Spaces:
Sleeping
Sleeping
File size: 24,382 Bytes
ce7bf5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 |
# Copyright Generate Biomedicines, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Layers for measuring and building atomic geometries in proteins.
This module contains pytorch layers for computing common geometric features of
protein backbones in a differentiable way and for converting between internal
and Cartesian coordinate representations.
"""
from typing import Optional, Tuple
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
class Distances(nn.Module):
"""Euclidean distance layer (pairwise).
This layer computes batched pairwise Euclidean distances, where the input
tensor is treated as a batch of vectors with the final dimension as the
feature dimension and the dimension for pairwise expansion can be specified.
Args:
distance_eps (float, optional): Small parameter to adde to squared
distances to make gradients smooth near 0.
Inputs:
X (tensor): Input coordinates with shape `([...], length, [...], 3)`.
dim (int, optional): Dimension upon which to expand to pairwise
distances. Defaults to -2.
mask (tensor, optional): Masking tensor with shape
`([...], length, [...])`.
Outputs:
D (tensor): Distances with shape `([...], length, length, [...])`
"""
def __init__(self, distance_eps=1e-3):
super(Distances, self).__init__()
self.distance_eps = distance_eps
def forward(
self, X: torch.Tensor, mask: Optional[torch.Tensor] = None, dim: float = -2
) -> torch.Tensor:
dim_expand = dim if dim < 0 else dim + 1
dX = X.unsqueeze(dim_expand - 1) - X.unsqueeze(dim_expand)
D_square = torch.sum(dX ** 2, -1)
D = torch.sqrt(D_square + self.distance_eps)
if mask is not None:
mask_expand = mask.unsqueeze(dim) * mask.unsqueeze(dim + 1)
D = mask_expand * D
return D
class VirtualAtomsCA(nn.Module):
"""Virtual atoms layer, branching from backbone C-alpha carbons.
This layer places virtual atom coordinates relative to backbone coordinates
in a differentiable way.
Args:
virtual_type (str, optional): Type of virtual atom to place. Currently
supported types are `dicons`, a virtual placement that was
optimized to predict potential rotamer interactions, and `cbeta`
which places a virtual C-beta carbon assuming ideal geometry.
distance_eps (float, optional): Small parameter to add to squared
distances to make gradients smooth near 0.
Inputs:
X (Tensor): Backbone coordinates with shape
`(num_batch, num_residues, num_atom_types, 3)`.
C (Tensor): Chain map tensor with shape `(num_batch, num_residues)`.
Outputs:
X_virtual (Tensor): Virtual coordinates with shape
`(num_batch, num_residues, 3)`.
"""
def __init__(self, virtual_type="dicons", distance_eps=1e-3):
super(VirtualAtomsCA, self).__init__()
self.distance_eps = distance_eps
"""
Geometry specifications
dicons
Length CA-X: 2.3866
Angle N-CA-X: 111.0269
Dihedral C-N-CA-X: -138.886412
cbeta
Length CA-X: 1.532 (Engh and Huber, 2001)
Angle N-CA-X: 109.5 (tetrahedral geometry)
Dihedral C-N-CA-X: -125.25 (109.5 / 2 - 180)
"""
self.virtual_type = virtual_type
virtual_geometries = {
"dicons": [2.3866, 111.0269, -138.8864122],
"cbeta": [1.532, 109.5, -125.25],
}
self.virtual_geometries = virtual_geometries
self.distance_eps = distance_eps
def geometry(self):
bond, angle, dihedral = self.virtual_geometries[self.virtual_type]
return bond, angle, dihedral
def forward(self, X: torch.Tensor, C: torch.LongTensor) -> torch.Tensor:
bond, angle, dihedral = self.geometry()
ones = torch.ones([1, 1], device=X.device)
bonds = bond * ones
angles = angle * ones
dihedrals = dihedral * ones
# Build reference frame
# 1.C -> 2.N -> 3.CA -> 4.X
X_N, X_CA, X_C, X_O = X.unbind(2)
X_virtual = extend_atoms(
X_C,
X_N,
X_CA,
bonds,
angles,
dihedrals,
degrees=True,
distance_eps=self.distance_eps,
)
# Mask missing positions
mask = (C > 0).type(torch.float32).unsqueeze(-1)
X_virtual = mask * X_virtual
return X_virtual
def normed_vec(V: torch.Tensor, distance_eps: float = 1e-3) -> torch.Tensor:
"""Normalized vectors with distance smoothing.
