Spaces:
Sleeping
Sleeping
File size: 17,324 Bytes
ce7bf5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 |
# Copyright Generate Biomedicines, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from chroma.layers.norm import MaskedBatchNorm1d
class NoOp(nn.Module):
"""A dummy nn.Module wrapping an identity operation.
空操作模块,用来满足代码结构
Inputs:
x (any)
Outputs:
x (any)
"""
def __init__(self):
super().__init__()
def forward(self, x, **kwargs):
return x
class Transpose(nn.Module):
"""An nn.Module wrapping ```torch.transpose```.
Args:
d1 (int): the first (of two) dimensions to swap
d2 (int): the second (of two) dimensions to swap
Inputs:
x (torch.tensor)
Outputs:
y (torch.tensor): ```y = x.transpose(d1,d2)```
"""
def __init__(self, d1=1, d2=2):
super().__init__()
self.d1 = d1
self.d2 = d2
def forward(self, x):
return x.transpose(self.d1, self.d2)
class Unsqueeze(nn.Module):
"""An nn.Module wrapping ```torch.unsqueeze```.
Args:
dim (int): the dimension to unsqueeze input tensors
Inputs:
x (torch.tensor):
Outputs:
y (torch.tensor): where ```y=x.unsqueeze(dim)```
"""
def __init__(self, dim=1):
super().__init__()
self.dim = dim
def forward(self, x):
return x.unsqueeze(self.dim)
class OneHot(nn.Module):
"""An nn.Module that wraps F.one_hot```.
Args:
n_tokens (int): the number of tokens comprising input sequences
Inputs:
x (torch.LongTensor): of size ```(batch_size, *)```
Outputs:
y (torch.ByteTensor): of size (batch_size, *, n_tokens) cast to input.device
"""
def __init__(self, n_tokens):
super().__init__()
self.n_tokens = n_tokens
def forward(self, x):
return F.one_hot(x, self.n_tokens)
class MeanEmbedding(nn.Module):
"""A wrapper around ```nn.Embedding``` that allows for one-hot-like representation inputs (as well as standard tokenized representation),
optionally applying a softmax to the last dimension if the input corresponds to a log-PMF.
Args:
embedding (nn.Embedding): Embedding to wrap
use_softmax (bool): Whether to apply a softmax to the last dimension if input is one-hot-like.
Inputs:
x (torch.tensor): of size (batch_size, sequence_length) (standard tokenized representation) -OR- (batch_size, sequence_length, number_tokens) (one-hot representation)
Outputs:
y (torch.tensor): of size (batch_size, sequence_length, embedding_dimension) obtained via. lookup into ```self.embedding.weight``` if
input is in standard tokenized form or by matrix multiplication of input with ```self.embedding.weight``` if input is one-hot-like. Note
that if the input is a one-hot matrix the output is the same regardless of representation.
这个模块是nn.Embedding 的包装器,它允许输是one-hot-like的表示(以及标准的tokenized表示),
并且如果输入对应于log-PMF,还以选择性地对最后 个维度应用softmax
"""
def __init__(self, embedding, use_softmax=True):
super(MeanEmbedding, self).__init__()
self.embedding = embedding
self.use_softmax = use_softmax
self.softmax = nn.Softmax(dim=-1)
def forward(self, x):
if len(x.shape) == 2:
return self.embedding(x)
elif len(x.shape) == 3:
if self.use_softmax:
return self.softmax(x) @ self.embedding.weight
else:
return x @ self.embedding.weight
else:
raise (NotImplementedError)
class PeriodicPositionalEncoding(nn.Module):
"""Positional encoding, adapted from 'The Annotated Transformer'
http://nlp.seas.harvard.edu/2018/04/03/attention.html
这个模块实现了周期性的位置编码,这是Transformer模型的一个重要组成部分。
它使用正弦和余弦函数来生成位置编码
Args:
d_model (int): input and output dimension for the layer
max_seq_len (int): maximum allowed sequence length
dropout (float): Dropout rate
Inputs:
x (torch.tensor): of size (batch_size, sequence_length, d_model)
Outputs:
y (torch.tensor): of size (batch_size, sequence_length, d_model)
"""
def __init__(self, d_model, max_seq_len=4000, dropout=0.0):
super(PeriodicPositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
pe = torch.zeros(max_seq_len, d_model)
position = torch.arange(0.0, max_seq_len).unsqueeze(1)
div_term = torch.exp(
torch.arange(0.0, d_model, 2) * -(math.log(10000.0) / d_model)
)
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
self.register_buffer("pe", pe)
def forward(self, x):
x = x + self.pe[:, : x.size(1)]
return self.dropout(x)
class PositionWiseFeedForward(nn.Module):
"""Position-wise feed-forward using 1x1 convolutions, a building block of legacy Transformer code (not code optimized).
