File size: 17,531 Bytes
e9e75df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d2337c
 
 
 
 
e9e75df
 
 
6d2337c
e9e75df
6d2337c
 
 
e9e75df
 
 
6d2337c
e9e75df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d2337c
 
 
 
 
 
e9e75df
0360759
e9e75df
 
 
 
6d2337c
e9e75df
 
 
 
 
 
 
 
 
 
 
 
 
6d2337c
e9e75df
 
6d2337c
 
 
e9e75df
 
 
 
 
 
 
 
 
6d2337c
 
 
 
 
e9e75df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d2337c
 
e9e75df
 
 
 
 
6d2337c
e9e75df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d2337c
 
e9e75df
 
 
6d2337c
e9e75df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d2337c
 
 
e9e75df
 
6d2337c
e9e75df
 
 
6d2337c
3ebda0f
e9e75df
3ebda0f
 
 
 
 
 
e9e75df
3ebda0f
e9e75df
 
 
 
 
 
 
 
 
6d2337c
 
e9e75df
 
 
6d2337c
 
e9e75df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d2337c
 
e9e75df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d2337c
 
e9e75df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d2337c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9e75df
6d2337c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
# @title Setup

# @markdown [Get your API key here](https://chroma-weights.generatebiomedicines.com) and enter it below before running.

import os

os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8"
import contextlib

api_key = "2cdade6d058b4fd1b85fa5badb501312"  # @param {type:"string"}


import torch

# torch.use_deterministic_algorithms(False)

import warnings
from tqdm import tqdm, TqdmExperimentalWarning

warnings.filterwarnings("ignore", category=TqdmExperimentalWarning)
from functools import partialmethod

tqdm.__init__ = partialmethod(tqdm.__init__, leave=False)

import streamlit as st
from stmol import *

def download_callback(newFileName):
    st.success(f"{newFileName}: successfully downloaded ")
def download(outputFile,newFileName,description):
    with open(outputFile, "rb") as file:
        btn = st.download_button(
                label=description,
                data=file,
                file_name=newFileName,
            )
        


import pandas as pd
def display(output,style,resn):
    # imformation
    protein=Protein.from_PDB(output)
    st.subheader("Protein Information:")
    st.write(f"Device: {protein.device}")
    st.write(f"Protein Length: {len(protein)} residues")
    st.write(f"Structured Residue Count: {protein.length(structured=True)}")

    # 显示 Protein 的序列
    st.subheader("Protein Sequence:")
    protein_sequence = protein.sequence(format="three-letter-list")
    st.markdown(f"**My List:** {protein_sequence}")
    st.write(protein_sequence)
    # 显示 Protein 的结构
    with open(output, "r") as file:
        pdb_content = file.read()

    obj = makeobj(pdb_content,style=style,background='white')

    # 使用 stmol 展示蛋白质结构
    st.subheader("Protein Structure:")
    traj_output = output.replace(".pdb", "_trajectory.pdb")
    
    protein_newName = st.text_input("The specified file name. Default is {}.".format(output[output.rfind("/") + 1:])+"Please press [Enter] to confirm the change before download.", value=output[output.rfind("/") + 1:], key='protein_newName')
    download(output,protein_newName,"Download sample")
    traj_newName = st.text_input("The specified file name. Default is {}.".format(traj_output[traj_output.rfind("/") + 1:])+"Please press [Enter] to confirm the change before download.", value=traj_output[traj_output.rfind("/") + 1:], key='traj_newName')
    download(traj_output,traj_newName,"Download trajectory")
    if resn !='*':
        obj = render_pdb_resn(obj ,resn_lst =resn)
    showmol(obj, width=1800)

    


def render(protein, trajectories, output="./output/protein.pdb"):
    protein.to_PDB(output)
    traj_output = output.replace(".pdb", "_trajectory.pdb")
    trajectories["trajectory"].to_PDB(traj_output)

    

import locale

locale.getpreferredencoding = lambda: "UTF-8"

from chroma import Chroma, Protein, conditioners
from chroma.models import graph_classifier, procap
from chroma.utility.api import register_key
from chroma.utility.chroma import letter_to_point_cloud, plane_split_protein

register_key(api_key)