This normalization is computed as `U = V / sqrt(|V|^2 + eps)` to avoid cusps
and gradient discontinuities.
Args:
V (Tensor): Batch of vectors with shape `(..., num_dims)`.
distance_eps (float, optional): Distance smoothing parameter for
for computing distances as `sqrt(sum_sq) -> sqrt(sum_sq + eps)`.
Default: 1E-3.
Returns:
U (Tensor): Batch of normalized vectors with shape `(..., num_dims)`.
"""
# Unit vector from i to j
mag_sq = (V ** 2).sum(dim=-1, keepdim=True)
mag = torch.sqrt(mag_sq + distance_eps)
U = V / mag
return U
def normed_cross(
V1: torch.Tensor, V2: torch.Tensor, distance_eps: float = 1e-3
) -> torch.Tensor:
"""Normalized cross product between vectors.
This normalization is computed as `U = V / sqrt(|V|^2 + eps)` to avoid cusps
and gradient discontinuities.
Args:
V1 (Tensor): Batch of vectors with shape `(..., 3)`.
V2 (Tensor): Batch of vectors with shape `(..., 3)`.
distance_eps (float, optional): Distance smoothing parameter for
for computing distances as `sqrt(sum_sq) -> sqrt(sum_sq + eps)`.
Default: 1E-3.
Returns:
C (Tensor): Batch of cross products `v_1 x v_2` with shape `(..., 3)`.
"""
C = normed_vec(torch.cross(V1, V2, dim=-1), distance_eps=distance_eps)
return C
def lengths(
atom_i: torch.Tensor, atom_j: torch.Tensor, distance_eps: float = 1e-3
) -> torch.Tensor:
"""Batched bond lengths given batches of atom i and j.
Args:
atom_i (Tensor): Atom `i` coordinates with shape `(..., 3)`.
atom_j (Tensor): Atom `j` coordinates with shape `(..., 3)`.
distance_eps (float, optional): Distance smoothing parameter for
for computing distances as `sqrt(sum_sq) -> sqrt(sum_sq + eps)`.
Default: 1E-3.
Returns:
L (Tensor): Elementwise bond lengths `||x_i - x_j||` with shape `(...)`.
"""
# Bond length of i-j
dX = atom_j - atom_i
L = torch.sqrt((dX ** 2).sum(dim=-1) + distance_eps)
return L
def angles(
atom_i: torch.Tensor,
atom_j: torch.Tensor,
atom_k: torch.Tensor,
distance_eps: float = 1e-3,
degrees: bool = False,
) -> torch.Tensor:
"""Batched bond angles given atoms `i-j-k`.
Args:
atom_i (Tensor): Atom `i` coordinates with shape `(..., 3)`.
atom_j (Tensor): Atom `j` coordinates with shape `(..., 3)`.
atom_k (Tensor): Atom `k` coordinates with shape `(..., 3)`.
distance_eps (float, optional): Distance smoothing parameter for
for computing distances as `sqrt(sum_sq) -> sqrt(sum_sq + eps)`.
Default: 1E-3.
degrees (bool, optional): If True, convert to degrees. Default: False.
Returns:
A (Tensor): Elementwise bond angles with shape `(...)`.
"""
# Bond angle of i-j-k
U_ji = normed_vec(atom_i - atom_j, distance_eps=distance_eps)
U_jk = normed_vec(atom_k - atom_j, distance_eps=distance_eps)
inner_prod = torch.einsum("bix,bix->bi", U_ji, U_jk)
inner_prod = torch.clamp(inner_prod, -1, 1)
A = torch.acos(inner_prod)
if degrees:
A = A * 180.0 / np.pi
return A
def dihedrals(
atom_i: torch.Tensor,
atom_j: torch.Tensor,
atom_k: torch.Tensor,
atom_l: torch.Tensor,
distance_eps: float = 1e-3,
degrees: bool = False,
) -> torch.Tensor:
"""Batched bond dihedrals given atoms `i-j-k-l`.
