Spaces:
Sleeping
Sleeping
File size: 61,148 Bytes
ce7bf5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 |
# Copyright Generate Biomedicines, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Layers for building graph representations of protein structure.
This module contains pytorch layers for representing protein structure as a
graph with node and edge features based on geometric information. The graph
features are differentiable with respect to input coordinates and can be used
for building protein scoring functions and optimizing protein geometries
natively in pytorch.
"""
import json
import os
import tempfile
from typing import Optional, Tuple
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from chroma.data.protein import Protein
from chroma.layers import graph
from chroma.layers.basic import FourierFeaturization, PositionalEncoding
from chroma.layers.structure import backbone, geometry, transforms
class ProteinFeatureGraph(nn.Module):
"""Graph featurizer for protein chains and complexes.
This module builds graph representations of protein structures that are
differentiable with respect to input coordinates and invariant with respect
to global rotations and translations. It takes as input a batch of
protein backbones (single chains or complexes), constructs a sparse graph
with residues as nodes, and featurizes the backbones in terms of node and
edge feature tensors.
The graph representation has 5 components:
1. Node features `node_h` representing residues in the protein.
2. Edge features `edge_h` representing relationships between residues.
3. Index map `edge_idx` representing graph topology.
4. Node mask `mask_i` that specifies which nodes are present.
5. Edge mask `mask_ij` that specifies which edges are present.
Criteria for constructing the graph currently include k-Nearest Neighbors or
distance-weighted edge sampling.
Node and edge features are specified as tuples to make it simpler to add
additional features and options while retaining backwards compatibility.
Specifically, each node or edge feature type can be added to the list either
in default configuration by a `'feature_name'` keyword, or in modified form
with a `('feature_name', feature_kwargs)` tuple.
Example usage:
graph = ProteinFeatureGraph(
graph_type='knn',
node_features=('dihedrals',),
edge_features=[
'chain_distance',
('dmat_6mer', {'D_function': 'log'})
]
)
node_h, edge_h, edge_idx, mask_i, mask_ij = graph(X, C)
This builds a kNN graph with dihedral angles as node
features and 6mer interatomic distance matrices (process) 6mers, where
the options for post-processing the 6mers are passed as a kwargs dict.
Args:
dim_nodes (int): Hidden dimension of node features.
dim_edges (int): Hidden dimension of edge features.
num_neighbors (int): Maximum degree of the graph.
graph_kwargs (dict): Arguments for graph construction. Default is None.
node_features (list): List of node feature strings and optional args.
Valid feature strings are `{internal_coords}`.
edge_features (list): List of node feature strings and optional args.
Valid feature strings are `{'distances_6mer','distances_chain'}`.
centered (boolean): Flag for enabling feature centering. If `True`,
the features will be will centered by subtracting an empirical mean
that was computed on the reference PDB `centered_pdb`. The statistics
are per-dimension of every node and edge feature. If they have not
previously been computed, the PDB will be downloaded, featurized,
and aggregated into local statistics that are cached in the repo.
centered_pdb (str): PDB code for the reference PDB to compute some
empirical feature statistics from.
Inputs:
X (torch.Tensor): Backbone coordinates with shape
`(num_batch, num_residues, 4, 3)`. The standard atom indices for
for the the third dimension are PDB order (`[N, CA, C, O]`).
C (LongTensor, optional): Chain map with shape
`(num_batch, num_residues)`. The chain map codes positions as `0`
when masked, poitive integers for chain indices, and negative
integers to represent missing residues of the corresponding
positive integers.
custom_D (Tensor, optional): Pre-computed custom distance map
for graph construction `(numb_batch,num_residues,num_residues)`.
If present, this will override the behavior of `graph_type` and used
as the distances for k-nearest neighbor graph construction.
custom_mask_2D (Tensor, optional): Custom 2D mask to apply to `custom_D`
with shape `(numb_batch,num_residues,num_residues)`.
Outputs:
node_h (torch.Tensor): Node features with shape
`(num_batch, num_residues, dim_nodes)`.
edge_h (torch.Tensor): Edge features with shape
`(num_batch, num_residues, num_neighbors, dim_edges)`.
edge_idx (torch.LongTensor): Edge indices for neighbors with shape
`(num_batch, num_residues, num_neighbors)`.
mask_i (torch.Tensor): Node mask with shape `(num_batch, num_residues)`.
mask_ij (torch.Tensor): Edge mask with shape
`(num_batch, num_nodes, num_neighbors)`.
"""
def __init__(
self,
dim_nodes: int,
dim_edges: int,
num_neighbors: int = 30,
graph_kwargs: dict = None,
node_features: tuple = ("internal_coords",),
edge_features: tuple = ("distances_6mer", "distances_chain"),
centered: bool = True,
centered_pdb: str = "2g3n",
):
super(ProteinFeatureGraph, self).__init__()
self.dim_nodes = dim_nodes
self.dim_edges = dim_edges
self.num_neighbors = num_neighbors
graph_kwargs = graph_kwargs if graph_kwargs is not None else {}
self.graph_builder = ProteinGraph(num_neighbors, **graph_kwargs)
self.node_features = node_features
self.edge_features = edge_features
def _init_layer(layer_dict, features):
# Parse option string
custom_args = not isinstance(features, str)
key = features[0] if custom_args else features
kwargs = features[1] if custom_args else {}
return layer_dict[key](**kwargs)
# Node feature compilation
node_dict = {
"internal_coords": NodeInternalCoords,
"cartesian_coords": NodeCartesianCoords,
"radii": NodeRadii,
}
self.node_layers = nn.ModuleList(
[_init_layer(node_dict, option) for option in self.node_features]
)
# Edge feature compilation
edge_dict = {
"distances_6mer": EdgeDistance6mer,
"distances_2mer": EdgeDistance2mer,
"orientations_2mer": EdgeOrientation2mer,
"position_2mer": EdgePositionalEncodings,
"distances_chain": EdgeDistanceChain,
"orientations_chain": EdgeOrientationChain,
"cartesian_coords": EdgeCartesianCoords,
"random_fourier_2mer": EdgeRandomFourierFeatures2mer,
}
self.edge_layers = nn.ModuleList(
[_init_layer(edge_dict, option) for option in self.edge_features]
)
# Load feature centering params as buffers
self.centered = centered
self.centered_pdb = centered_pdb.lower()
if self.centered:
self._load_centering_params(self.centered_pdb)
"""
Storing separate linear transformations for each layer, rather than concat + one
large linear, provides a more even weighting of the different input
features when used with standard weight initialization. It has the
specific effect actually re-weighting the weight variance based on
the number of input features for each feature type. Otherwise, the
relative importance of each feature goes with the number of feature
dimensions.