# device = 'cuda:2' if torch.cuda.is_available() else 'cpu'
device='cuda:0'
with contextlib.redirect_stdout(None):
    chroma = Chroma(device=device)


def proteinSample(length,steps,output):
    protein, trajectories = chroma.sample(
        chain_lengths=[length], steps=steps, full_output=True,
    )
    render(protein, trajectories, output=output)
def GenerateProteinDemo(style,resn):
    #st.sidebar.title("Unconditional Generation")
    st.sidebar.header("Generate a Protein Backbone")
    length=st.sidebar.number_input("chain_length:The lengths of the protein chains.Default is [160],step=10.",min_value=50,max_value=250,step=10,value=160,key='length')
    steps_protein=st.sidebar.number_input("sde_steps:The number of integration steps for the SDE.Default is 200,step=50.",min_value=150,max_value=500,step=50,value=200,key='steps_protein')
    
    output="./output/protein.pdb"
    if st.sidebar.button("Run Code with Button",key="protein"):
        proteinSample(length,steps_protein,output)

    display(output,style,resn)




def complexSample(chain1_length,chain2_length,chain3_length,chain4_length,steps,output):
    protein, trajectories = chroma.sample(
        chain_lengths=[chain1_length, chain2_length, chain3_length, chain4_length],
        steps=steps,
        full_output=True,
    )
    render(protein, trajectories, output=output)
def complexSampleDemo(style,resn):
    #st.sidebar.title("Generate a Protein Complex")
    st.sidebar.header("Generate a Protein Complex")
    st.caption("Given the lengths of individual chains, Chroma can generate a complex.")
    chain1_length=st.sidebar.number_input("chain1_length,step=10",min_value=100,max_value=500,step=10,value=400,key='chain1_length')
    chain2_length=st.sidebar.number_input("chain2_length,step=10",min_value=0,max_value=200,step=10,value=100,key='chain2_length')
    chain3_length=st.sidebar.number_input("chain3_length,step=1",min_value=0,max_value=200,step=10,value=100,key='chain3_length')
    chain4_length=st.sidebar.number_input("chain4_length,step=1",min_value=0,max_value=200,step=10,value=100,key='chain4_length')
    steps_complex=st.sidebar.number_input("sde_steps:The number of integration steps for the SDE.Default is 200,step=50.",min_value=150,max_value=500,step=50,value=200,key='steps_complex')

    output="./output/complex.pdb"
    if st.sidebar.button("Run Code with Button",key="complex"):
        complexSample(chain1_length,chain2_length,chain3_length,chain4_length,steps_complex,output)
    display(output,style,resn)



def symmetricSample(subunit_size,conditioner,output):
    symmetric_protein, trajectories = chroma.sample(
        chain_lengths=[subunit_size],
        conditioner=conditioner,
        langevin_factor=8,
        inverse_temperature=8,
        sde_func="langevin",
        potts_symmetry_order=conditioner.potts_symmetry_order,
        full_output=True,
    )
    render(symmetric_protein, trajectories, output=output)
def symmetricSampleDemo(style,resn):
    #st.sidebar.title("Generate a Symmetric Protein Backbone")
    st.sidebar.header("Conditional Generation on Symmetry")
    st.caption(" Specify the desired symmetry type and the size of a single subunit.")
    output="./output/symmetric_protein.pdb"
    symmetry_group=st.sidebar.text_input('symmetry_group:@param ["C_2", "C_3", "C_4", "C_5", "C_6", "C_7", "C_8", "D_2", "D_3", "D_4", "D_5", "D_6", "D_7", "D_8", "T", "O", "I"]',"C_7")
    subunit_size=st.sidebar.number_input("subunit_size:the size of a single subunit.Default is 100,step=5.",min_value=10,max_value=150,step=5,value=100,key='subunit_size')
    knbr=st.sidebar.number_input("knbr,step=1",min_value=1,max_value=10,step=1,value=2,key='knbr')
    conditioner = conditioners.SymmetryConditioner(
        G=symmetry_group, num_chain_neighbors=knbr
    ).to(device)
    if st.sidebar.button("Run Code with Button",key="symmetric"):
        symmetricSample(subunit_size,conditioner,output)

    display(output,style,resn)



def shapeSample(length,conditioner,output):
    shaped_protein, trajectories = chroma.sample(
        chain_lengths=[length], conditioner=conditioner, full_output=True,
    )

    render(shaped_protein, trajectories, output=output)
def shapeSampleDemo(style,resn):
    #st.sidebar.title("Generate a Shapped Protein Backbone")
    st.sidebar.header("Conditional Generation on Shape")
    st.caption("create a protein in the shape of a desired character of arbitrary length.")

