Spaces:
Sleeping
Sleeping
File size: 42,665 Bytes
ce7bf5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 |
# Copyright Generate Biomedicines, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Layers for generating protein structure.
This module contains pytorch layers for parametrically generating and
manipulating protein backbones. These can be used in tandem with loss functions
to generate and optimize protein structure (e.g. folding from predictions) or
used as an intermediate layer in a learned structure generation model.
"""
from typing import Optional, Tuple
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from chroma.layers.structure import geometry, transforms
class ProteinBackbone(nn.Module):
"""Protein backbone layer with optimizable geometry (batch form).
This layer stores the parameters for a protein backbone, which can be based
on either internal coordinate or Cartesian parameterizations.
It outputs coordinates in Cartesian form as 4D tensors with indices
`[batch, position, atom_type, xyz]`. The `atom_type` index runs over the
heavy atoms of a protein backbone in PDB order, i.e. `[N, CA, C, O]`.
The resulting coordinates can be directly optimized with pytorch optimizers.
Args:
num_residues (int): Number of residues.
num_batch (int): Batch size.
init_state (str): Initialization state. Can be ['alpha', 'beta', '']
use_internal_coords (Boolean): Use a phi,psi parameterization.
Default is True.
X_init (torch.Tensor, optional): Initialize with pre-specified coordinates.
Requires that use_internal_coords=False.
Outputs:
X (torch.Tensor): Backbone coordinates with shape
`(batch_size, num_residues, 4, 3)`.
"""
def __init__(
self,
num_residues: int,
num_batch: int = 1,
init_state: str = "alpha",
use_internal_coords: bool = True,
X_init: Optional[torch.Tensor] = None,
):
super(ProteinBackbone, self).__init__()
# Dimensions
self.num_batch = num_batch
self.num_residues = num_residues
# Rigid body translation and rotation
self.transform = RigidTransform(num_batch=num_batch, keep_centered=True)
self.use_internal_coords = use_internal_coords
if self.use_internal_coords:
# Internal coordinate parameterization
self.phi = nn.Parameter(torch.zeros(num_batch, num_residues))
self.psi = nn.Parameter(torch.zeros(num_batch, num_residues))
# Initializer
phi_psi = {
"alpha": (np.radians(-60.0), np.radians(-45.0)),
"beta": (np.radians(-140.0), np.radians(135.0)),
}
if init_state in phi_psi:
torch.nn.init.constant_(self.phi, phi_psi[init_state][0])
torch.nn.init.constant_(self.psi, phi_psi[init_state][1])
else:
torch.nn.init.uniform_(self.phi, a=-np.pi, b=np.pi)
torch.nn.init.uniform_(self.psi, a=-np.pi, b=np.pi)
self.backbone_geometry = BackboneBuilder()
else:
# Use a Cartesian parameterization
if X_init is not None:
assert not use_internal_coords
else:
X_init = ProteinBackbone(
num_residues=num_residues,
num_batch=num_batch,
init_state=init_state,
use_internal_coords=True,
)()
self.X = nn.Parameter(X_init)
def forward(self) -> torch.Tensor:
if self.use_internal_coords:
X = self.backbone_geometry(self.phi, self.psi)
else:
X = self.X
# Apply rotation and translation
X = self.transform(X)
return X
class RigidTransform(nn.Module):
"""Rigid-body rotation and translation (batch form).
This layer stores the parameters for a rigid body rotation and translation.
It can be composed with other generative geometry layers to optimize over
poses.
Args:
num_batch (int): Number of poses to store parameters for.
keep_centered (Boolean): If True, center the input coordinates by
default.
scale_dX (float): Scale factor which affects the rate of change of
translation.
scale_q (float): Scale factor which affects the rate of change of
rotation.
Inputs:
X (torch.Tensor): Input coordinates with shape `(batch_size, ..., 3)`.
Outputs:
X_t (torch.Tensor): Transformed coordinates with shape:
`(batch_size, ..., 3)`.
"""
def __init__(
self,
num_batch: int = 1,
keep_centered: bool = False,
scale_dX: float = 1.0,
scale_q: float = 1.0,
):
super(RigidTransform, self).__init__()
self.num_batch = num_batch
# Cartesian offset initialized to 0
self.dX = nn.Parameter(torch.zeros(self.num_batch, 3))
self.scale_dX = scale_dX
# Unconstrained quaternion initialized to identity
self.scale_q = scale_q
q_init = np.asarray([[1.0, 0, 0, 0]] * self.num_batch)
q_init = torch.tensor(q_init, dtype=torch.float32) / self.scale_q
self.q_unc = nn.Parameter(q_init)
self.rigid_transform = RigidTransformer(keep_centered=keep_centered)
def forward(self, X: torch.Tensor) -> torch.Tensor:
dX = self.scale_dX * self.dX
q_unc = self.scale_q * self.q_unc
X_t = self.rigid_transform(X, dX, q_unc)
return X_t
class RigidTransformer(nn.Module):
"""Rigid-body rotation and translation (batch form).
This layer applies a rigid body rotation and translation,
and can be composed with other generative geometry layers to modify poses.