"""
self.node_linears = nn.ModuleList(
[nn.Linear(l.dim_out, self.dim_nodes) for l in self.node_layers]
)
self.edge_linears = nn.ModuleList(
[nn.Linear(l.dim_out, self.dim_edges) for l in self.edge_layers]
)
return
def forward(
self,
X: torch.Tensor,
C: torch.Tensor,
edge_idx: Optional[torch.LongTensor] = None,
mask_ij: torch.Tensor = None,
custom_D: Optional[torch.Tensor] = None,
custom_mask_2D: Optional[torch.Tensor] = None,
) -> Tuple[
torch.Tensor, torch.Tensor, torch.LongTensor, torch.Tensor, torch.Tensor
]:
mask_i = chain_map_to_mask(C)
if mask_ij is None or edge_idx is None:
edge_idx, mask_ij = self.graph_builder(
X, C, custom_D=custom_D, custom_mask_2D=custom_mask_2D
)
# Aggregate node layers
node_h = None
for i, layer in enumerate(self.node_layers):
node_h_l = layer(X, edge_idx, C)
if self.centered:
node_h_l = node_h_l - self.__getattr__(f"node_means_{i}")
node_h_l = self.node_linears[i](node_h_l)
node_h = node_h_l if node_h is None else node_h + node_h_l
if node_h is None:
node_h = torch.zeros(list(X.shape[:2]) + [self.dim_nodes], device=X.device)
# Aggregate edge layers
edge_h = None
for i, layer in enumerate(self.edge_layers):
edge_h_l = layer(X, edge_idx, C)
if self.centered:
edge_h_l = edge_h_l - self.__getattr__(f"edge_means_{i}")
edge_h_l = self.edge_linears[i](edge_h_l)
edge_h = edge_h_l if edge_h is None else edge_h + edge_h_l
if edge_h is None:
edge_h = torch.zeros(list(X.shape[:2]) + [self.dim_nodes], device=X.device)
# Apply masks
node_h = mask_i.unsqueeze(-1) * node_h
edge_h = mask_ij.unsqueeze(-1) * edge_h
return node_h, edge_h, edge_idx, mask_i, mask_ij
def _load_centering_params(self, reference_pdb: str):
basepath = os.path.join(tempfile.gettempdir(), "generate", "params")
if not os.path.exists(basepath):
os.makedirs(basepath)
filename = f"centering_{reference_pdb}.params"
self.centering_file = os.path.join(basepath, filename)
key = (
reference_pdb
+ ";"
+ json.dumps(self.node_features)
+ ";"
+ json.dumps(self.edge_features)
)
# Attempt to load saved centering params, otherwise compute and cache
json_line = None
with open(self.centering_file, "a+") as f:
prefix = key + "\t"
f.seek(0)
for line in f:
if line.startswith(prefix):
json_line = line.split(prefix)[1]
break
if json_line is not None:
print("Loaded from cache")
param_dictionary = json.loads(json_line)
else:
print(f"Computing reference stats for {reference_pdb}")
param_dictionary = self._reference_stats(reference_pdb)
json_line = json.dumps(param_dictionary)
f.write(prefix + "\t" + json_line + "\n")
for i, layer in enumerate(self.node_layers):
key = json.dumps(self.node_features[i])
tensor = torch.tensor(param_dictionary[key], dtype=torch.float32)
tensor = tensor.view(1, 1, -1)
self.register_buffer(f"node_means_{i}", tensor)
for i, layer in enumerate(self.edge_layers):
key = json.dumps(self.edge_features[i])
tensor = torch.tensor(param_dictionary[key], dtype=torch.float32)
tensor = tensor.view(1, 1, -1)
self.register_buffer(f"edge_means_{i}", tensor)
return
def _reference_stats(self, reference_pdb):
X, C, _ = Protein.from_PDBID(reference_pdb).to_XCS()
stats_dict = self._feature_stats(X, C)
return stats_dict
def _feature_stats(self, X, C, verbose=False, center=False):
mask_i = chain_map_to_mask(C)
edge_idx, mask_ij = self.graph_builder(X, C)
def _masked_stats(feature, mask, dims, verbose=False):
mask = mask.unsqueeze(-1)
feature = mask * feature
sum_mask = mask.sum()
mean = feature.sum(dims, keepdim=True) / sum_mask
var = torch.sum(mask * (feature - mean) ** 2, dims) / sum_mask
std = torch.sqrt(var)
mean = mean.view(-1)
std = std.view(-1)
if verbose:
frac = (100.0 * std**2 / (mean**2 + std**2)).type(torch.int32)
print(f"Fraction of raw variance: {frac}")
return mean, std
# Collect statistics
stats_dict = {}
# Aggregate node layers
for i, layer in enumerate(self.node_layers):
node_h = layer(X, edge_idx, C)
if center:
node_h = node_h - self.__getattr__(f"node_means_{i}")
mean, std = _masked_stats(node_h, mask_i, dims=[0, 1])
# Store in dictionary
key = json.dumps(self.node_features[i])
stats_dict[key] = mean.tolist()
# Aggregate node layers
for i, layer in enumerate(self.edge_layers):
edge_h = layer(X, edge_idx, C)
if center:
edge_h = edge_h - self.__getattr__(f"edge_means_{i}")
mean, std = _masked_stats(edge_h, mask_ij, dims=[0, 1, 2])
# Store in dictionary
key = json.dumps(self.edge_features[i])
stats_dict[key] = mean.tolist()
# Round to small number of decimal places
stats_dict = {k: [round(f, 3) for f in v] for k, v in stats_dict.items()}
return stats_dict
class ProteinGraph(nn.Module):
"""Build a graph topology given a protein backbone.
Args:
num_neighbors (int): Maximum number of neighbors in the graph.
distance_atom_type (int): Atom type for computing residue-residue
distances for graph construction. Negative values will specify
centroid across atom types. Default is `-1` (centroid).
cutoff (float): Cutoff distance for graph construction. If not None,
mask any edges further than this cutoff. Default is `None`.
mask_interfaces (Boolean): Restrict connections only to within chains,
excluding-between chain interactions. Default is `False`.
criterion (string, optional): Method used for building graph from distances.
Currently supported methods are `{knn, random_log, random_linear}`.
Default is `knn`.
random_alpha (float, optional): Length scale parameter for random graph
generation. Default is 3.
random_temperature (float, optional): Temperature parameter for
random graph sampling. Between 0 and 1 this value will interpolate
between a normal k-NN graph and sampling from the graph generation
process. Default is 1.0.