Args:
atom_i (Tensor): Atom `i` coordinates with shape `(..., 3)`.
atom_j (Tensor): Atom `j` coordinates with shape `(..., 3)`.
atom_k (Tensor): Atom `k` coordinates with shape `(..., 3)`.
atom_l (Tensor): Atom `l` coordinates with shape `(..., 3)`.
distance_eps (float, optional): Distance smoothing parameter for
for computing distances as `sqrt(sum_sq) -> sqrt(sum_sq + eps)`.
Default: 1E-3.
degrees (bool, optional): If True, convert to degrees. Default: False.
Returns:
D (Tensor): Elementwise bond dihedrals with shape `(...)`.
"""
U_ij = normed_vec(atom_j - atom_i, distance_eps=distance_eps)
U_jk = normed_vec(atom_k - atom_j, distance_eps=distance_eps)
U_kl = normed_vec(atom_l - atom_k, distance_eps=distance_eps)
normal_ijk = normed_cross(U_ij, U_jk, distance_eps=distance_eps)
normal_jkl = normed_cross(U_jk, U_kl, distance_eps=distance_eps)
# _inner_product = lambda a, b: torch.einsum("bix,bix->bi", a, b)
_inner_product = lambda a, b: (a * b).sum(-1)
cos_dihedrals = _inner_product(normal_ijk, normal_jkl)
angle_sign = _inner_product(U_ij, normal_jkl)
cos_dihedrals = torch.clamp(cos_dihedrals, -1, 1)
D = torch.sign(angle_sign) * torch.acos(cos_dihedrals)
if degrees:
D = D * 180.0 / np.pi
return D
def extend_atoms(
X_1: torch.Tensor,
X_2: torch.Tensor,
X_3: torch.Tensor,
lengths: torch.Tensor,
angles: torch.Tensor,
dihedrals: torch.Tensor,
distance_eps: float = 1e-3,
degrees: bool = False,
) -> torch.Tensor:
"""Place atom `X_4` given `X_1`, `X_2`, `X_3` and internal coordinates.
___________________
| X_1 - X_2 |
| | |
| X_3 - [X_4] |
|___________________|
This uses a similar approach as NERF:
Parsons et al, Computational Chemistry (2005).
https://doi.org/10.1002/jcc.20237
See the reference for further explanation about converting from internal
coordinates to Cartesian coordinates.
Args:
X_1 (Tensor): First atom coordinates with shape `(..., 3)`.
X_2 (Tensor): Second atom coordinates with shape `(..., 3)`.
X_3 (Tensor): Third atom coordinates with shape `(..., 3)`.
lengths (Tensor): Bond lengths `X_3-X_4` with shape `(...)`.
angles (Tensor): Bond angles `X_2-X_3-X_4` with shape `(...)`.
dihedrals (Tensor): Bond dihedrals `X_1-X_2-X_3-X_4` with shape `(...)`.
distance_eps (float, optional): Distance smoothing parameter for
for computing distances as `sqrt(sum_sq) -> sqrt(sum_sq + eps)`.
This preserves differentiability for zero distances. Default: 1E-3.
degrees (bool, optional): If True, inputs are treated as degrees.
Default: False.
Returns:
X_4 (Tensor): Placed atom with shape `(..., 3)`.
"""
if degrees:
angles *= np.pi / 180.0
dihedrals *= np.pi / 180.0
r_32 = X_2 - X_3
r_12 = X_2 - X_1
n_1 = normed_vec(r_32, distance_eps=distance_eps)
n_2 = normed_cross(n_1, r_12, distance_eps=distance_eps)
n_3 = normed_cross(n_1, n_2, distance_eps=distance_eps)
lengths = lengths.unsqueeze(-1)
cos_angle = torch.cos(angles).unsqueeze(-1)
sin_angle = torch.sin(angles).unsqueeze(-1)
cos_dihedral = torch.cos(dihedrals).unsqueeze(-1)
sin_dihedral = torch.sin(dihedrals).unsqueeze(-1)
X_4 = X_3 + lengths * (
cos_angle * n_1
+ (sin_angle * sin_dihedral) * n_2
+ (sin_angle * cos_dihedral) * n_3
)
return X_4
class InternalCoords(nn.Module):
"""Internal coordinates layer.
