_pred,
t_ji_pred,
logit_ji_pred,
edge_idx,
mask_ij,
) = self.denoise(X_noise, C, t, return_geometry=True)
# Featurize other inputs and outpus
R_ji_native, t_ji_native = self.backbone_updates[0]._inner_transforms(
X, C, edge_idx
)
R_ji_noise, t_ji_noise = self.backbone_updates[0]._inner_transforms(
X_noise, C, edge_idx
)
R_ji_denoise, t_ji_denoise = self.backbone_updates[0]._inner_transforms(
X_denoise, C, edge_idx
)
R_ji = torch.cat([R_ji_native, R_ji_noise, R_ji_pred, R_ji_denoise], 0)
t_ji = torch.cat([t_ji_native, t_ji_noise, t_ji_pred, t_ji_denoise], 0)
logit_ji = torch.cat([mask_ij, mask_ij, logit_ji_pred[:, :, :, 0], mask_ij], 0)
edge_idx = edge_idx.expand([4, -1, -1])
from matplotlib import pyplot as plt
transforms._debug_plot_transforms(R_ji, t_ji, logit_ji, edge_idx, mask_ij)
plt.show()
return X_denoise, X_noise
@validate_XC(all_atom=False)
def forward(
self,
X: torch.Tensor,
C: torch.Tensor,
t: Optional[Union[torch.Tensor, float]] = None,
**kwargs,
):
# If all atom structure is passed, discard side chains
X = X[:, :, :4, :] if X.size(2) == 14 else X
# Sample perturbed structure
if t is None:
X_t, t = self.noise_perturb(X, C)
else:
X_t = self.noise_perturb(X, C, t=t)
X0_pred, R_ji_pred, t_ji_pred, logit_ji_pred, edge_idx, mask_ij = self.denoise(
X_t, C, t, return_geometry=True
)
losses = self.loss_diffusion(X0_pred, X, C, t)
# Per complex weights
weights = (C > 0).float().sum(-1)
ssnr = self.noise_perturb.noise_schedule.SSNR(t)
prob_ssnr = self.noise_perturb.noise_schedule.prob_SSNR(ssnr)
importance_weights = 1 / prob_ssnr
_importance_weight = lambda h: h * importance_weights.reshape(
[-1] + [1] * (len(h.shape) - 1)
)
_weighted_avg = lambda h: (weights * _importance_weight(h)).sum() / (
weights.sum() + self._loss_eps
)
# Interresidue geometry predictions agreement
if self.backbone_updates[0].method != "local":
R_ij_mse, t_ij_mse = self.backbone_updates[0]._transform_loss(
R_ji_pred, t_ji_pred, X, C, edge_idx, mask_ij
)
losses["batch_translate_mse"] = _weighted_avg(
t_ij_mse / (self.loss_scale ** 2)
)
losses["batch_rotate_mse"] = _weighted_avg(R_ij_mse)
losses["batch_transform_mse"] = (
losses["batch_translate_mse"] + losses["batch_rotate_mse"]
)
losses_extend = {}
for k, v in losses.items():
if "elbo" in k:
losses_extend[k.replace("elbo", "neg_elbo")] = -v
losses.update(losses_extend)
return losses
def load_model(
weight_file: str,
device: str = "cpu",
strict: bool = False,
strict_unexpected: bool = False,
verbose: bool = True,
) -> GraphBackbone:
"""Load model `GraphBackbone`
Args:
weight_file (str): The destination path of the model weights to load.
Compatible with files saved by `save_model`.
device (str, optional): Pytorch device specification, e.g. `'cuda'` for
GPU. Default is `'cpu'`.
strict (bool): Whether to require that the keys match between the
input file weights and the model created from the parameters stored
in the model kwargs.
strict_unexpected (bool): Whether to require that there are no
unexpected keys when loading model weights, as distinct from the
strict option which doesn't allow for missing keys either. By
default, we use this option rather than strict for ease of
development when adding model features.
verbose (bool, optional): Show outputs from download and loading.
Default True.
Returns:
model (GraphBackbone): Instance of `GraphBackbone` with loaded weights.
"""
return utility_load_model(
weight_file,
GraphBackbone,
device=device,
strict=strict,
strict_unexpected=strict_unexpected,
verbose=verbose,
)
|