Inputs:
X (torch.Tensor): Backbone coordinates with shape
`(num_batch, num_residues, 4, 3)`.
C (torch.LongTensor): Chain map with shape
`(num_batch, num_residues)`.
custom_D (torch.Tensor, optional): Optional external distance map, for example
based on other distance metrics, with shape
`(num_batch, num_residues, num_residues)`.
custom_mask_2D (torch.Tensor, optional): Optional mask to apply to distances
before computing dissimilarities with shape
`(num_batch, num_residues, num_residues)`.
Outputs:
edge_idx (torch.LongTensor): Edge indices for neighbors with shape
`(num_batch, num_residues, num_neighbors)`.
mask_ij (torch.Tensor): Edge mask with shape
`(num_batch, num_nodes, num_neighbors)`.
"""
def __init__(
self,
num_neighbors: int = 30,
distance_atom_type: int = -1,
cutoff: Optional[float] = None,
mask_interfaces: bool = False,
criterion: str = "knn",
random_alpha: float = 3.0,
random_temperature: float = 1.0,
random_min_local: float = 20,
deterministic: bool = False,
deterministic_seed: int = 10,
):
super(ProteinGraph, self).__init__()
self.num_neighbors = num_neighbors
self.distance_atom_type = distance_atom_type
self.cutoff = cutoff
self.mask_interfaces = mask_interfaces
self.distances = geometry.Distances()
self.knn = kNN(k_neighbors=num_neighbors)
self.criterion = criterion
self.random_alpha = random_alpha
self.random_temperature = random_temperature
self.random_min_local = random_min_local
self.deterministic = deterministic
self.deterministic_seed = deterministic_seed
def _mask_distances(self, X, C, custom_D=None, custom_mask_2D=None):
mask_1D = chain_map_to_mask(C)
mask_2D = mask_1D.unsqueeze(2) * mask_1D.unsqueeze(1)
if self.distance_atom_type > 0:
X_atom = X[:, :, self.distance_atom_type, :]
else:
X_atom = X.mean(dim=2)
if custom_D is None:
D = self.distances(X_atom, dim=1)
else:
D = custom_D
if custom_mask_2D is None:
if self.mask_interfaces:
mask_2D = torch.eq(C.unsqueeze(1), C.unsqueeze(2))
mask_2D = mask_2D * mask_2D.type(torch.float32)
if self.cutoff is not None:
mask_cutoff = (D <= self.cutoff).type(torch.float32)
mask_2D = mask_cutoff * mask_2D
else:
mask_2D = custom_mask_2D
return D, mask_1D, mask_2D
def _perturb_distances(self, D):
# Replace distance by log-propensity
if self.criterion == "random_log":
logp_edge = -3 * torch.log(D)
elif self.criterion == "random_linear":
logp_edge = -D / self.random_alpha
elif self.criterion == "random_uniform":
logp_edge = D * 0
else:
return D
if not self.deterministic:
Z = torch.rand_like(D)
else:
with torch.random.fork_rng():
torch.random.manual_seed(self.deterministic_seed)
Z_shape = [1] + list(D.shape)[1:]
Z = torch.rand(Z_shape, device=D.device)
# Sample Gumbel noise
G = -torch.log(-torch.log(Z))
# Negate because are doing argmin instead of argmax
D_key = -(logp_edge / self.random_temperature + G)
return D_key
def forward(
self,
X: torch.Tensor,
C: torch.LongTensor,
custom_D: Optional[torch.Tensor] = None,
custom_mask_2D: Optional[torch.Tensor] = None,
) -> Tuple[torch.LongTensor, torch.Tensor]:
D, mask_1D, mask_2D = self._mask_distances(X, C, custom_D, custom_mask_2D)
if self.criterion != "knn":
if self.random_min_local > 0:
# Build first k-NN graph (local)
self.knn.k_neighbors = self.random_min_local
edge_idx_local, _, mask_ij_local = self.knn(D, mask_1D, mask_2D)
# Build mask exluding these first ones
mask_ij_remaining = 1.0 - mask_ij_local
mask_2D_remaining = torch.ones_like(mask_2D).scatter(
2, edge_idx_local, mask_ij_remaining
)
mask_2D = mask_2D * mask_2D_remaining
# Build second k-NN graph (random)
self.knn.k_neighbors = self.num_neighbors - self.random_min_local
D = self._perturb_distances(D)
edge_idx_random, _, mask_ij_random = self.knn(D, mask_1D, mask_2D)
edge_idx = torch.cat([edge_idx_local, edge_idx_random], 2)
mask_ij = torch.cat([mask_ij_local, mask_ij_random], 2)
# Handle small proteins
k = min(self.num_neighbors, D.shape[-1])
edge_idx = edge_idx[:, :, :k]
mask_ij = mask_ij[:, :, :k]
self.knn.k_neighbors = self.num_neighbors
return edge_idx.contiguous(), mask_ij.contiguous()
else:
D = self._perturb_distances(D)
edge_idx, edge_D, mask_ij = self.knn(D, mask_1D, mask_2D)
return edge_idx, mask_ij
class kNN(nn.Module):
"""Build a k-nearest neighbors graph given a dissimilarity matrix.
Args:
k_neighbors (int): Number of nearest neighbors to include as edges of
each node in the graph.
Inputs:
D (torch.Tensor): Dissimilarity matrix with shape
`(num_batch, num_nodes, num_nodes)`.
mask (torch.Tensor, optional): Node mask with shape `(num_batch, num_nodes)`.
mask_2D (torch.Tensor, optional): Edge mask with shape
`(num_batch, num_nodes, num_nodes)`.
Outputs:
edge_idx (torch.LongTensor): Edge indices with shape
`(num_batch, num_nodes, k)`. The slice `edge_idx[b,i,:]` contains
the indices `{j in N(i)}` of the k nearest neighbors of node `i`
in object `b`.
edge_D (torch.Tensor): Distances to each neighbor with shape
`(num_batch, num_nodes, k)`.
mask_ij (torch.Tensor): Edge mask with shape
`(num_batch, num_nodes, num_neighbors)`.