Internally, the coordinates are centered before rotation and translation.
The rotation itself is parameterized as a quaternion to prevent
Gimbal lock (https://en.wikipedia.org/wiki/Gimbal_lock).
Args:
center_intput (Boolean): Center the input coordinates (default: True)
default.
Inputs:
X (torch.Tensor): Input coordinates with shape `(batch_size, ..., 3)`.
dX (torch.Tensor): Translation vector with shape `(batch_size, 3)`.
q (torch.Tensor): Rotation vector (quaternion) with shape `(batch_size, 4)`.
It can be any 4-element real vector, but will internally be
normalized to a unit quaternion.
mask (tensor,optional): Mask tensor with shape `(batch_size, ..., 3)`.
Outputs:
X_t (torch.Tensor): Transformed coordinates with shape `(batch_size, ..., 3)`.
"""
def __init__(self, center_rotation: bool = True, keep_centered: bool = False):
super(RigidTransformer, self).__init__()
self.center_rotation = center_rotation
self.keep_centered = keep_centered
self.dist_eps = 1e-5
def _rotation_matrix(self, q_unc: torch.Tensor) -> torch.Tensor:
"""Build rotation matrix from quaternion parameters.
See en.wikipedia.org/wiki/Quaternions_and_spatial_rotation for further
details on converting between quaternions and rotation matrices.
Args:
q_unc (torch.Tensor): Unnormalized quaternion representing rotation with
shape `(batch_size, 3)`.
Returns:
R (torch.Tensor): Rotation matrix with shape `(batch_size, 3)`.
"""
num_batch = q_unc.shape[0]
q = F.normalize(q_unc, dim=-1)
# fmt: off
a,b,c,d = q.unbind(-1)
a2,b2,c2,d2 = a**2, b**2, c**2, d**2
R = torch.stack([
a2 + b2 - c2 - d2, 2*b*c - 2*a*d, 2*b*d + 2*a*c,
2*b*c + 2*a*d, a2 - b2 + c2 - d2, 2*c*d - 2*a*b,
2*b*d - 2*a*c, 2*c*d + 2*a*b, a2 - b2 - c2 + d2
], dim=-1)
# fmt: on
R = R.view([num_batch, 3, 3])
return R
def forward(
self,
X: torch.Tensor,
dX: torch.Tensor,
q: torch.Tensor,
mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
num_batch = X.shape[0]
X_flat = X.reshape([num_batch, -1, 3])
# Flatten mask
if mask is not None:
shape_mask = list(mask.size())
shape_X = list(X.size())
shape_mask_expand = shape_mask + [
1 for i in range(len(shape_X) - 1 - len(shape_mask))
]
shape_mask_flat = list(X_flat.size())[:-1] + [1]
mask_flat = mask.reshape(shape_mask_expand).expand(shape_X[:-1])
mask_flat = mask_flat.reshape(shape_mask_flat)
# Compute center
X_mean = torch.sum(mask_flat * X_flat, 1, keepdims=True) / (
torch.sum(mask_flat, 1, keepdims=True) + self.dist_eps
)
else:
X_mean = torch.mean(X_flat, 1, keepdims=True)
# Rotate around center of mass
if self.center_rotation:
X_centered = X_flat - X_mean
else:
X_centered = X_flat
R = self._rotation_matrix(q)
X_rotate = torch.einsum("bxr,bir->bix", R, X_centered)
# Optionally preserve original centering
if self.center_rotation and not self.keep_centered:
X_rotate = X_rotate + X_mean
# Translate
X_transform = X_rotate + dX.unsqueeze(1)
if mask is not None:
X_transform = mask_flat * X_transform + (1 - mask_flat) * X_flat
X_transform = X_transform.view(X.shape)
return X_transform
class BackboneBuilder(nn.Module):
"""Protein backbone builder from dihedral angles (batch form).
See ProteinBackbone() for further explanation of output coordinates.
When only partial information is given such as phi & psi angles, this module
will fall default to using the ideal geometries given in
Engh & Huber, International Tables for Crystallography (2001).
https://doi.org/10.1107/97809553602060000857
Todo:
* Add shifting and padding logic to associate phis and psis with their
'natural' residue indices rather than the child atoms that they
create during NERF recurrence
* Add control over the bond lengths and angles for Oxygen
Inputs:
phi (torch.Tensor): Phi dihedral angles with shape `(batch_size, length)`.
psi (torch.Tensor): Psi dihedral angles with shape `(batch_size, length)`.
omega (torch.Tensor, optional): Omega dihedral angles with shape
`(batch_size, length)`. Defaults to ideal geometry.
angles (torch.Tensor, optional): Bond angles with shape
`(batch_size, 3*length)` Defaults to ideal geometry.
lengths (torch.Tensor, optional): Bond lengths with shape
`(batch_size, 3*length)`. Defaults to ideal geometry.
Outputs:
X (torch.Tensor): Backbone coordinates with shape
`(batch_size, num_residues, 4, 3)`.