This layer computes internal coordinates (ICs) from a batch of protein
backbones. To make the ICs differentiable everywhere, this layer replaces
distance calculations of the form `sqrt(sum_sq)` with smooth, non-cusped
approximation `sqrt(sum_sq + eps)`.
Args:
distance_eps (float, optional): Small parameter to add to squared
distances to make gradients smooth near 0.
Inputs:
X (Tensor): Backbone coordinates with shape
`(num_batch, num_residues, num_atom_types, 3)`.
C (Tensor): Chain map tensor with shape
`(num_batch, num_residues)`.
Outputs:
dihedrals (Tensor): Backbone dihedral angles with shape
`(num_batch, num_residues, 4)`
angles (Tensor): Backbone bond lengths with shape
`(num_batch, num_residues, 4)`
lengths (Tensor): Backbone bond lengths with shape
`(num_batch, num_residues, 4)`
"""
def __init__(self, distance_eps=1e-3):
super(InternalCoords, self).__init__()
self.distance_eps = distance_eps
def forward(
self,
X: torch.Tensor,
C: Optional[torch.Tensor] = None,
return_masks: bool = False,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
mask = (C > 0).float()
X_chain = X[:, :, :3, :]
num_batch, num_residues, _, _ = X_chain.shape
X_chain = X_chain.reshape(num_batch, 3 * num_residues, 3)
# This function historically returns the angle complement
_lengths = lambda Xi, Xj: lengths(Xi, Xj, distance_eps=self.distance_eps)
_angles = lambda Xi, Xj, Xk: np.pi - angles(
Xi, Xj, Xk, distance_eps=self.distance_eps
)
_dihedrals = lambda Xi, Xj, Xk, Xl: dihedrals(
Xi, Xj, Xk, Xl, distance_eps=self.distance_eps
)
# Compute internal coordinates associated with -[N]-[CA]-[C]-
NCaC_L = _lengths(X_chain[:, 1:, :], X_chain[:, :-1, :])
NCaC_A = _angles(X_chain[:, :-2, :], X_chain[:, 1:-1, :], X_chain[:, 2:, :])
NCaC_D = _dihedrals(
X_chain[:, :-3, :],
X_chain[:, 1:-2, :],
X_chain[:, 2:-1, :],
X_chain[:, 3:, :],
)
# Compute internal coordinates associated with [C]=[O]
_, X_CA, X_C, X_O = X.unbind(dim=2)
X_N_next = X[:, 1:, 0, :]
O_L = _lengths(X_C, X_O)
O_A = _angles(X_CA, X_C, X_O)
O_D = _dihedrals(X_N_next, X_CA[:, :-1, :], X_C[:, :-1, :], X_O[:, :-1, :])
if C is None:
C = torch.zeros_like(mask)
# Mask nonphysical bonds and angles
# Note: this could probably also be expressed as a Conv, unclear
# which is faster and this probably not rate-limiting.
C = C * (mask.type(torch.long))
ii = torch.stack(3 * [C], dim=-1).view([num_batch, -1])
L0, L1 = ii[:, :-1], ii[:, 1:]
A0, A1, A2 = ii[:, :-2], ii[:, 1:-1], ii[:, 2:]
D0, D1, D2, D3 = ii[:, :-3], ii[:, 1:-2], ii[:, 2:-1], ii[:, 3:]
# Mask for linear backbone
mask_L = torch.eq(L0, L1)
mask_A = torch.eq(A0, A1) * torch.eq(A0, A2)
mask_D = torch.eq(D0, D1) * torch.eq(D0, D2) * torch.eq(D0, D3)
mask_L = mask_L.type(torch.float32)
mask_A = mask_A.type(torch.float32)
mask_D = mask_D.type(torch.float32)
# Masks for branched oxygen
mask_O_D = torch.eq(C[:, :-1], C[:, 1:])
mask_O_D = mask_O_D.type(torch.float32)
mask_O_A = mask
mask_O_L = mask
def _pad_pack(D, A, L, O_D, O_A, O_L):
# Pad and pack together the components
D = F.pad(D, (1, 2))
A = F.pad(A, (0, 2))
L = F.pad(L, (0, 1))
O_D = F.pad(O_D, (0, 1))
D, A, L = [x.reshape(num_batch, num_residues, 3) for x in [D, A, L]]
_pack = lambda a, b: torch.cat([a, b.unsqueeze(-1)], dim=-1)
L = _pack(L, O_L)
A = _pack(A, O_A)
D = _pack(D, O_D)
return D, A, L
D, A, L = _pad_pack(NCaC_D, NCaC_A, NCaC_L, O_D, O_A, O_L)
mask_D, mask_A, mask_L = _pad_pack(
mask_D, mask_A, mask_L, mask_O_D, mask_O_A, mask_O_L
)
mask_expand = mask.unsqueeze(-1)
mask_D = mask_expand * mask_D
mask_A = mask_expand * mask_A
mask_L = mask_expand * mask_L
D = mask_D * D
A = mask_A * A
L = mask_L * L
if not return_masks:
return D, A, L
else:
return D, A, L, mask_D, mask_A, mask_L
class VirtualAtomsCA(nn.Module):
"""Virtual atoms layer, branching from backbone C-alpha carbons.