"""
def __init__(self, k_neighbors: int):
super(kNN, self).__init__()
self.k_neighbors = k_neighbors
def forward(
self,
D: torch.Tensor,
mask: Optional[torch.Tensor] = None,
mask_2D: Optional[torch.Tensor] = None,
) -> Tuple[torch.LongTensor, torch.Tensor, torch.Tensor]:
mask_full = None
if mask is not None:
mask_full = mask.unsqueeze(2) * mask.unsqueeze(1)
if mask_2D is not None:
mask_full = mask_2D if mask_full is None else mask_full * mask_2D
if mask_full is not None:
max_float = np.finfo(np.float32).max
D = mask_full * D + (1.0 - mask_full) * max_float
k = min(self.k_neighbors, D.shape[-1])
edge_D, edge_idx = torch.topk(D, int(k), dim=-1, largest=False)
mask_ij = None
if mask_full is not None:
mask_ij = graph.collect_edges(mask_full.unsqueeze(-1), edge_idx)
mask_ij = mask_ij.squeeze(-1)
return edge_idx, edge_D, mask_ij
class NodeInternalCoords(nn.Module):
"""Node features representing internal coordinates.
Args:
include_ideality (Boolean): Whether or not to include ideality features
along with direct geometry.
Attributes:
dim_out (int): Number of dimensions of the output features.
Inputs:
X (torch.Tensor): Backbone coordinates with shape
`(num_batch, num_residues, num_atom_types, 3)`.
edge_idx (torch.LongTensor): Graph indices for expansion with shape
`(num_batch, num_residues, num_neighbors)`.
C (torch.LongTensor): Chain map with shape
`(num_batch, num_residues)`.
Outputs:
node_h (torch.Tensor): Edge distance matrix features with shape
`(num_batch, num_residues, 20)`
"""
def __init__(
self,
include_ideality: bool = False,
distance_eps: float = 0.01,
log_lengths: bool = False,
):
super(NodeInternalCoords, self).__init__()
self.internal_coords = geometry.InternalCoords()
self.distance_eps = distance_eps
self.include_ideality = include_ideality
self.dim_out = 28 if self.include_ideality else 20
self.log_lengths = log_lengths
# Engh and Huber Ideal Geometry
ideal_lengths = [1.459, 1.525, 1.336, 1.229]
ideal_angles = [111.0, 117.2, 121.7, 120.0]
# Angles are output as complement in radians
ideal_angles = [np.pi - degrees * np.pi / 180.0 for degrees in ideal_angles]
if self.include_ideality:
ideal_lengths = torch.as_tensor(ideal_lengths).view([1, 1, -1])
self.register_buffer("ideal_lengths", ideal_lengths)
ideal_angles = torch.as_tensor(ideal_angles).view([1, 1, -1])
self.register_buffer("ideal_angles", ideal_angles)
def forward(
self,
X: torch.Tensor,
edge_idx: Optional[torch.LongTensor] = None,
C: Optional[torch.LongTensor] = None,
) -> torch.Tensor:
outs = self.internal_coords(X, C=C, return_masks=True)
dihedrals, angles, lengths = outs[:3]
mask_dihedrals, mask_angles, mask_lengths = outs[3:]
angle_stack = torch.cat([dihedrals, angles], dim=-1)
mask = chain_map_to_mask(C).unsqueeze(-1)
if self.log_lengths:
lengths = torch.log(lengths + self.distance_eps)
feature_list = [torch.cos(angle_stack), torch.sin(angle_stack), lengths]
# Ideality scores
if self.include_ideality:
# Mask angle features
mask_stack = torch.cat([mask_dihedrals, mask_angles], dim=-1)
feature_list[0] = mask_stack * feature_list[0]
feature_list[1] = mask_stack * feature_list[1]
_D_fun = lambda D: torch.log(D + self.distance_eps)
length_scores = (_D_fun(lengths) - _D_fun(self.ideal_lengths)) ** 2
angle_scores = torch.cos(angles - self.ideal_angles)
length_scores = mask_lengths * length_scores
angle_scores = mask_angles * angle_scores
feature_list = feature_list + [length_scores, angle_scores]
node_h = mask * torch.cat(feature_list, dim=-1)
return node_h
class NodeRadii(nn.Module):
"""Node features representing radii in the larger complex.
Args:
length_scale (float): Typical length scale for normalizing distances.
Attributes:
dim_out (int): Number of dimensions of the output features. (4)
Inputs:
X (torch.Tensor): Backbone coordinates with shape
`(num_batch, num_residues, num_atom_types, 3)`.
edge_idx (torch.LongTensor): Graph indices for expansion with shape
`(num_batch, num_residues, num_neighbors)`.
C (torch.LongTensor): Chain map with shape
`(num_batch, num_residues)`.
Outputs:
node_h (torch.Tensor): Node radii features with shape
`(num_batch, num_residues, 4)`
"""
def __init__(self, length_scale: float = 100.0):
super(NodeRadii, self).__init__()
self.dim_out = 4
self.length_scale = length_scale
def forward(
self,
X: torch.Tensor,
edge_idx: Optional[torch.LongTensor] = None,
C: Optional[torch.LongTensor] = None,
) -> torch.Tensor:
num_batch, num_residues = list(C.shape)
mask_i = (C > 0).float()
mask_i = mask_i.reshape([num_batch, num_residues, 1, 1]).expand(X.shape)
X_center = (mask_i * X).sum([1, 2], keepdim=True) / mask_i.sum(
[1, 2], keepdim=True
)
node_h = (mask_i * ((X - X_center) / self.length_scale) ** 2).sum(-1)
return node_h
class Edge6mers(nn.Module):
"""Build concatenation of 3mer coordinates on graph edges.
This layer assembles the pairwise concatenations of the coordinates
`{X_a for a in {i-1,i,i+1,j-1,j,j+1}}` along every edge in a graph. This can
be used for stitching of '6mer PairTERMs'.
Args:
require_contiguous (boolean, optional): Whether to enforce that
`{i-1,i,i+1}` and`{j-1,j,j+1}` are each made up of contiguous
residues from the same protein chain. Default is `True`.
Inputs:
X (torch.Tensor): Backbone coordinates with shape
`(num_batch, num_residues, num_atom_types, 3)`.
edge_idx (torch.LongTensor): Graph indices for expansion with shape
`(num_batch, num_residues, num_neighbors)`.
mask (Tensor, optional): Mask tensor with shape
`(num_batch, num_residues)`.
Outputs:
X_ij (torch.Tensor): Pairwise-concatenated 3mers with shape
`(num_batch, num_residues, num_neighbors, 2*num_atom_types, 3)`.
mask_ij (Tensor, if mask): Propagated mask tensor for edges with shape
`(num_batch, num_residues, num_neighbors)`.