    output="./output/shaped_protein.pdb"
    character=st.sidebar.text_input('character:a desired character for the shape of protein. @param {type:"string"}','G',key='character')
    if len(character) > 1:
        character = character[:1]
        print(f"Keeping only first character ({character})!")
    length=st.sidebar.number_input('chain_length:The lengths of the protein chains.Default is 500,step=100.',min_value=100,max_value=1500,step=100,value=500,key='length_shape')
    
    if st.sidebar.button("Run Code with Button",key="shape"):
        letter_point_cloud = letter_to_point_cloud(character)
        conditioner = conditioners.ShapeConditioner(
            letter_point_cloud,
            chroma.backbone_network.noise_schedule,
            autoscale_num_residues=length,
        ).to(device)
        shapeSample(length,conditioner,output)
        
    display(output,style,resn)


def foldSample(length,conditioner,output):
    cath_conditioned_protein, trajectories = chroma.sample(
        conditioner=conditioner, chain_lengths=[length], full_output=True,
    )
    render(cath_conditioned_protein, trajectories, output=output)
def foldSampleDemo(style,resn):
    #st.sidebar.title("Generate a Chain-level Conditioned Protein")
    st.sidebar.header("Conditional Generation on Chain-level Properties")
    st.caption("Input a [CATH number](https://cathdb.info/browse) to get chain-level conditioning, e.g. `3.40.50` for a Rossmann fold or `2` for mainly beta.")

    output="./output/cath_conditioned_protein.pdb"
    CATH=st.sidebar.text_input('CATH:protein domain annotations from <https://www.cathdb.info/>. Annotation examples include 2, 2.40, 2.40.155.','3.40.50',key='CATH')
    length=st.sidebar.number_input('chain_length:The lengths of the protein chains.Default is 130,step=10.',min_value=50,max_value=250,step=10,value=130,key='length_fold')

    proclass_model = graph_classifier.load_model("named:public", device=device)
    conditioner = conditioners.ProClassConditioner("cath", CATH, model=proclass_model,device=device)
    if st.sidebar.button("Run Code with Button",key="fold"):
        foldSample(length,conditioner,output)

    display(output,style,resn)


def ssSample(conditioner,SS,output):
    ss_conditioned_protein, trajectories = chroma.sample(
        steps=500, conditioner=conditioner, chain_lengths=[len(SS)], full_output=True,
    )
    render(ss_conditioned_protein, trajectories, output=output)
def ssSampleDemo(style,resn):
    #st.sidebar.title("Generate a Secondary Structure Conditioned Protein")
    st.sidebar.header(" Conditional Generation on Secondary Structure Properties")
    st.caption("Enter a string to specify residue-level secondary structure conditioning: H = helix, E = strand, T = turn.")

    output="./output/ss_conditioned_protein.pdb"

    SS=st.sidebar.text_input('SS:secondary structure @param {type:"string"}',"HHHHHHHTTTHHHHHHHTTTEEEEEETTTEEEEEEEETTTTHHHHHHHH")

    proclass_model = graph_classifier.load_model("named:public", device=device)
    conditioner = conditioners.ProClassConditioner(
        "secondary_structure", SS, max_norm=None, model=proclass_model,device=device
    )

    if st.sidebar.button("Run Code with Button",key="SS"):
        ssSample(conditioner,SS,output)

    display(output,style,resn)


def substructureSample(protein,conditioner,output):
    infilled_protein, trajectories = chroma.sample(
        protein_init=protein,
        conditioner=conditioner,
        langevin_factor=4.0,
        langevin_isothermal=True,
        inverse_temperature=8.0,
        steps=500,
        sde_func="langevin",
        full_output=True,
    )
    render(infilled_protein, trajectories, output=output)
def substructureSampleDemo(style,resn):
    st.sidebar.title("Generate a Sub-Structure Conditioned Protein")
    #st.sidebar.header(" Conditional Generation on Substructure Properties")
    st.caption("Enter a PDB ID and a selection string corresponding to designable positions.")
    st.caption("Using a substructure conditioner, Chroma can design at these positions while holding the rest of the structure fixed.")
    st.caption("The default selection cuts the protein in half and fills it in.")
    st.caption("Other selections, by position or proximity, are also allowed.")

    output="./output/infilled_protein.pdb"

    pdb_id=st.sidebar.text_input("pdb_id@param ['5SV5', '6QAZ', '3BDI'] {allow-input:true}",'5SV5',key='pdb_id')

    try:
        protein = Protein.from_PDBID(pdb_id, canonicalize=True, device=device)
    except FileNotFoundError:
        print("Invalid PDB ID! Using 3BDI")
        pdb_id = "3BDI"
        protein = Protein.from_PDBID(pdb_id, canonicalize=True, device=device)