这个模块实现了位置感知的前馈网络,这也是Transformer模型的一个重要组成部分。
它使用1x1的卷积来实现前馈网络。
Args:
d_model (int): input and output dimension for the layer
d_inner_hid (int): size of the hidden layer in the position-wise feed-forward sublayer
Inputs:
x (torch.tensor): of size (batch_size, sequence_length, d_model)
Outputs:
y (torch.tensor): of size (batch_size, sequence_length, d_model)
"""
def __init__(self, d_model, d_hidden, dropout=0.1):
super(PositionWiseFeedForward, self).__init__()
self.activation = nn.ReLU()
self.linear1 = nn.Conv1d(d_model, d_hidden, 1)
self.linear2 = nn.Conv1d(d_hidden, d_model, 1)
self.dropout = nn.Dropout(p=dropout)
def reset_parameters(self):
self.linear1.reset_parameters()
self.linear2.reset_parameters()
def forward(self, x):
output = self.activation(self.linear1(x.transpose(1, 2)))
output = self.linear2(output).transpose(1, 2)
return self.dropout(output)
class DropNormLin(nn.Module):
"""nn.Module applying a linear layer, normalization, dropout, and activation
这个模块应用了一个线性层、归一化、dropout和激活函数。你可以选择使用层归一化 (In') 或批归一 (bn) ,或者跳过过归一化。
Args:
in_features (int): input dimension
out_features (int): output dimension
norm_type (str): ```'ln'``` for layer normalization or ```'bn'``` for batch normalization else skip normalization
dropout (float): dropout to apply
actn (nn.Module): activation function to apply
Input:
x (torch.tensor): of size (batch_size, sequence_length, in_features)
input_mask (torch.tensor): of size (batch_size, 1, sequence_length) (optional)
Output:
y (torch.tensor): of size (batch_size, sequence_length, out_features)
"""
def __init__(
self, in_features, out_features, norm_type="ln", dropout=0.0, actn=nn.ReLU()
):
super(DropNormLin, self).__init__()
self.linear = nn.Linear(in_features, out_features)
if norm_type == "ln":
self.norm_layer = nn.LayerNorm(out_features)
elif norm_type == "bn":
self.norm_layer = MaskedBatchNorm1d(out_features)
else:
self.norm_layer = NoOp()
self.dropout = nn.Dropout(p=dropout)
self.actn = actn
def forward(self, x, input_mask=None):
h = self.linear(x)
if isinstance(self.norm_layer, MaskedBatchNorm1d):
h = self.norm_layer(h.transpose(1, 2), input_mask=input_mask).transpose(
1, 2
)
else:
h = self.norm_layer(h)
return self.dropout(self.actn(h))
class ResidualLinearLayer(nn.Module):
"""A Simple Residual Layer using a linear layer a relu and an optional layer norm.
这个模块实现了一个简单的残差层,使用了一个线性层、ReLU激活函数和一个可选的层归一化。
Args:
d_model (int): Model Dimension
use_norm (bool, *optional*): Optionally Use a Layer Norm. Default `True`.