"""
def __init__(self, require_contiguous: bool = True):
super(Edge6mers, self).__init__()
self.require_contiguous = require_contiguous
def forward(
self,
X: torch.Tensor,
edge_idx: torch.LongTensor,
C: Optional[torch.LongTensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
def _pair_expand(h, collate_fun):
# Build local neighborhoods [i-1, i, i+1]
h_left = F.pad(h[:, :-1, :], (0, 0, 1, 0), "constant", 0)
h_middle = h[:, :, :]
h_right = F.pad(h[:, 1:, :], (0, 0, 0, 1), "constant", 0)
h_i = collate_fun((h_left, h_middle, h_right))
# Concatenate [j-1, j, j+1] of neighbors
h_j = graph.collect_neighbors(h_i, edge_idx)
h_i_tile = h_i.unsqueeze(-2).expand(h_j.size())
h_ij = collate_fun((h_i_tile, h_j))
return h_ij
# Concatenation collation function for stitching
_cat = lambda hs: torch.cat(hs, dim=-1)
# Cumulative product collation function for mask propagation
def _mul(hs):
result = hs[0]
for h_i in hs[1:]:
result = result * h_i
return result
# Element-wise enforce values are greater than 0 and equal
def _nonzero_and_equal(hs):
entry_0 = hs[0]
result = (hs[0] > 0.0).type(torch.float32)
for h_i in hs[1:]:
result = result * (entry_0 == h_i).type(torch.float32)
return result
# Build local neighborhoods [i-1, i, i+1]
# X [batch, position, atom, xyz]
X_flat = X.reshape(X.size(0), X.size(1), -1)
X_ij = _pair_expand(X_flat, collate_fun=_cat)
X_ij = X_ij.view(list(X_ij.size())[:-1] + [-1, 3])
if C is not None:
if self.require_contiguous:
mask_ij = _pair_expand(C.unsqueeze(-1), collate_fun=_nonzero_and_equal)
else:
mask = chain_map_to_mask(C)
mask_ij = _pair_expand(mask.unsqueeze(-1), collate_fun=_mul)
return X_ij, mask_ij
else:
return X_ij
class Edge2mers(nn.Module):
"""Build concatenation of 1mer coordinates on graph edges.
Inputs:
X (torch.Tensor): Backbone coordinates with shape
`(num_batch, num_residues, num_atom_types, 3)`.
edge_idx (torch.LongTensor): Graph indices for expansion with shape
`(num_batch, num_residues, num_neighbors)`.
C (torch.LongTensor): Chain map with shape
`(num_batch, num_residues)`.
Outputs:
X_ij (torch.Tensor): Pairwise-concatenated 3mers with shape
`(num_batch, num_residues, num_neighbors, 2*num_atom_types, 3)`.
mask_ij (Tensor, if mask): Propagated mask tensor for edges with shape
`(num_batch, num_residues, num_neighbors)`.
"""
def __init__(self):
super(Edge2mers, self).__init__()
def forward(
self,
X: torch.Tensor,
edge_idx: torch.LongTensor,
C: Optional[torch.LongTensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
num_batch = edge_idx.shape[0]
num_residues = edge_idx.shape[1]
num_neighbors = edge_idx.shape[2]
num_atom_types = X.shape[2]
shape_X = [num_batch, num_residues, num_neighbors, num_atom_types * 3]
X_flat = X.reshape(num_batch, num_residues, -1)
X_i = X_flat.unsqueeze(2).expand(shape_X)
X_j = graph.collect_neighbors(X_flat, edge_idx).expand(shape_X)
X_ij = torch.cat([X_i, X_j], -1)
X_ij = X_ij.reshape(
num_batch, num_residues, num_neighbors, 2 * num_atom_types, 3
)
if C is not None:
mask_i = chain_map_to_mask(C).unsqueeze(-1)
mask_j = graph.collect_neighbors(mask_i, edge_idx)
mask_ij = mask_i.unsqueeze(2) * mask_j
return X_ij, mask_ij
else:
return X_ij
class EdgeDistance6mer(nn.Module):
"""Edge features based on chain distance matrices along each i,j 6mer.
Args:
feature (str, optional): Option string in {'log', 'inverse', 'raw'}
specifying how to process the raw distance features.
Defaults to 'log'.
distance_eps (float, optional): Smoothing parameter to prevent feature
explosion at small distances. Can be thought of as a 'minimum length
scale'. Defaults to 0.01.
require_contiguous (boolean, optional): Whether to enforce that each
3mer, `{i-1,i,i+1}` and`{j-1,j,j+1}`, is made up of contiguous
residues from the same protein chain. Default is `False` for
backwards compatibility, but `True` is recommended as best practice.
Attributes:
dim_out (int): Number of dimensions of the output features.
Inputs:
X (torch.Tensor): Backbone coordinates with shape
`(num_batch, num_residues, num_atom_types, 3)`.
edge_idx (torch.LongTensor): Graph indices for expansion with shape
`(num_batch, num_residues, num_neighbors)`.
C (torch.LongTensor): Chain map with shape
`(num_batch, num_residues)`.
Outputs:
edge_h (torch.Tensor): Edge distance matrix features with shape
`(num_batch, num_residues, num_neighbors, (6 * num_atom_types)**2)`
"""
def __init__(
self,
feature: str = "log",
distance_eps: float = 0.01,
num_atom_types: int = 4,
require_contiguous: bool = False,
):
super(EdgeDistance6mer, self).__init__()
self.feature = feature
self.distance_eps = distance_eps
self.num_atom_types = num_atom_types
self.layer_6mers = Edge6mers(require_contiguous=require_contiguous)
self.layer_distance = geometry.Distances()
# Public attribute
self.dim_out = (6 * num_atom_types) ** 2
self.feature = feature
feature_functions = {
"log": self.log_func,
"inverse": self.inverse_func,
"raw": self.raw_func,
}
self.feature_function = feature_functions[feature]
def forward(
self,
X: torch.Tensor,
edge_idx: torch.LongTensor,
C: Optional[torch.LongTensor] = None,
) -> torch.Tensor:
X_ij, mask_ij = self.layer_6mers(X, edge_idx, C=C)
D_ij = self.layer_distance(X_ij, dim=-2)
feature_ij = self.feature_function(D_ij)
feature_ij_flat = feature_ij.reshape(list(D_ij.shape[:3]) + [-1])
edge_h = mask_ij * feature_ij_flat
# debug_plot_edge6merdist(edge_h, feature=self.feature)
return edge_h
def log_func(self, D):
return torch.log(D + self.distance_eps)
def inverse_func(self, D):
return 1.0 / (D + self.distance_eps)
def raw_func(self, D):
return D
class EdgeDistance2mer(nn.Module):
"""Edge features based on chain distance matrices along each i,j 2mer.
Args:
feature (str, optional): Option string in {'log', 'inverse', 'raw'}
specifying how to process the raw distance features.
Defaults to 'log'.
distance_eps (float, optional): Smoothing parameter to prevent feature
explosion at small distances. Can be thought of as a 'minimum length
scale'. Defaults to 0.01.