This layer places virtual atom coordinates relative to backbone coordinates
in a differentiable way.
Args:
virtual_type (str, optional): Type of virtual atom to place. Currently
supported types are `dicons`, a virtual placement that was
optimized to predict potential rotamer interactions, and `cbeta`
which places a virtual C-beta carbon assuming ideal geometry.
distance_eps (float, optional): Small parameter to add to squared
distances to make gradients smooth near 0.
Inputs:
X (Tensor): Backbone coordinates with shape
`(num_batch, num_residues, num_atom_types, 3)`.
C (Tensor): Chain map tensor with shape `(num_batch, num_residues)`.
Outputs:
X_virtual (Tensor): Virtual coordinates with shape
`(num_batch, num_residues, 3)`.
"""
def __init__(self, virtual_type="dicons", distance_eps=1e-3):
super(VirtualAtomsCA, self).__init__()
self.distance_eps = distance_eps
"""
Geometry specifications
dicons
Length CA-X: 2.3866
Angle N-CA-X: 111.0269
Dihedral C-N-CA-X: -138.886412
cbeta
Length CA-X: 1.532 (Engh and Huber, 2001)
Angle N-CA-X: 109.5 (tetrahedral geometry)
Dihedral C-N-CA-X: -125.25 (109.5 / 2 - 180)
"""
self.virtual_type = virtual_type
virtual_geometries = {
"dicons": [2.3866, 111.0269, -138.8864122],
"cbeta": [1.532, 109.5, -125.25],
}
self.virtual_geometries = virtual_geometries
self.distance_eps = distance_eps
def geometry(self):
bond, angle, dihedral = self.virtual_geometries[self.virtual_type]
return bond, angle, dihedral
def forward(self, X: torch.Tensor, C: torch.LongTensor) -> torch.Tensor:
bond, angle, dihedral = self.geometry()
ones = torch.ones([1, 1], device=X.device)
bonds = bond * ones
angles = angle * ones
dihedrals = dihedral * ones
# Build reference frame
# 1.C -> 2.N -> 3.CA -> 4.X
X_N, X_CA, X_C, X_O = X.unbind(2)
X_virtual = extend_atoms(
X_C,
X_N,
X_CA,
bonds,
angles,
dihedrals,
degrees=True,
distance_eps=self.distance_eps,
)
# Mask missing positions
mask = (C > 0).type(torch.float32).unsqueeze(-1)
X_virtual = mask * X_virtual
return X_virtual
def quaternions_from_rotations(R: torch.Tensor, eps: float = 1e-3) -> torch.Tensor:
"""Convert a batch of rotation matrices to quaternions.
See en.wikipedia.org/wiki/Quaternions_and_spatial_rotation for further
details on converting between quaternions and rotation matrices.
Args:
R (tensor): Batch of rotation matrices with shape `(..., 3, 3)`.
Returns:
q (tensor): Batch of quaternion vectors with shape `(..., 4)`. Quaternion
is in the order `[angle, axis_x, axis_y, axis_z]`.
