Spaces:
Sleeping
Sleeping
File size: 17,531 Bytes
e9e75df 6d2337c e9e75df 6d2337c e9e75df 6d2337c e9e75df 6d2337c e9e75df 6d2337c e9e75df 0360759 e9e75df 6d2337c e9e75df 6d2337c e9e75df 6d2337c e9e75df 6d2337c e9e75df 6d2337c e9e75df 6d2337c e9e75df 6d2337c e9e75df 6d2337c e9e75df 6d2337c e9e75df 6d2337c e9e75df 6d2337c 3ebda0f e9e75df 3ebda0f e9e75df 3ebda0f e9e75df 6d2337c e9e75df 6d2337c e9e75df 6d2337c e9e75df 6d2337c e9e75df 6d2337c e9e75df 6d2337c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 |
# @title Setup
# @markdown [Get your API key here](https://chroma-weights.generatebiomedicines.com) and enter it below before running.
import os
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8"
import contextlib
api_key = "2cdade6d058b4fd1b85fa5badb501312" # @param {type:"string"}
import torch
# torch.use_deterministic_algorithms(False)
import warnings
from tqdm import tqdm, TqdmExperimentalWarning
warnings.filterwarnings("ignore", category=TqdmExperimentalWarning)
from functools import partialmethod
tqdm.__init__ = partialmethod(tqdm.__init__, leave=False)
import streamlit as st
from stmol import *
def download_callback(newFileName):
st.success(f"{newFileName}: successfully downloaded ")
def download(outputFile,newFileName,description):
with open(outputFile, "rb") as file:
btn = st.download_button(
label=description,
data=file,
file_name=newFileName,
)
import pandas as pd
def display(output,style,resn):
# imformation
protein=Protein.from_PDB(output)
st.subheader("Protein Information:")
st.write(f"Device: {protein.device}")
st.write(f"Protein Length: {len(protein)} residues")
st.write(f"Structured Residue Count: {protein.length(structured=True)}")
# 显示 Protein 的序列
st.subheader("Protein Sequence:")
protein_sequence = protein.sequence(format="three-letter-list")
st.markdown(f"**My List:** {protein_sequence}")
st.write(protein_sequence)
# 显示 Protein 的结构
with open(output, "r") as file:
pdb_content = file.read()
obj = makeobj(pdb_content,style=style,background='white')
# 使用 stmol 展示蛋白质结构
st.subheader("Protein Structure:")
traj_output = output.replace(".pdb", "_trajectory.pdb")
protein_newName = st.text_input("The specified file name. Default is {}.".format(output[output.rfind("/") + 1:])+"Please press [Enter] to confirm the change before download.", value=output[output.rfind("/") + 1:], key='protein_newName')
download(output,protein_newName,"Download sample")
traj_newName = st.text_input("The specified file name. Default is {}.".format(traj_output[traj_output.rfind("/") + 1:])+"Please press [Enter] to confirm the change before download.", value=traj_output[traj_output.rfind("/") + 1:], key='traj_newName')
download(traj_output,traj_newName,"Download trajectory")
if resn !='*':
obj = render_pdb_resn(obj ,resn_lst =resn)
showmol(obj, width=1800)
def render(protein, trajectories, output="./output/protein.pdb"):
protein.to_PDB(output)
traj_output = output.replace(".pdb", "_trajectory.pdb")
trajectories["trajectory"].to_PDB(traj_output)
import locale
locale.getpreferredencoding = lambda: "UTF-8"
from chroma import Chroma, Protein, conditioners
from chroma.models import graph_classifier, procap
from chroma.utility.api import register_key
from chroma.utility.chroma import letter_to_point_cloud, plane_split_protein
register_key(api_key)
# device = 'cuda:2' if torch.cuda.is_available() else 'cpu'
device='cuda:0'
with contextlib.redirect_stdout(None):
chroma = Chroma(device=device)
def proteinSample(length,steps,output):
protein, trajectories = chroma.sample(
chain_lengths=[length], steps=steps, full_output=True,
)
render(protein, trajectories, output=output)
def GenerateProteinDemo(style,resn):
#st.sidebar.title("Unconditional Generation")
st.sidebar.header("Generate a Protein Backbone")
length=st.sidebar.number_input("chain_length:The lengths of the protein chains.Default is [160],step=10.",min_value=50,max_value=250,step=10,value=160,key='length')
steps_protein=st.sidebar.number_input("sde_steps:The number of integration steps for the SDE.Default is 200,step=50.",min_value=150,max_value=500,step=50,value=200,key='steps_protein')
output="./output/protein.pdb"
if st.sidebar.button("Run Code with Button",key="protein"):
proteinSample(length,steps_protein,output)
display(output,style,resn)
def complexSample(chain1_length,chain2_length,chain3_length,chain4_length,steps,output):
protein, trajectories = chroma.sample(
chain_lengths=[chain1_length, chain2_length, chain3_length, chain4_length],
steps=steps,
full_output=True,
)
render(protein, trajectories, output=output)
def complexSampleDemo(style,resn):
#st.sidebar.title("Generate a Protein Complex")
st.sidebar.header("Generate a Protein Complex")
st.caption("Given the lengths of individual chains, Chroma can generate a complex.")