"""
def __init__(self):
super(BackboneBuilder, self).__init__()
# From "Structure Quality and Target Parameters", Engh & Huber, 2001
# fmt: off
self.lengths = {
'N_CA': 1.459,
'CA_C': 1.525,
'C_N': 1.336,
'C_O': 1.229
}
angles = {
'N_CA_C': 111.0,
'CA_C_N': 117.2,
'C_N_CA': 121.7,
'omega': 179.3
}
self.angles = {
k: v * np.pi / 180. for k,v in angles.items()
}
# fmt: on
return
def forward(
self,
phi: torch.Tensor,
psi: torch.Tensor,
omega: Optional[torch.Tensor] = None,
angles: Optional[torch.Tensor] = None,
lengths: Optional[torch.Tensor] = None,
add_O: bool = True,
) -> torch.Tensor:
N_batch, N_residues = phi.shape[0], phi.shape[1]
linear_shape = [N_batch, N_residues]
device = phi.device
"""
This uses a similar (but not identical) approach as NERF:
Parsons et al, Computational Chemistry (2005).
https://doi.org/10.1002/jcc.20237
See the reference for further explanation about converting from internal
coordinates to Cartesian coordinates.
____________________________________________________________________
| N-to-C backbone geometry for NERF |
| i.e. which internal coords create which Cartesian coords |
| [% indicates preceding residue] |
|______________________ _________________________________________ ___|
|i-1 |Residue i |i+1|
| | | |
|Atom: [C%]--omega%--[N]----phi----[CA]----psi---[C]---omega---[N>]|
| | | | |
|Parents | | | |
| Bond: C%_N N_CA CA_C |
| Angle: CA%_C%_N C%_N_CA N_CA_C |
|Dihedral: N%_CA%_C%_N CA%_C%_N_CA C%_N_CA_C |
|--------------------------------------------------------------------|
|Bond: [C_N]% [N_CA] [CA_C] |
|Dihedral: psi% omega% phi |
|____________________________________________________________________|
"""
if lengths is None:
lengths = torch.tensor(
[[self.lengths[key] for key in ["C_N", "N_CA", "CA_C"]]],
dtype=torch.float32,
).to(device)
lengths = lengths.repeat(N_batch, N_residues)
if angles is None:
angles = torch.tensor(
[[self.angles[key] for key in ["CA_C_N", "C_N_CA", "N_CA_C"]]],
dtype=torch.float32,
).to(device)
angles = angles.repeat(N_batch, N_residues)
if omega is None:
omega = self.angles["omega"] * torch.ones(linear_shape).to(device)
# Compute un-rotated Cartesian coordinates in batch
dihedrals = torch.stack([psi, omega, phi], -1)
dihedrals = dihedrals.view([N_batch, 3 * N_residues])
angles_comp = np.pi - angles
v = torch.stack(
[
torch.cos(angles_comp),
torch.sin(angles_comp) * torch.cos(dihedrals),
torch.sin(angles_comp) * torch.sin(dihedrals),
],
-1,
)
# Lengths
lengths_list = list(lengths.unsqueeze(-1).unbind(1))
v_list = list(v.unbind(1))
if add_O:
# Build one extra appended residue
lengths_list += lengths_list[-3:]
v_list += v_list[-3:]
def _build_x_i(v_i, l_i, x, u_minus_1, u_minus_2):
"""Recurrence relation for placing atoms (NERF)"""
# Build matrix encoding local reference frame
n_a_unnorm = torch.cross(u_minus_2, u_minus_1)
n_a = F.normalize(n_a_unnorm, dim=-1)
n_b = torch.cross(n_a, u_minus_1)
# Matrix multiply version
R = torch.stack([u_minus_1, n_b, n_a], 2)
u_new = torch.matmul(R, v_i.unsqueeze(-1)).squeeze(-1)
x_new = x + l_i * u_new
return x_new, u_new, u_minus_1
# Initialization
x_i = torch.zeros([N_batch, 3]).to(device)
u_i_minus_2 = torch.tensor([[1.0, 0, 0]] * N_batch, dtype=torch.float32).to(
device
)
u_i_minus_1 = torch.tensor([[0, 1.0, 0]] * N_batch, dtype=torch.float32).to(
device
)
# Build chain via NERF recurrence
X = []
for i, (v_i, l_i) in enumerate(zip(v_list, lengths_list)):
x_i, u_i_minus_1, u_i_minus_2 = _build_x_i(
v_i, l_i, x_i, u_i_minus_1, u_i_minus_2
)
X.append(x_i)
X = torch.stack(X, 1)
# [N,AL,3] => [N,L,A,3]
X = X.view([N_batch, -1, 3, 3])
if add_O:
# Build the oxygen vector using symmetry
u_1 = F.normalize(X[:, :-1, 2, :] - X[:, :-1, 1, :], dim=-1) # CA->C
u_2 = F.normalize(X[:, :-1, 2, :] - X[:, 1:, 0, :], dim=-1) # C<-N*
u = self.lengths["C_O"] * F.normalize(u_1 + u_2, dim=-1)
X = X[:, :-1, :, :]
X_O = X[:, :, 2, :] + u
X = torch.cat([X, X_O.unsqueeze(2)], 2)
X = X - X.mean([1, 2, 3], keepdim=True)
return X
class FrameBuilder(nn.Module):
"""Build protein backbones from rigid residue poses.