Attributes:
dim_out (int): Number of dimensions of the output features.
Inputs:
X (torch.Tensor): Backbone coordinates with shape
`(num_batch, num_residues, num_atom_types, 3)`.
edge_idx (torch.LongTensor): Graph indices for expansion with shape
`(num_batch, num_residues, num_neighbors)`.
C (torch.LongTensor): Chain map with shape
`(num_batch, num_residues)`.
Outputs:
edge_h (torch.Tensor): Edge distance matrix features with shape
`(num_batch, num_residues, num_neighbors, (6 * num_atom_types)**2)`
"""
def __init__(
self,
features: str = "rbf+log",
distance_eps: float = 0.01,
num_atom_types: int = 4,
rbf_min: float = 0.0,
rbf_max: float = 20.0,
rbf_count: int = 20,
):
super(EdgeDistance2mer, self).__init__()
self.distance_eps = distance_eps
self.num_atom_types = num_atom_types
self.layer_2mers = Edge2mers()
self.layer_distance = geometry.Distances()
features = features.split("+")
if not isinstance(features, list):
features = [features]
self.features = features
if "rbf" in self.features:
self.rbf_function = RBFExpansion(rbf_min, rbf_max, rbf_count)
dim_base = (2 * num_atom_types) ** 2
feature_dims = {
"log": dim_base,
"inverse": dim_base,
"raw": dim_base,
"rbf": dim_base * rbf_count,
}
# Public attribute
self.dim_out = sum([feature_dims[d] for d in features])
self.feature_funcs = {
"log": lambda D: torch.log(D + self.distance_eps),
"inverse": lambda D: 1.0 / (D + self.distance_eps),
"raw": lambda D: D,
"rbf": lambda D: self.rbf_function(D),
}
def featurize(self, D):
h_list = []
for feature in self.features:
h = self.feature_funcs[feature](D)
h_list.append(h)
h = torch.cat(h_list, -1)
return h
def forward(
self,
X: torch.Tensor,
edge_idx: torch.LongTensor,
C: Optional[torch.LongTensor] = None,
) -> torch.Tensor:
X_ij, mask_ij = self.layer_2mers(X, edge_idx, C=C)
D_ij = self.layer_distance(X_ij, dim=-2)
shape_flat = list(D_ij.shape[:3]) + [-1]
D_ij = D_ij.reshape(shape_flat)
feature_ij = self.featurize(D_ij)
# DEBGUG
# _debug_plot_edges(edge_idx, feature_ij, unravel=True)
# exit(0)
edge_h = mask_ij * feature_ij
return edge_h
class EdgeOrientation2mer(nn.Module):
"""Edge features based on chain distance matrices along each i,j 2mer.
Args:
feature (str, optional): Option string in {'log', 'inverse', 'raw'}
specifying how to process the raw distance features.
Defaults to 'log'.
distance_eps (float, optional): Smoothing parameter to prevent feature
explosion at small distances. Can be thought of as a 'minimum length
scale'. Defaults to 0.01.
Attributes:
dim_out (int): Number of dimensions of the output features.
Inputs:
X (torch.Tensor): Backbone coordinates with shape
`(num_batch, num_residues, num_atom_types, 3)`.
edge_idx (torch.LongTensor): Graph indices for expansion with shape
`(num_batch, num_residues, num_neighbors)`.
C (torch.LongTensor): Chain map with shape
`(num_batch, num_residues)`.
Outputs:
edge_h (torch.Tensor): Edge distance matrix features with shape
`(num_batch, num_residues, num_neighbors, (6 * num_atom_types)**2)`
"""
def __init__(self, distance_eps: float = 0.1, num_atom_types: int = 4):
super(EdgeOrientation2mer, self).__init__()
self.distance_eps = distance_eps
self.num_atom_types = num_atom_types
self.layer_2mers = Edge2mers()
# Public attribute
self.dim_out = 3 * (2 * num_atom_types) ** 2
def _normed_vec(self, V):
# Unit vector from i to j
mag_sq = (V**2).sum(dim=-1, keepdim=True)
mag = torch.sqrt(mag_sq + self.distance_eps)
V_norm = V / mag
return V_norm
def forward(
self,
X: torch.Tensor,
edge_idx: torch.LongTensor,
C: Optional[torch.LongTensor] = None,
) -> torch.Tensor:
X_ij, mask_ij = self.layer_2mers(X, edge_idx, C=C)
# Build direction vectors
U_ij = self._normed_vec(X_ij.unsqueeze(3) - X_ij.unsqueeze(4))
# Build reference frame
X_N, X_CA, X_C, X_O = X.unbind(2)
_normed_cross = lambda U_a, U_b: self._normed_vec(torch.cross(U_a, U_b, dim=-1))
u_CA_N = self._normed_vec(X_N - X_CA)
u_CA_C = self._normed_vec(X_C - X_CA)
n_1 = u_CA_N
n_2 = _normed_cross(n_1, u_CA_C)
n_3 = _normed_cross(n_1, n_2)
R = torch.stack([n_1, n_2, n_3], -1)
U_ij = torch.einsum("nijabx,nixy->nijaby", U_ij, R)
# DEBUG:
# _debug_plot_edges(edge_idx, U_ij[:,:,:,1,5,:])
feature_ij = U_ij.view(list(edge_idx.shape)[:3] + [-1])
edge_h = mask_ij * feature_ij
return edge_h
class EdgeOrientationChain(nn.Module):
"""Edge features encoding the relative orientations of chains and chain atoms.
Args:
feature (str, optional): Option string in {'log', 'inverse', 'raw'}
specifying how to process the raw distance features.
Defaults to 'log'.
distance_eps (float, optional): Smoothing parameter to prevent feature
explosion at small distances. Can be thought of as a 'minimum length
scale'. Defaults to 0.1.
distance_eps (float, optional): Like `distance_eps`, but for orientation
calculations. Can be thought of as a 'minimum length scale'
Defaults to 1E-5.
Attributes:
dim_out (int): Number of dimensions of the output features.
Inputs:
X (torch.Tensor): Backbone coordinates with shape
`(num_batch, num_residues, num_atom_types, 3)`.
edge_idx (torch.LongTensor): Graph indices for expansion with shape
`(num_batch, num_residues, num_neighbors)`.
C (torch.LongTensor): Chain map with shape
`(num_batch, num_residues)`.