chain1_length=st.sidebar.number_input("chain1_length,step=10",min_value=100,max_value=500,step=10,value=400,key='chain1_length')
chain2_length=st.sidebar.number_input("chain2_length,step=10",min_value=0,max_value=200,step=10,value=100,key='chain2_length')
chain3_length=st.sidebar.number_input("chain3_length,step=1",min_value=0,max_value=200,step=10,value=100,key='chain3_length')
chain4_length=st.sidebar.number_input("chain4_length,step=1",min_value=0,max_value=200,step=10,value=100,key='chain4_length')
steps_complex=st.sidebar.number_input("sde_steps:The number of integration steps for the SDE.Default is 200,step=50.",min_value=150,max_value=500,step=50,value=200,key='steps_complex')
output="./output/complex.pdb"
if st.sidebar.button("Run Code with Button",key="complex"):
complexSample(chain1_length,chain2_length,chain3_length,chain4_length,steps_complex,output)
display(output,style,resn)
def symmetricSample(subunit_size,conditioner,output):
symmetric_protein, trajectories = chroma.sample(
chain_lengths=[subunit_size],
conditioner=conditioner,
langevin_factor=8,
inverse_temperature=8,
sde_func="langevin",
potts_symmetry_order=conditioner.potts_symmetry_order,
full_output=True,
)
render(symmetric_protein, trajectories, output=output)
def symmetricSampleDemo(style,resn):
#st.sidebar.title("Generate a Symmetric Protein Backbone")
st.sidebar.header("Conditional Generation on Symmetry")
st.caption(" Specify the desired symmetry type and the size of a single subunit.")
output="./output/symmetric_protein.pdb"
symmetry_group=st.sidebar.text_input('symmetry_group:@param ["C_2", "C_3", "C_4", "C_5", "C_6", "C_7", "C_8", "D_2", "D_3", "D_4", "D_5", "D_6", "D_7", "D_8", "T", "O", "I"]',"C_7")
subunit_size=st.sidebar.number_input("subunit_size:the size of a single subunit.Default is 100,step=5.",min_value=10,max_value=150,step=5,value=100,key='subunit_size')
knbr=st.sidebar.number_input("knbr,step=1",min_value=1,max_value=10,step=1,value=2,key='knbr')
conditioner = conditioners.SymmetryConditioner(
G=symmetry_group, num_chain_neighbors=knbr
).to(device)
if st.sidebar.button("Run Code with Button",key="symmetric"):
symmetricSample(subunit_size,conditioner,output)
display(output,style,resn)
def shapeSample(length,conditioner,output):
shaped_protein, trajectories = chroma.sample(
chain_lengths=[length], conditioner=conditioner, full_output=True,
)
render(shaped_protein, trajectories, output=output)
def shapeSampleDemo(style,resn):
#st.sidebar.title("Generate a Shapped Protein Backbone")
st.sidebar.header("Conditional Generation on Shape")
st.caption("create a protein in the shape of a desired character of arbitrary length.")
output="./output/shaped_protein.pdb"
character=st.sidebar.text_input('character:a desired character for the shape of protein. @param {type:"string"}','G',key='character')
if len(character) > 1:
character = character[:1]
print(f"Keeping only first character ({character})!")