Inputs:
R (torch.Tensor): Rotation of residue orientiations
with shape `(num_batch, num_residues, 3, 3)`. If `None`,
then `q` must be provided instead.
t (torch.Tensor): Translation of residue orientiations
with shape `(num_batch, num_residues, 3)`. This is the
location of the C-alpha coordinates.
C (torch.Tensor): Chain map with shape `(num_batch, num_residues)`.
q (Tensor, optional): Quaternions representing residue orientiations
with shape `(num_batch, num_residues, 4)`.
Outputs:
X (torch.Tensor): All-atom protein coordinates with shape
`(num_batch, num_residues, 4, 3)`
"""
def __init__(self, distance_eps: float = 1e-3):
super().__init__()
# Build idealized backbone fragment
t = torch.tensor(
[
[1.459, 0.0, 0.0], # N-C via Engh & Huber is 1.459
[0.0, 0.0, 0.0], # CA is origin
[-0.547, 0.0, -1.424], # C is placed 1.525 A @ 111 degrees from N
],
dtype=torch.float32,
).reshape([1, 1, 3, 3])
R = torch.eye(3).reshape([1, 1, 1, 3, 3])
self.register_buffer("_t_atom", t)
self.register_buffer("_R_atom", R)
# Carbonyl geometry from CHARMM all36_prot ALA definition
self._length_C_O = 1.2297
self._angle_CA_C_O = 122.5200
self._dihedral_Np_CA_C_O = 180
self.distance_eps = distance_eps
def _build_O(self, X_chain: torch.Tensor, C: torch.LongTensor):
"""Build backbone carbonyl oxygen."""
# Build carboxyl groups
X_N, X_CA, X_C = X_chain.unbind(-2)
# TODO: fix this behavior for termini
mask_next = (C > 0).float()[:, 1:].unsqueeze(-1)
X_N_next = F.pad(mask_next * X_N[:, 1:,], (0, 0, 0, 1),)
num_batch, num_residues = C.shape
ones = torch.ones(list(C.shape), dtype=torch.float32, device=C.device)
X_O = geometry.extend_atoms(
X_N_next,
X_CA,
X_C,
self._length_C_O * ones,
self._angle_CA_C_O * ones,
self._dihedral_Np_CA_C_O * ones,
degrees=True,
)
mask = (C > 0).float().reshape(list(C.shape) + [1, 1])
X = mask * torch.stack([X_N, X_CA, X_C, X_O], dim=-2)
return X
def forward(
self,
R: torch.Tensor,
t: torch.Tensor,
C: torch.LongTensor,
q: Optional[torch.Tensor] = None,
):
assert q is None or R is None
if R is None:
# (B,N,1,3,3) and (B,N,1,3)
R = geometry.rotations_from_quaternions(
q, normalize=True, eps=self.distance_eps
)
R = R.unsqueeze(-3)
t_frame = t.unsqueeze(-2)
X_chain = transforms.compose_translation(R, t_frame, self._t_atom)
X = self._build_O(X_chain, C)
return X
def inverse(
self, X: torch.Tensor, C: torch.LongTensor
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""Reconstruct transformations from poses.
Inputs:
X (torch.Tensor): All-atom protein coordinates with shape
`(num_batch, num_residues, 4, 3)`
C (torch.Tensor): Chain map with shape `(num_batch, num_residues)`.
Outputs:
R (torch.Tensor): Rotation of residue orientiations
with shape `(num_batch, num_residues, 3, 3)`.
t (torch.Tensor): Translation of residue orientiations
with shape `(num_batch, num_residues, 3)`. This is the
location of the C-alpha coordinates.
q (torch.Tensor): Quaternions representing residue orientiations
with shape `(num_batch, num_residues, 4)`.
"""
X_bb = X[:, :, :4, :]
R, t = geometry.frames_from_backbone(X_bb, distance_eps=self.distance_eps)
q = geometry.quaternions_from_rotations(R, eps=self.distance_eps)
mask = (C > 0).float().unsqueeze(-1)
R = mask.unsqueeze(-1) * R
t = mask * t
q = mask * q
return R, t, q
class GraphBackboneUpdate(nn.Module):
"""Layer for updating backbone coordinates given graph embeddings.
Args:
dim_nodes (int): Node dimension of graph input.
dim_edges (int): Edge dimension of graph input.
distance_scale (float): Coordinate scaling factor in angstroms. Default
is 10 angstroms per unit, which corresponds to nanometers.
method (str): Method used for predicting coordinates. Options include
* `local`: Node-based relative transformations.
* `neighbor`: Inter-residue geometry.
* `neighbor_global`: Inter-residue geometry with virtual global edge.
* `neighbor_global_affine`: Inter-residue geometry with virtual
global edge, parameterized as a residual update.
* `none`: No transformation-based updates.
iterations (int): Number of method iteractions.
unconstrained (bool): If True, update sub-pose geometries beyond ideal
coordinates.
num_transform_weights (int): Number of uncertainty dimensions per residue
for neighbor-based updates.
black_hole_init (bool): If True, ignore initial geometry and initialize
poses at the origin as in AlphaFold2 (Jumper et al 2020).