Outputs:
edge_h (torch.Tensor): Edge distance matrix features with shape
`(num_batch, num_residues, num_neighbors, 24)`
"""
def __init__(
self, feature: str = "log", distance_eps: float = 0.1, norm_eps: float = 1e-1
):
super(EdgeOrientationChain, self).__init__()
self.distance_eps = distance_eps
self.norm_eps = norm_eps
self.feature = feature
feature_functions = {
"log": lambda D: torch.log(D + self.distance_eps),
"inverse": lambda D: 1.0 / (D + self.distance_eps),
"raw": lambda D: D,
}
self.feature_function = feature_functions[feature]
# Public attribute
self.dim_out = 24
def _normed_vec(self, V):
# Unit vector from i to j
mag_sq = (V**2).sum(dim=-1, keepdim=True)
mag = torch.sqrt(mag_sq + self.norm_eps)
V_norm = V / mag
return V_norm
def _reference_frames(self, X):
# Build reference frames at each i
X_N, X_CA, X_C, X_O = X.unbind(2)
_normed_cross = lambda U_a, U_b: self._normed_vec(torch.cross(U_a, U_b, dim=-1))
u_CA_N = self._normed_vec(X_N - X_CA)
u_CA_C = self._normed_vec(X_C - X_CA)
n_1 = u_CA_N
n_2 = _normed_cross(n_1, u_CA_C)
n_3 = _normed_cross(n_1, n_2)
R = torch.stack([n_1, n_2, n_3], -1)
return R
def _reference_frames_chain(self, X, C):
# Build reference frames at each i
X_N, X_CA, X_C, X_O = X.unbind(2)
_normed_cross = lambda U_a, U_b: self._normed_vec(torch.cross(U_a, U_b, dim=-1))
u_CA_N = self._normed_vec(X_N - X_CA)
u_CA_C = self._normed_vec(X_C - X_CA)
u_CA_N_avg = self._chain_average(u_CA_N, C)
u_CA_C_avg = self._chain_average(u_CA_C, C)
n_1 = self._normed_vec(u_CA_N_avg)
n_2 = _normed_cross(n_1, self._normed_vec(u_CA_C_avg))
n_3 = _normed_cross(n_1, n_2)
R = torch.stack([n_1, n_2, n_3], -1)
return R
def _chain_average(self, node_h, C, eps=1e-5):
# Compute the per-chain averages of each feature within a chain, in place
num_batch, num_residues = list(C.shape)
num_chains = int(torch.max(C).item())
# Build a position == chain expanded mask (B,L,C)
C_expand = C.unsqueeze(-1).expand(-1, -1, num_chains)
idx = torch.arange(num_chains, device=C.device) + 1
idx_expand = idx.view(1, 1, -1)
mask_expand = (idx_expand == C_expand).type(torch.float32)
mask_expand = mask_expand.unsqueeze(-1)
# Masked reduction
node_h_expand = node_h.unsqueeze(2).expand(-1, -1, num_chains, -1)
node_h_chain_average = (mask_expand * node_h_expand).sum(1, keepdim=True) / (
(mask_expand).sum(1, keepdim=True) + eps
)
# Back-expand (B,C,K) => (B,L,3)
node_h_chain_average = (mask_expand * node_h_chain_average).sum(2)
return node_h_chain_average
def _R_neighbors(self, R_i, edge_idx):
num_batch, num_residues, num_k = list(edge_idx.shape)
R_flat_i = R_i.reshape(num_batch, num_residues, 9)
R_flat_j = graph.collect_neighbors(R_flat_i, edge_idx)
R_j = R_flat_j.reshape(num_batch, num_residues, num_k, 3, 3)
return R_j
def _transformation_features(self, X_i, X_j, R_i, R_j, edge_idx, edges=True):
# Distance and direction
dX = X_j - X_i.unsqueeze(2).contiguous()
L = torch.sqrt((dX**2).sum(-1, keepdim=True) + self.distance_eps)
u_ij = torch.einsum("niab,nija->nijb", R_i, dX / L)
# Relative orientation
R_relative_ij = torch.einsum("niab,nijac->nijbc", R_i, R_j)
q_ij = geometry.quaternions_from_rotations(R_relative_ij)
h = torch.cat((self.feature_function(L), u_ij, q_ij), dim=-1)
return h
def forward(
self,
X: torch.Tensor,
edge_idx: torch.LongTensor,
C: Optional[torch.LongTensor] = None,
) -> torch.Tensor:
num_batch, num_residues, num_k = list(edge_idx.shape)
# Compute local positions (C-alpha) and frames (B, L, 4)
R_i = self._reference_frames(X)
R_chain_i = self._reference_frames_chain(X, C)
# X chain
X_i = X[:, :, 1, :]
X_j = graph.collect_neighbors(X_i, edge_idx)
X_chain_i = self._chain_average(X_i, C)
X_chain_j = graph.collect_neighbors(X_chain_i, edge_idx)
# Relative chain features
R_chain_j = self._R_neighbors(R_chain_i, edge_idx)
R_j = self._R_neighbors(R_i, edge_idx)
h_chain_to_chain = self._transformation_features(
X_chain_i, X_chain_j, R_chain_i, R_chain_j, edge_idx
)
h_chain_to_node = self._transformation_features(
X_chain_i, X_j, R_chain_i, R_j, edge_idx
)
h_node_to_node = self._transformation_features(X_i, X_j, R_i, R_j, edge_idx)
edge_h = torch.cat((h_chain_to_chain, h_chain_to_node, h_node_to_node), -1)
# DEBUG:
# h = h_node_to_node
# _debug_plot_edges(edge_idx, h[:,:,:,0].unsqueeze(-1))
# _debug_plot_edges(edge_idx, h[:,:,:,1:4])
# _debug_plot_edges(edge_idx, h[:,:,:,5:9])
mask_i = chain_map_to_mask(C).unsqueeze(-1)
mask_j = graph.collect_neighbors(mask_i, edge_idx)
mask_ij = mask_i.unsqueeze(2) * mask_j
edge_h = mask_ij * edge_h
return edge_h
class EdgeDistanceChain(nn.Module):
"""Edge features based on distance matrices along each i,j 6mer.
These feature capture (signed) intra-chain distances as well as distinguish
between same vs. different chain.
Args:
Attributes:
dim_out (int): Number of dimensions of the output features.
Inputs:
X (torch.Tensor): Backbone coordinates with shape
`(num_batch, num_residues, num_atom_types, 3)`.
edge_idx (torch.LongTensor): Graph indices for expansion with shape
`(num_batch, num_residues, num_neighbors)`.
C (torch.LongTensor): Chain map with shape
`(num_batch, num_residues)`.