    X, C, _ = protein.to_XCS()

    selection_string=st.sidebar.text_input("selection_string: @param ['namesel infilling_selection', 'z > 16', '(resid 50) around 10'] {allow-input:true}",'namesel infilling_selection',key='selection_string')
    residues_to_design = plane_split_protein(X, C, protein, 0.5).nonzero()[:, 1].tolist()
    protein.sys.save_selection(gti=residues_to_design, selname="infilling_selection")

    try:
        conditioner = conditioners.SubstructureConditioner(
            protein, backbone_model=chroma.backbone_network, selection=selection_string,
        ).to(device)
    except Exception:
        print("Error initializing conditioner! Falling back to masking 50% of residues.")
        selection_string = "namesel infilling_selection"
        conditioner = conditioners.SubstructureConditioner(
            protein,
            backbone_model=chroma.backbone_network,
            selection=selection_string,
            rg=True
        ).to(device)

    if st.sidebar.button("Run Code with Button",key="substructure"):
        substructureSample(protein,conditioner,output)
    display(output,style,resn)

def natureLanguageSample(conditioner,output):
    caption_conditioned_protein,trajectories = chroma.sample(steps=200, chain_lengths=[110], conditioner=conditioner)
    render(caption_conditioned_protein, trajectories, output=output)

def natureLanguageSampleDemo(style,resn):
    st.sidebar.title("Generate a Caption Guided Protein")
    st.caption("Here, we demonstrate backbone generation conditioned on natural language prompts.")
    st.caption(" The sampling is guided by the gradients of a structure to text model.")
    CAPTION=st.sidebar.text_input('a caption:natural language prompts.',value='Crystal structure of SH2 domain',key='caption')
    torch.manual_seed(0)
    conditioner = conditioners.ProCapConditioner(CAPTION, -1).to(device)
    output='./output/caption_conditioned_protein.pdb'
    if st.sidebar.button("Run Code with Button",key="substructure"):
        natureLanguageSample(conditioner,output)
    
    display(output,style,resn)

# Combining Symmetry and Secondary Structure
def cSSStructureSample(composedConditioner,output):
    symm_beta_protein,trajectories = chroma.sample(chain_lengths=[100],
        conditioner=composedConditioner,
        langevin_factor=8,
        inverse_temperature=8,
        sde_func="langevin",
        steps=500,full_output=True,)
    render(symm_beta_protein,trajectories,output=output)

def cSSStructureSampleDemo(style,resn):
    st.sidebar.title("Generate a Combined Symmetry and Secondary Structure Protein")
    st.caption("In this scenario, we initially apply guidance for secondary structure to condition the content accordingly.")
    st.caption("This is followed by incorporating Cyclic symmetry.")
    st.caption("This approach involves adding a secondary structure classifier to conditionally sample an Asymmetric unit (AU) that is beta-rich, followed by symmetrization.")
    output='./output/symm_beta.pdb'
    CATH=st.sidebar.text_input('CATH:protein domain annotations from <https://www.cathdb.info/>. Annotation examples include 2, 2.40, 2.40.155.','2',key='CATH_beta')
    beta = conditioners.ProClassConditioner('cath', CATH, weight=5, max_norm=20)
    c_symmetry = conditioners.SymmetryConditioner(G="C_3", num_chain_neighbors=2)
    composed_cond = conditioners.ComposedConditioner([beta, c_symmetry])
    if st.sidebar.button("Run Code with Button",key="substructure"):
        cSSStructureSample(composed_cond,output)
    
    display(output,style,resn)

#  Merging Symmetry and Substructure
def mSSubstructureSample(composedCondtioner,output):
    protein, trajectories = chroma.sample(
        protein_init=protein,
        conditioner=composedCondtioner,
        langevin_factor=4.0,
        langevin_isothermal=True,
        inverse_temperature=8.0,
        sde_func='langevin',
        steps=500,
        full_output=True,
    )
    render(protein,trajectories,output)

def mSSubstructureSampleDemo(style,resn):
    st.sidebar.title("Generate a Merged Symmetry and Substructure Protein")
    st.caption("Here, our goal is to construct symmetric assemblies from a single-chain protein, partially redesigning it to merge three identical AUs into a Cyclic complex.")
    st.caption("We begin by defining the backbones targeted for redesign and then reposition the AU to prevent clashes during symmetrization.")
    st.caption("This is followed by the symmetrization operation itself.")
    output='./output/mss_protein.pdb'
    pdb_id=st.sidebar.text_input("pdb_id@param ['5SV5', '6QAZ', '3BDI'] {allow-input:true}",'3BDI',key='pdb_id_mss')
    protein = Protein(pdb_id, canonicalize=True, device=device)
    # regenerate residues with X coord < 25 A and y coord < 25 A
    substruct_conditioner = conditioners.SubstructureConditioner(
        protein, backbone_model=chroma.backbone_network, selection="x < 25 and y < 25")

    # C_3 symmetry
    c_symmetry = conditioners.SymmetryConditioner(G="C_3", num_chain_neighbors=3)

    # Composing
    composed_cond = conditioners.ComposedConditioner([substruct_conditioner, c_symmetry])

    if st.sidebar.button("Run Code with Button",key="substructure"):
        mSSubstructureSample(composed_cond,output)
    
    display(output,style,resn)