Inputs:
X (torch.Tensor): Backbone coordinates with shape
`(num_batch, num_residues, num_atoms, 3)`.
C (torch.LongTensor): Chain map with shape `(num_batch, num_residues)`.
node_h (torch.Tensor): Node features with shape
`(num_batch, num_residues, dim_nodes)`.
edge_h (torch.Tensor): Edge features with shape
`(num_batch, num_residues, num_neighbors, dim_edges)`.
edge_idx (torch.LongTensor): Edge indices for neighbors with shape
`(num_batch, num_residues, num_neighbors)`.
mask_i (torch.Tensor): Node mask with shape `(num_batch, num_residues)`.
mask_ij (torch.Tensor): Edge mask with shape
`(num_batch, num_nodes, num_neighbors)`.
Outputs:
X_update (torch.Tensor): Updated backbone coordinates with shape
`(num_batch, num_residues, num_atoms, 3)`.
"""
def __init__(
self,
dim_nodes: int,
dim_edges: int,
distance_scale: float = 10.0,
distance_eps: float = 1e-3,
method: str = "neighbor",
iterations: int = 1,
unconstrained: bool = True,
num_transform_weights: int = 1,
black_hole_init: bool = False,
):
super(GraphBackboneUpdate, self).__init__()
self.distance_scale = distance_scale
self.distance_eps = distance_eps
self._eps = 1e-5
self.frame_builder = FrameBuilder(distance_eps=distance_eps)
self.method = method
self.iterations = iterations
self.unconstrained = unconstrained
self.num_transform_weights = num_transform_weights
self.black_hole_init = black_hole_init
if self.method == "local":
self.W_q = nn.Linear(dim_nodes, 4)
self.W_t = nn.Linear(dim_nodes, 3)
elif self.method == "neighbor":
self.W_q = nn.Linear(dim_edges, 4)
self.W_t = nn.Linear(dim_edges, 3)
self.W_w = nn.Linear(dim_edges, self.num_transform_weights)
elif self.method == "neighbor_global":
self.W_q = nn.Linear(dim_edges, 4)
self.W_t = nn.Linear(dim_edges, 3)
self.W_w = nn.Linear(dim_edges, self.num_transform_weights)
self.W_q_global = nn.Linear(dim_nodes, 4)
self.W_t_global = nn.Linear(dim_nodes, 3)
self.W_w_global = nn.Linear(dim_nodes, self.num_transform_weights)
elif self.method == "neighbor_global_affine":
self.W_s_node = nn.Linear(dim_nodes, 2)
self.W_s_edge = nn.Linear(dim_edges, 2)
self.W_q = nn.Linear(dim_edges, 4)
self.W_t = nn.Linear(dim_edges, 3)
self.W_w = nn.Linear(dim_edges, self.num_transform_weights)
self.W_q_global = nn.Linear(dim_nodes, 4)
self.W_t_global = nn.Linear(dim_nodes, 3)
self.W_w_global = nn.Linear(dim_nodes, self.num_transform_weights)
if self.method == "none":
# None does no frame based updates
assert self.unconstrained
if self.unconstrained:
self.W_t_local = nn.Linear(dim_nodes, 12)
return
def _init_black_hole(self, X):
R = (
torch.eye(3, device=X.device, dtype=X.dtype)
.reshape(1, 1, 3, 3)
.repeat(X.size(0), X.size(1), 1, 1)
)
t = torch.zeros(X.size(0), X.size(1), 3, dtype=X.dtype, device=X.device)
return R, t
def _update_local_transform(self, X, C, node_h, edge_h, edge_idx, mask_i, mask_ij):
"""Update residue frames via transformation from self."""
R_i, t_i, _ = self.frame_builder.inverse(X, C)
if self.black_hole_init:
R_i, t_i = self._init_black_hole(X)
# Predict transforms
R = geometry.rotations_from_quaternions(
self.W_q(node_h), normalize=True, eps=self.distance_eps
)
t = self.distance_scale * self.W_t(node_h)
# Apply transformations
R_i_pred, t_i_pred = transforms.compose_transforms(R_i, t_i, R, t)
X_update = self.frame_builder(R_i_pred, t_i_pred, C)
return X_update, None, None, None
def _update_neighbor_transform(
self, X, C, node_h, edge_h, edge_idx, mask_i, mask_ij
):
"""Update residue frames via weighted average transformation from neighbors."""
# Predict relative transformations from neighbors to self
R_ji = geometry.rotations_from_quaternions(
self.W_q(edge_h), normalize=True, eps=self.distance_eps
)
t_ji = self.distance_scale * self.W_t(edge_h)
logit_ij = self.W_w(edge_h)
# Compute predicted self locations from each neighbor
R_i, t_i, _ = self.frame_builder.inverse(X, C)
if self.black_hole_init:
R_i, t_i = self._init_black_hole(X)
R_i, t_i = transforms.equilibrate_transforms(
R_i,
t_i,
R_ji,
t_ji,
logit_ij,
mask_ij,
edge_idx,
iterations=self.iterations,
)
X_update = self.frame_builder(R_i, t_i, C)
return X_update, R_ji, t_ji, None
def _update_neighbor_global_transform(
self, X, C, node_h, edge_h, edge_idx, mask_i, mask_ij
):
"""Update residue frames via weighted average transformation from neighbors."""