"""
def __init__(self, d_model, use_norm=True):
super(ResidualLinearLayer, self).__init__()
self.linear = nn.Linear(d_model, d_model)
self.ReLU = nn.ReLU()
self.use_norm = use_norm
self.norm = nn.LayerNorm(d_model)
def forward(self, x):
z = self.linear(x)
z = self.ReLU(z)
if self.use_norm:
z = self.norm(z)
return x + z
class TriangleMultiplication(nn.Module):
def __init__(self, d_model=512, mode="outgoing"):
"""
Triangle multiplication as defined in Jumper et al. (2021)
这个模块实现了Jumper等人在2021年的论文中定义的三角乘法。它接受一个四维的张量作为输入
并通过一系列的线性变换和非线性激活函数,以及一个特殊的乘法操作(由 torch.einsum实现) ,来计算输出。
Args:
d_model (int): dimension of the embedding at each position
mode (str): Must be 'outgoing' (algorithm 11) or 'incoming' (algorithm 12).
Inputs:
X (torch.tensor): Pair representations of size (batch, nres, nres, channels)
mask (torch.tensor): of dtype `torch.bool` and size (batch, nres, nres, channels) (or broadcastable to this size)
Outputs:
Y (torch.tensor): Pair representations of size (batch, nres, nres, channels)
"""
super().__init__()
self.mode = mode
assert self.mode in ["outgoing", "incoming"]
self.equation = (
"bikc,bjkc->bijc" if self.mode == "outgoing" else "bkjc,bkic->bijc"
)
self.layer_norm = nn.LayerNorm(d_model)
self.left_edge_mlp = nn.Sequential(
nn.Linear(d_model, d_model), nn.Sigmoid(), nn.Linear(d_model, d_model)
)
self.right_edge_mlp = nn.Sequential(
nn.Linear(d_model, d_model), nn.Sigmoid(), nn.Linear(d_model, d_model)
)
self.skip = nn.Sequential(nn.Linear(d_model, d_model), nn.Sigmoid())
self.combine = nn.Sequential(nn.LayerNorm(d_model), nn.Linear(d_model, d_model))
def forward(self, X, mask=None):
h = self.layer_norm(X)
A = self.left_edge_mlp(h)
B = self.right_edge_mlp(h)
G = self.skip(h)
if mask is not None:
A = A.masked_fill(~mask, 0.0)
B = B.masked_fill(~mask, 0.0)
h = torch.einsum(self.equation, A, B)
h = self.combine(h) * G
return h
class NodeProduct(nn.Module):
"""Like Alg. 10 in Jumper et al. (2021) but instead of computing a mean over MSA dimension,
process for single-sequence inputs.
这个模块实现了Jumper等人在2021年的论文中描述的节点乘积算法。
它接受一个二维的张量作为输入,然后通过一系列的线性变换和层归一化操作,来计算输出。
Args:
d_in (int): dimension of node embeddings (inputs)
d_out (int): dimension of edge embeddings (outputs)
Inputs:
node_features (torch.tensor): of size (batch_size, nres, d_model)
node_mask (torch.tensor): of size (batch_size, nres)
edge_mask (torch.tensor): of size (batch_size, nres, nres)
Outputs:
edge_features (torch.tensor): of size (batch_size, nres, nres, d_model)
"""
def __init__(self, d_in, d_out):
super().__init__()
self.layer_norm = nn.LayerNorm(d_in)
self.left_lin = nn.Linear(d_in, d_in)
self.right_lin = nn.Linear(d_in, d_in)
self.edge_lin = nn.Linear(2 * d_in, d_out)
def forward(self, node_features, node_mask=None, edge_mask=None):
_, nres, _ = node_features.size()
node_features = self.layer_norm(node_features)
left_embs = self.left_lin(node_features)
right_embs = self.right_lin(node_features)
if node_mask is not None:
mask = node_mask[:, :, None]
left_embs = left_embs.masked_fill(~mask, 0.0)
right_embs = right_embs.masked_fill(~mask, 0.0)
left_embs = left_embs[:, None, :, :].repeat(1, nres, 1, 1)
right_embs = right_embs[:, :, None, :].repeat(1, 1, nres, 1)
edge_features = torch.cat([left_embs, right_embs], dim=-1)
edge_features = self.edge_lin(edge_features)
if edge_mask is not None:
mask = edge_mask[:, :, :, None]
edge_features = edge_features.masked_fill(~mask, 0.0)
return edge_features
class FourierFeaturization(nn.Module):
"""Applies fourier featurization of low-dimensional (usually spatial) input data as described in [https://arxiv.org/abs/2006.10739] ,
optionally trainable as described in [https://arxiv.org/abs/2106.02795].