length=st.sidebar.number_input('chain_length:The lengths of the protein chains.Default is 500,step=100.',min_value=100,max_value=1500,step=100,value=500,key='length_shape')
if st.sidebar.button("Run Code with Button",key="shape"):
letter_point_cloud = letter_to_point_cloud(character)
conditioner = conditioners.ShapeConditioner(
letter_point_cloud,
chroma.backbone_network.noise_schedule,
autoscale_num_residues=length,
).to(device)
shapeSample(length,conditioner,output)
display(output,style,resn)
def foldSample(length,conditioner,output):
cath_conditioned_protein, trajectories = chroma.sample(
conditioner=conditioner, chain_lengths=[length], full_output=True,
)
render(cath_conditioned_protein, trajectories, output=output)
def foldSampleDemo(style,resn):
#st.sidebar.title("Generate a Chain-level Conditioned Protein")
st.sidebar.header("Conditional Generation on Chain-level Properties")
st.caption("Input a [CATH number](https://cathdb.info/browse) to get chain-level conditioning, e.g. `3.40.50` for a Rossmann fold or `2` for mainly beta.")
output="./output/cath_conditioned_protein.pdb"
CATH=st.sidebar.text_input('CATH:protein domain annotations from <https://www.cathdb.info/>. Annotation examples include 2, 2.40, 2.40.155.','3.40.50',key='CATH')
length=st.sidebar.number_input('chain_length:The lengths of the protein chains.Default is 130,step=10.',min_value=50,max_value=250,step=10,value=130,key='length_fold')
proclass_model = graph_classifier.load_model("named:public", device=device)
conditioner = conditioners.ProClassConditioner("cath", CATH, model=proclass_model,device=device)
if st.sidebar.button("Run Code with Button",key="fold"):
foldSample(length,conditioner,output)
display(output,style,resn)
def ssSample(conditioner,SS,output):
ss_conditioned_protein, trajectories = chroma.sample(
steps=500, conditioner=conditioner, chain_lengths=[len(SS)], full_output=True,
)
render(ss_conditioned_protein, trajectories, output=output)
def ssSampleDemo(style,resn):
#st.sidebar.title("Generate a Secondary Structure Conditioned Protein")
st.sidebar.header(" Conditional Generation on Secondary Structure Properties")
st.caption("Enter a string to specify residue-level secondary structure conditioning: H = helix, E = strand, T = turn.")
output="./output/ss_conditioned_protein.pdb"
SS=st.sidebar.text_input('SS:secondary structure @param {type:"string"}',"HHHHHHHTTTHHHHHHHTTTEEEEEETTTEEEEEEEETTTTHHHHHHHH")
proclass_model = graph_classifier.load_model("named:public", device=device)
conditioner = conditioners.ProClassConditioner(
"secondary_structure", SS, max_norm=None, model=proclass_model,device=device
)
if st.sidebar.button("Run Code with Button",key="SS"):
ssSample(conditioner,SS,output)
display(output,style,resn)
def substructureSample(protein,conditioner,output):
infilled_protein, trajectories = chroma.sample(
protein_init=protein,
conditioner=conditioner,
langevin_factor=4.0,
langevin_isothermal=True,
inverse_temperature=8.0,
steps=500,
sde_func="langevin",
full_output=True,
)
render(infilled_protein, trajectories, output=output)
def substructureSampleDemo(style,resn):
st.sidebar.title("Generate a Sub-Structure Conditioned Protein")
#st.sidebar.header(" Conditional Generation on Substructure Properties")
st.caption("Enter a PDB ID and a selection string corresponding to designable positions.")
st.caption("Using a substructure conditioner, Chroma can design at these positions while holding the rest of the structure fixed.")
st.caption("The default selection cuts the protein in half and fills it in.")
st.caption("Other selections, by position or proximity, are also allowed.")
output="./output/infilled_protein.pdb"
pdb_id=st.sidebar.text_input("pdb_id@param ['5SV5', '6QAZ', '3BDI'] {allow-input:true}",'5SV5',key='pdb_id')
try:
protein = Protein.from_PDBID(pdb_id, canonicalize=True, device=device)
except FileNotFoundError:
print("Invalid PDB ID! Using 3BDI")
pdb_id = "3BDI"
protein = Protein.from_PDBID(pdb_id, canonicalize=True, device=device)
X, C, _ = protein.to_XCS()
selection_string=st.sidebar.text_input("selection_string: @param ['namesel infilling_selection', 'z > 16', '(resid 50) around 10'] {allow-input:true}",'namesel infilling_selection',key='selection_string')
residues_to_design = plane_split_protein(X, C, protein, 0.5).nonzero()[:, 1].tolist()
protein.sys.save_selection(gti=residues_to_design, selname="infilling_selection")
try:
conditioner = conditioners.SubstructureConditioner(
protein, backbone_model=chroma.backbone_network, selection=selection_string,
).to(device)
except Exception:
print("Error initializing conditioner! Falling back to masking 50% of residues.")