# Predict relative transformations from neighbors to self
R_ji = geometry.rotations_from_quaternions(
self.W_q(edge_h), normalize=True, eps=self.distance_eps
)
t_ji = self.distance_scale * self.W_t(edge_h)
logit_ji = self.W_w(edge_h)
# Predict relative transformations to global frame
R_global_i = geometry.rotations_from_quaternions(
self.W_q_global(node_h), normalize=True, eps=self.distance_eps
)
t_global_i = self.distance_scale * self.W_t_global(node_h)
logit_global_i = self.W_w_global(node_h)
# Initialize global frame equivariantly
R_i, t_i, _ = self.frame_builder.inverse(X, C)
if self.black_hole_init:
R_i, t_i = self._init_black_hole(X)
R_global, t_global = transforms.average_transforms(
R_i, t_i, mask_i[..., None], mask_i, dim=1, dither_eps=0.0
)
# Compute predicted self locations from each neighbor
R_i, t_i = transforms.equilibrate_transforms(
R_i,
t_i,
R_ji,
t_ji,
logit_ji,
mask_ij,
edge_idx,
iterations=self.iterations,
R_global=R_global,
t_global=t_global,
R_global_i=R_global_i,
t_global_i=t_global_i,
logit_global_i=logit_global_i,
)
X_update = self.frame_builder(R_i, t_i, C)
return X_update, R_ji, t_ji, logit_ji
def _update_neighbor_global_affine_transform(
self, X, C, node_h, edge_h, edge_idx, mask_i, mask_ij
):
"""Update residue frames via weighted average transformation from neighbors."""
# Compute interresidue geometries for current system
R_i_init, t_i_init, _ = self.frame_builder.inverse(X, C)
if self.black_hole_init:
R_i_init, t_i_init = self._init_black_hole(X)
R_j_init, t_j_init = transforms.collect_neighbor_transforms(
R_i_init, t_i_init, edge_idx
)
R_global, t_global = transforms.average_transforms(
R_i_init, t_i_init, mask_i[..., None], mask_i, dim=1, dither_eps=0.0
)
R_ji_init, t_ji_init = transforms.compose_inner_transforms(
R_j_init, t_j_init, R_i_init.unsqueeze(-3), t_i_init.unsqueeze(-2)
)
R_gi_init, t_gi_init = transforms.compose_inner_transforms(
R_global.unsqueeze(1), t_global.unsqueeze(1), R_i_init, t_i_init
)
q_ji_init = geometry.quaternions_from_rotations(R_ji_init)
q_gi_init = geometry.quaternions_from_rotations(R_gi_init)
# Scale factor
s_node = torch.sigmoid(self.W_s_node(node_h)[..., None]).unbind(-2)
s_edge = torch.sigmoid(self.W_s_edge(edge_h)[..., None]).unbind(-2)
d_scale = self.distance_scale
# Use edges to predict relative transformations from neighbors to self
q_ji = s_edge[0] * q_ji_init + (1.0 - s_edge[0]) * self.W_q(edge_h)
t_ji = s_edge[1] * t_ji_init + (1.0 - s_edge[1]) * d_scale * self.W_t(edge_h)
logit_ji = self.W_w(edge_h)
# Use nodes to predict relative transformations to global frame
q_gi = s_node[0] * q_gi_init + (1.0 - s_node[0]) * self.W_q_global(node_h)
t_gi = s_node[1] * t_gi_init + (1.0 - s_node[1]) * d_scale * self.W_t_global(
node_h
)
logit_gi = self.W_w_global(node_h)
R_ji = geometry.rotations_from_quaternions(
q_ji, normalize=True, eps=self.distance_eps
)
R_gi = geometry.rotations_from_quaternions(
q_gi, normalize=True, eps=self.distance_eps
)
# Compute predicted self locations from each neighbor
R_i, t_i = transforms.equilibrate_transforms(
R_i_init,
t_i_init,
R_ji,
t_ji,
logit_ji,
mask_ij,
edge_idx,
iterations=self.iterations,
R_global=R_global,
t_global=t_global,
R_global_i=R_gi,
t_global_i=t_gi,
logit_global_i=logit_gi,
)
X_update = self.frame_builder(R_i, t_i, C)
return X_update, R_ji, t_ji, logit_ji
def _inner_transforms(self, X, C, edge_idx):
R_i, t_i, _ = self.frame_builder.inverse(X, C)
R_ji, t_ji = transforms.collect_neighbor_inner_transforms(R_i, t_i, edge_idx)
return R_ji, t_ji
def _transform_loss(self, R_ij_predict, t_ij_predict, X, C, edge_idx, mask_ij):
"""Compute loss between transforms"""
R_ij, t_ij = self._inner_transforms(X, C, edge_idx)
R_ij_error = (R_ij_predict - R_ij).square().sum([-1, -2])
t_ij_error = (t_ij_predict - t_ij).square().sum([-1])
R_ij_mse = (mask_ij * R_ij_error).sum([1, 2]) / (
mask_ij.sum([1, 2]) + self._eps
)
t_ij_mse = (mask_ij * t_ij_error).sum([1, 2]) / (
mask_ij.sum([1, 2]) + self._eps
)