"""
batch_dims = list(R.shape)[:-2]
R_flat = R.reshape(batch_dims + [9])
R00, R01, R02, R10, R11, R12, R20, R21, R22 = R_flat.unbind(-1)
# Quaternion possesses both an axis and angle of rotation
_sqrt = lambda r: torch.sqrt(F.relu(r) + eps)
q_angle = _sqrt(1 + R00 + R11 + R22).unsqueeze(-1)
magnitudes = _sqrt(
1 + torch.stack([R00 - R11 - R22, -R00 + R11 - R22, -R00 - R11 + R22], -1)
)
signs = torch.sign(torch.stack([R21 - R12, R02 - R20, R10 - R01], -1))
q_axis = signs * magnitudes
# Normalize (for safety and a missing factor of 2)
q_unc = torch.cat((q_angle, q_axis), -1)
q = normed_vec(q_unc, distance_eps=eps)
return q
def rotations_from_quaternions(
q: torch.Tensor, normalize: bool = False, eps: float = 1e-3
) -> torch.Tensor:
"""Convert a batch of quaternions to rotation matrices.
See en.wikipedia.org/wiki/Quaternions_and_spatial_rotation for further
details on converting between quaternions and rotation matrices.
Returns:
q (tensor): Batch of quaternion vectors with shape `(..., 4)`. Quaternion
is in the order `[angle, axis_x, axis_y, axis_z]`.
normalize (boolean, optional): Option to normalize the quaternion before
conversion.
Args:
R (tensor): Batch of rotation matrices with shape `(..., 3, 3)`.
"""
batch_dims = list(q.shape)[:-1]
if normalize:
q = normed_vec(q, distance_eps=eps)
a, b, c, d = q.unbind(-1)
a2, b2, c2, d2 = a ** 2, b ** 2, c ** 2, d ** 2
R = torch.stack(
[
a2 + b2 - c2 - d2,
2 * b * c - 2 * a * d,
2 * b * d + 2 * a * c,
2 * b * c + 2 * a * d,
a2 - b2 + c2 - d2,
2 * c * d - 2 * a * b,
2 * b * d - 2 * a * c,
2 * c * d + 2 * a * b,
a2 - b2 - c2 + d2,
],
dim=-1,
)
R = R.view(batch_dims + [3, 3])
return R
def frames_from_backbone(X: torch.Tensor, distance_eps: float = 1e-3):
"""Convert a backbone into local reference frames.
Args:
X (Tensor): Backbone coordinates with shape `(..., 4, 3)`.
distance_eps (float, optional): Distance smoothing parameter for
for computing distances as `sqrt(sum_sq) -> sqrt(sum_sq + eps)`.
Default: 1E-3.
Returns:
R (Tensor): Reference frames with shape `(..., 3, 3)`.
X_CA (Tensor): C-alpha coordinates with shape `(..., 3)`
"""
X_N, X_CA, X_C, X_O = X.unbind(-2)
u_CA_N = normed_vec(X_N - X_CA, distance_eps)
u_CA_C = normed_vec(X_C - X_CA, distance_eps)
n_1 = u_CA_N
n_2 = normed_cross(n_1, u_CA_C, distance_eps)
n_3 = normed_cross(n_1, n_2, distance_eps)
R = torch.stack([n_1, n_2, n_3], -1)
return R, X_CA
def hat(omega: torch.Tensor) -> torch.Tensor:
"""
Maps [x,y,z] to [[0,-z,y], [z,0,-x], [-y, x, 0]]
Args:
omega (torch.tensor): of size (*, 3)
Returns:
hat{omega} (torch.tensor): of size (*, 3, 3) skew symmetric element in so(3)
"""
target = torch.zeros(*omega.size()[:-1], 9, device=omega.device)
index1 = torch.tensor([7, 2, 3], device=omega.device).expand(
*target.size()[:-1], -1
)
index2 = torch.tensor([5, 6, 1], device=omega.device).expand(
*target.size()[:-1], -1
)
return (
target.scatter(-1, index1, omega)
.scatter(-1, index2, -omega)
.reshape(*target.size()[:-1], 3, 3)
)
def V(omega: torch.Tensor, eps: float = 1e-6) -> torch.Tensor:
I = torch.eye(3, device=omega.device).expand(*omega.size()[:-1], 3, 3)
theta = omega.pow(2).sum(dim=-1, keepdim=True).add(eps).sqrt()[..., None]
omega_hat = hat(omega)
M1 = ((1 - theta.cos()) / theta.pow(2)) * (omega_hat)
M2 = ((theta - theta.sin()) / theta.pow(3)) * (omega_hat @ omega_hat)
return I + M1 + M2
|