selection_string = "namesel infilling_selection"
conditioner = conditioners.SubstructureConditioner(
protein,
backbone_model=chroma.backbone_network,
selection=selection_string,
rg=True
).to(device)
if st.sidebar.button("Run Code with Button",key="substructure"):
substructureSample(protein,conditioner,output)
display(output,style,resn)
def natureLanguageSample(conditioner,output):
caption_conditioned_protein,trajectories = chroma.sample(steps=200, chain_lengths=[110], conditioner=conditioner)
render(caption_conditioned_protein, trajectories, output=output)
def natureLanguageSampleDemo(style,resn):
st.sidebar.title("Generate a Caption Guided Protein")
st.caption("Here, we demonstrate backbone generation conditioned on natural language prompts.")
st.caption(" The sampling is guided by the gradients of a structure to text model.")
CAPTION=st.sidebar.text_input('a caption:natural language prompts.',value='Crystal structure of SH2 domain',key='caption')
torch.manual_seed(0)
conditioner = conditioners.ProCapConditioner(CAPTION, -1).to(device)
output='./output/caption_conditioned_protein.pdb'
if st.sidebar.button("Run Code with Button",key="substructure"):
natureLanguageSample(conditioner,output)
display(output,style,resn)
# Combining Symmetry and Secondary Structure
def cSSStructureSample(composedConditioner,output):
symm_beta_protein,trajectories = chroma.sample(chain_lengths=[100],
conditioner=composedConditioner,
langevin_factor=8,
inverse_temperature=8,
sde_func="langevin",
steps=500,full_output=True,)
render(symm_beta_protein,trajectories,output=output)
def cSSStructureSampleDemo(style,resn):
st.sidebar.title("Generate a Combined Symmetry and Secondary Structure Protein")
st.caption("In this scenario, we initially apply guidance for secondary structure to condition the content accordingly.")
st.caption("This is followed by incorporating Cyclic symmetry.")
st.caption("This approach involves adding a secondary structure classifier to conditionally sample an Asymmetric unit (AU) that is beta-rich, followed by symmetrization.")
output='./output/symm_beta.pdb'
CATH=st.sidebar.text_input('CATH:protein domain annotations from <https://www.cathdb.info/>. Annotation examples include 2, 2.40, 2.40.155.','2',key='CATH_beta')
beta = conditioners.ProClassConditioner('cath', CATH, weight=5, max_norm=20)
c_symmetry = conditioners.SymmetryConditioner(G="C_3", num_chain_neighbors=2)
composed_cond = conditioners.ComposedConditioner([beta, c_symmetry])
if st.sidebar.button("Run Code with Button",key="substructure"):
cSSStructureSample(composed_cond,output)
display(output,style,resn)
# Merging Symmetry and Substructure
def mSSubstructureSample(composedCondtioner,output):
protein, trajectories = chroma.sample(
protein_init=protein,
conditioner=composedCondtioner,
langevin_factor=4.0,
langevin_isothermal=True,
inverse_temperature=8.0,
sde_func='langevin',
steps=500,
full_output=True,
)
render(protein,trajectories,output)
def mSSubstructureSampleDemo(style,resn):
st.sidebar.title("Generate a Merged Symmetry and Substructure Protein")
st.caption("Here, our goal is to construct symmetric assemblies from a single-chain protein, partially redesigning it to merge three identical AUs into a Cyclic complex.")
st.caption("We begin by defining the backbones targeted for redesign and then reposition the AU to prevent clashes during symmetrization.")
st.caption("This is followed by the symmetrization operation itself.")
output='./output/mss_protein.pdb'
pdb_id=st.sidebar.text_input("pdb_id@param ['5SV5', '6QAZ', '3BDI'] {allow-input:true}",'3BDI',key='pdb_id_mss')
protein = Protein(pdb_id, canonicalize=True, device=device)
# regenerate residues with X coord < 25 A and y coord < 25 A
substruct_conditioner = conditioners.SubstructureConditioner(
protein, backbone_model=chroma.backbone_network, selection="x < 25 and y < 25")
# C_3 symmetry
c_symmetry = conditioners.SymmetryConditioner(G="C_3", num_chain_neighbors=3)
# Composing
composed_cond = conditioners.ComposedConditioner([substruct_conditioner, c_symmetry])
if st.sidebar.button("Run Code with Button",key="substructure"):
mSSubstructureSample(composed_cond,output)
display(output,style,resn)
|