return R_ij_mse, t_ij_mse
def forward(
self,
X: torch.Tensor,
C: torch.LongTensor,
node_h: torch.Tensor,
edge_h: torch.Tensor,
edge_idx: torch.LongTensor,
mask_i: torch.Tensor,
mask_ij: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
methods = {
"local": self._update_local_transform,
"neighbor": self._update_neighbor_transform,
"neighbor_global": self._update_neighbor_global_transform,
"neighbor_global_affine": self._update_neighbor_global_affine_transform,
"none": lambda *args: args[0],
}
method = methods[self.method]
# Update frames with ideal geometry
X_update, R_ji, t_ji, logit_ji = method(
X, C, node_h, edge_h, edge_idx, mask_i, mask_ij
)
if self.unconstrained:
# Predict atomic updates as delta from ideal geometry
# R_i, t_i, _ = self.frame_builder.inverse(X, C) # NOTE: Old models did this which was a typo
R_i, t_i, _ = self.frame_builder.inverse(X_update, C)
t_local = self.W_t_local(node_h).reshape(X.shape)
# Rotate atomic updates into local frame
R_i = R_i.unsqueeze(-3)
t_i = torch.zeros_like(t_i).unsqueeze(-2)
dX = transforms.compose_translation(R_i, t_i, t_local)
if self.training:
# Randomly swap between ideal coordinates at train time
mask_drop = (
torch.randint(
low=0, high=2, size=[C.shape[0], 1, 1, 1], device=X.device
)
> 0
).float()
dX = mask_drop * dX
X_update = X_update + dX
return X_update, R_ji, t_ji, logit_ji
class LossBackboneResidueDistance(nn.Module):
"""Compute losses for training denoising diffusion models.
Inputs:
X_mobile (torch.Tensor): Mobile coordinates with shape
`(num_source, num_atoms, 4, 3)`.
X_target (torch.Tensor): Target coordinates with shape
`(num_target, num_atoms, 4, 3)`.
C (torch.Tensor): Chain map with shape `(num_batch, num_residues)`.
Outputs:
D_error (Tensor, optional): Per-site average distance errors with shape
`(num_batch)`.
"""
def __init__(self, dist_eps: float = 1e-3):
super(LossBackboneResidueDistance, self).__init__()
self.dist_eps = dist_eps
def _D(self, X):
"""Compute distance matrix between center of mass"""
X_mean = X.mean(2)
D = (
(X_mean[:, :, None, :] - X_mean[:, None, :, :])
.square()
.sum(-1)
.add(self.dist_eps)
.sqrt()
)
return D
def forward(
self, X_mobile: torch.Tensor, X_target: torch.Tensor, C: torch.LongTensor
) -> torch.Tensor:
mask = (C > 0).float()
mask_2D = mask[:, :, None] * mask[:, None, :]
D_error = (self._D(X_mobile) - self._D(X_target)).square()
D_error = (mask_2D * D_error).sum(-1) / (mask_2D.sum(-1) + self.dist_eps)
return D_error
def center_X(X: torch.Tensor, C: torch.LongTensor) -> torch.Tensor:
"""Center each protein system at the origin.
Args:
X (torch.Tensor): Backbone coordinates with shape
`(batch_size, num_residues, num_atoms, 3)`.
C (torch.LongTensor): Chain map with shape
`(num_batch, num_residues)`.
Returns:
X_centered (torch.Tensor): Centered backbone coordinates with shape
`(batch_size, num_residues, num_atoms, 3)`.
"""
mask_expand = (
(C > 0).float().reshape(list(C.shape) + [1, 1]).expand([-1, -1, 4, -1])
)
X_mean = (mask_expand * X).sum([1, 2], keepdims=True) / (
mask_expand.sum([1, 2], keepdims=True)
)
X_centered = mask_expand * (X - X_mean)
return X_centered
def atomic_mean(
X_flat: torch.Tensor, mask: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Compute the mean across all 4 atom types.
Args:
X (torch.Tensor): Flattened backbone coordinates with shape
`(batch_size, num_residues * num_atoms, 3)`.
mask (torch.Tensor): Mask with shape `(num_batch, num_residues)`.
Returns:
X_mean (torch.Tensor): System centers with shape `(batch_size, 3)`.
mask_atomic (torch.Tensor): Atomic mask with shape
`(batch_size, num_residues * num_atoms)`.
"""
mask_expand = mask.unsqueeze(-1).expand(-1, -1, 4)
mask_atomic = mask_expand.reshape(mask.shape[0], -1).unsqueeze(-1)
X_mean = torch.sum(mask_atomic * X_flat, 1, keepdims=True) / (
torch.sum(mask_atomic, 1, keepdims=True)
)
return X_mean, mask_atomic
def scale_around_mean(
X: torch.Tensor, C: torch.LongTensor, scale: float
) -> torch.Tensor:
"""Scale coordinates around mean.