这个模块实现了对低维输入数据的傅里叶特征化,这是一种将输入数据转换为频域表示的方法。
这个模块可以选择是否学习傅里叶特征的频率
Args:
d_input (int): dimension of inputs
d_model (int): dimension of outputs
trainable (bool): whether to learn the frequency of fourier features
scale (float): if not trainable, controls the scale of fourier feature periods (see reference for description, this parameter matters and should be tuned!)
Inputs:
input (torch.tensor): of size (batch_size, *, d_input)
Outputs:
output (torch.tensor): of size (batch_size, *, d_output)
"""
def __init__(self, d_input, d_model, trainable=False, scale=1.0):
super().__init__()
self.scale = scale
if d_model % 2 != 0:
raise ValueError(
"d_model needs to be even for this featurization, try again!"
)
B = 2 * math.pi * scale * torch.randn(d_input, d_model // 2)
self.trainable = trainable
if not trainable:
self.register_buffer("B", B)
else:
self.register_parameter("B", torch.nn.Parameter(B))
def forward(self, inputs):
h = inputs @ self.B
return torch.cat([h.cos(), h.sin()], -1)
class PositionalEncoding(nn.Module):
"""Axis-aligned positional encodings with log-linear spacing.
这个模块实现了对输入数据的位置编码,这是一种将输入数据的位置信息编码为连续的向量的方法。
这个模块使用了对数线性间隔的频率组件。
Args:
d_input (int): dimension of inputs
d_model (int): dimension of outputs
period_range (tuple of floats): Min and maximum periods for the
frequency components. Fourier features will be log-linearly spaced
between these values (inclusive).
Inputs:
input (torch.tensor): of size (..., d_input)
Outputs:
output (torch.tensor): of size (..., d_model)
"""
def __init__(self, d_model, d_input=1, period_range=(1.0, 1000.0)):
super().__init__()
if d_model % (2 * d_input) != 0:
raise ValueError(
"d_model needs to be divisible by 2*d_input for this featurization, "
f"but got {d_model} versus {d_input}"
)
num_frequencies = d_model // (2 * d_input)
log_bounds = np.log10(period_range)
p = torch.logspace(log_bounds[0], log_bounds[1], num_frequencies, base=10.0)
w = 2 * math.pi / p
self.register_buffer("w", w)
def forward(self, inputs):
batch_dims = list(inputs.shape)[:-1]
# (..., 1, num_out) * (..., num_in, 1)
w = self.w.reshape(len(batch_dims) * [1] + [1, -1])
h = w * inputs[..., None]
h = torch.cat([h.cos(), h.sin()], -1).reshape(batch_dims + [-1])
return h
class MaybeOnehotEmbedding(nn.Embedding):
"""Wrapper around :class:`torch.nn.Embedding` to support either int-encoded
LongTensors or one-hot encoded FloatTensors.
这个模块是torch.nn.Embedding 的包装器,它支持整数编码的LongTensor输入或者独热编码的FloatTensor输入。
如果输入是浮点类型,那么它会通过矩阵乘法来计算嵌入,否则,它会调用父类的 forward 方法来计算嵌入。
"""
def forward(self, x: torch.Tensor) -> torch.Tensor:
if x.dtype.is_floating_point: # onehot
return x @ self.weight
return super().forward(x)
|