Args:
X (torch.Tensor): Backbone coordinates with shape
`(batch_size, num_residues, num_atoms, 3)`.
C (LongTensor): Chain map with shape
`(num_batch, num_residues)`.
scale (float): Scalar factor by which to rescale
the coordinates.
Returns:
X_scaled (torch.Tensor): Backbone coordinates with shape
`(batch_size, num_residues, num_atoms, 3)`.
"""
num_atoms = X.size(2)
mask_expand = (
(C > 0).float().reshape(list(C.shape) + [1, 1]).expand([-1, -1, num_atoms, -1])
)
X_mean = (mask_expand * X).sum([1, 2], keepdims=True) / (
mask_expand.sum([1, 2], keepdims=True)
)
X_rescale = mask_expand * (scale[:, None, None, None] * (X - X_mean) + X_mean)
return X_rescale
def impute_masked_X(X: torch.Tensor, C: torch.LongTensor) -> torch.Tensor:
"""Impute missing structure data to enforce chain contiguity.
The posterior mean under a Brownian bridge is simply either the
nearest unclamped state or a linear interpolant between the two
nearest clamped endpoints along the chain.
Args:
X (torch.Tensor): Backbone coordinates with shape
`(batch_size, num_residues, num_atoms, 3)`.
C (LongTensor): Chain map with shape
`(num_batch, num_residues)`.
Returns:
X (torch.Tensor): Imputed backbone coordinates with shape
`(batch_size, num_residues, num_atoms, 3)`.
"""
X_flat = X.reshape(X.shape[0], -1, 3)
mask = (C > 0).type(torch.float32)
X_mean, mask_atomic = atomic_mean(X_flat, mask)
# Expand chain map into atomic level masking
C_expand = C.unsqueeze(-1).expand(-1, -1, 4)
C_atomic = C_expand.reshape(C.shape[0], -1)
# Find nearest unmasked positions to the left and right
ix = torch.arange(C_atomic.shape[1], device=X.device).reshape([1, -1])
mask_atomic_extend = mask_atomic.squeeze(-1)
ix_mask = mask_atomic_extend * ix - (1 - mask_atomic_extend)
ix_left, _ = torch.cummax(ix_mask, dim=1)
ix_flip = torch.flip(
mask_atomic_extend * ix_mask + (1 - mask_atomic_extend) * C_atomic.shape[1],
[1],
)
ix_right, _ = torch.cummin(ix_flip, dim=1)
ix_right = torch.flip(ix_right, [1])
ix_left = ix_left.long()
ix_right = ix_right.long()
clamped_left = ix_left >= 0
clamped_right = ix_right < C_atomic.shape[1]
ix_left[ix_left < 0] = 0
ix_right[ix_right == C_atomic.shape[1]] = 0
X_left = torch.gather(X_flat, 1, ix_left.unsqueeze(-1).expand(-1, -1, 3))
X_right = torch.gather(X_flat, 1, ix_right.unsqueeze(-1).expand(-1, -1, 3))
# Enfore that adjacent residues are same chain
C_abs = torch.abs(C_atomic)
C_left = torch.gather(C_abs, 1, ix_left)
C_right = torch.gather(C_abs, 1, ix_right)
clamped_left = clamped_left * (C_left == C_abs)
clamped_right = clamped_right * (C_right == C_abs)
# Build linear interpolant
D_left = torch.abs(ix - ix_left)
D_right = torch.abs(ix_right - ix)
interp_theta = (D_right / (D_left + D_right + 1e-5)).unsqueeze(-1)
X_interp = interp_theta * X_left + (1 - interp_theta) * X_right
clamped_left = clamped_left.unsqueeze(-1)
clamped_right = clamped_right.unsqueeze(-1)
X_imputed_flat = mask_atomic * X_flat + (1 - mask_atomic) * (
clamped_left * clamped_right * X_interp
+ clamped_right * (~clamped_left) * X_right
+ (~clamped_right) * clamped_left * X_left
)
X_imputed = X_imputed_flat.reshape(X.shape)
return X_imputed
def expand_chain_map(C: torch.LongTensor) -> torch.Tensor:
"""Expand an integer chain map into a binary chain mask.
Args:
C (LongTensor): Chain map with shape
`(num_batch, num_residues)`.
Returns:
mask_C (torch.Tensor): Expanded binary chain map with shape
`(num_batch, num_residue, num_chains)`.
"""
# Compute the per-chain averages of each feature within a chain, in place
num_batch, num_residues = list(C.shape)
num_chains = int(torch.max(C).item())
# Build a position == chain expanded mask (B,L,C)
C_expand = C.unsqueeze(-1).expand(-1, -1, num_chains)
idx = torch.arange(num_chains, device=C.device) + 1
idx_expand = idx.view(1, 1, -1)
mask_C = (idx_expand == C_expand).type(torch.float32)
return mask_C
|