Outputs:
edge_h (torch.Tensor): Edge chain distance features with shape
`(num_batch, num_residues, num_neighbors, 2)`
"""
def __init__(self):
super(EdgeDistanceChain, self).__init__()
# Public attribute
self.dim_out = 3
def forward(
self,
X: torch.Tensor,
edge_idx: torch.LongTensor,
C: Optional[torch.LongTensor] = None,
) -> torch.Tensor:
# Is the edge intra-chain or inter-chain?
chain_i = C.unsqueeze(-1)
chain_j = graph.collect_neighbors(chain_i, edge_idx).squeeze(-1)
is_interface = torch.ne(chain_i, chain_j).type(torch.float32)
# If it is intra-chain, what is the chain distance?
residue_i = torch.arange(edge_idx.shape[1], device=X.device).view((1, -1, 1))
residue_j = edge_idx
D_signed = (residue_j - residue_i).type(torch.float32)
D_residue = torch.abs(D_signed)
D_intra = (1.0 - is_interface) * torch.log(D_residue + 1.0)
D_intra_sign = (1.0 - is_interface) * torch.sign(D_signed)
edge_h = torch.stack([is_interface, D_intra, D_intra_sign], dim=-1)
return edge_h
class EdgePositionalEncodings(nn.Module):
"""Edge features based on positional encodings of chain distance |i-j|.
Args:
dim_embeddings (int): Embedding dimension.
Attributes:
dim_out (int): Number of dimensions of the output features.
Inputs:
X (torch.Tensor): Backbone coordinates with shape
`(num_batch, num_residues, num_atom_types, 3)`.
edge_idx (torch.LongTensor): Graph indices for expansion with shape
`(num_batch, num_residues, num_neighbors)`.
C (torch.LongTensor): Chain map with shape
`(num_batch, num_residues)`.
Outputs:
edge_h (torch.Tensor): Edge chain distance features with shape
`(num_batch, num_residues, num_neighbors, 2)`
"""
def __init__(self, dim_embedding: int = 128, period_range: tuple = (1.0, 1000.0)):
super(EdgePositionalEncodings, self).__init__()
# Public attribute
self.dim_out = dim_embedding
self.encoding = PositionalEncoding(
d_model=dim_embedding, period_range=period_range
)
def forward(
self,
X: torch.Tensor,
edge_idx: torch.LongTensor,
C: Optional[torch.LongTensor] = None,
) -> torch.Tensor:
# Is the edge intra-chain or inter-chain?
chain_i = C.unsqueeze(-1)
chain_j = graph.collect_neighbors(chain_i, edge_idx).squeeze(-1)
mask_intrachain = torch.eq(chain_i, chain_j).float()
# If it is intra-chain, what is the chain distance?
residue_i = torch.arange(edge_idx.shape[1], device=X.device).view((1, -1, 1))
residue_j = edge_idx
D_signed = (residue_j - residue_i).float()
edge_h = mask_intrachain[..., None] * self.encoding(D_signed[..., None])
return edge_h
class EdgeRandomFourierFeatures2mer(nn.Module):
"""For edge-ij computes a random fourier projection of the SE3-invariant feature t_ji
pointing from i to j in the local frame of residue i, optionally including the projection
of the associated quaternion representation of R_ji the rotation from taking you from frame i to frame j
Features are decayed exponentially at rate alpha.
Args:
dim_embedding (int): dimension of embedding
trainable (bool): Whether to train the weight matrix of the fourier features
scale (float): The scale (standard deviation) to sample random weights from
use_quaternion (bool): Whether to embed the quaternion representation as well
Inputs:
X (torch.tensor): of size (batch, length, (4 or 14), 3)
edge_idx (torch.LongTensor): of size (batch, length, num_neighbors)
C (torch.tensor): of size (batch, length)
Outputs:
edge_h (torch.tensor): of size (batch, length, num_neighbors, dim_embedding)
"""
def __init__(
self,
dim_embedding: int = 128,
trainable: bool = False,
scale: float = 1.0,
use_quaternion: bool = False,
seed: int = 10,
):
super().__init__()
self._seed = seed
with torch.random.fork_rng():
torch.random.manual_seed(self._seed)
self.vector_f = FourierFeaturization(
3, dim_embedding, trainable=trainable, scale=scale
)
self.distance_f = FourierFeaturization(
64, dim_embedding, trainable=trainable, scale=scale
)
self.use_quaternion = use_quaternion
if self.use_quaternion:
self.quat_f = FourierFeaturization(
4, dim_embedding, trainable=trainable, scale=scale
)
self.layer_2mers = Edge2mers()
self.layer_distance = geometry.Distances()
self.frame_builder = backbone.FrameBuilder()
self.dim_out = dim_embedding
def forward(
self,
X: torch.Tensor,
edge_idx: torch.LongTensor,
C: Optional[torch.LongTensor] = None,
) -> torch.Tensor:
X_ij, mask_ij = self.layer_2mers(X, edge_idx, C=C)
D_ij = self.layer_distance(X_ij, dim=-2)
D_ij = D_ij.reshape(*D_ij.size()[:-2], -1)
R_i, t_i, _ = self.frame_builder.inverse(X, C)
R_j, t_j = transforms.collect_neighbor_transforms(R_i, t_i, edge_idx)
R_ji, t_ji = transforms.compose_inner_transforms(
R_j, t_j, R_i.unsqueeze(-3), t_i.unsqueeze(-2)
)
edge_h = self.vector_f(t_ji) + self.distance_f(D_ij)
if self.use_quaternion:
Q_ji = geometry.quaternions_from_rotations(R_ji)
edge_h = edge_h + self.quat_f(Q_ji)
return edge_h
class RBFExpansion(nn.Module):
def __init__(
self,
value_min: float,
value_max: float,
num_rbf: int,
std: Optional[float] = None,
):
super(RBFExpansion, self).__init__()
rbf_centers = torch.linspace(value_min, value_max, num_rbf)
self.register_buffer("rbf_centers", rbf_centers)
if std is None:
std = (rbf_centers[1] - rbf_centers[0]).item()
self.std = std
def forward(self, h: torch.Tensor) -> torch.Tensor:
shape = list(h.shape)
shape_ones = [1 for _ in range(len(shape))] + [-1]
rbf_centers = self.rbf_centers.view(shape_ones)
h = torch.exp(-(((h.unsqueeze(-1) - rbf_centers) / self.std) ** 2))
h = h.view(shape[:-1] + [-1])
return h
class NodeCartesianCoords(nn.Module):
"""Node features containing raw relative coordinates.
Warning: these features are not rotationally invariant.
Args:
scale_factor (float, optional): Scale factor to rescale raw coordinates
for neural network processing. Default is 0.3.
num_atom_types (int, optional): Number of atom types. Default is 4.
Attributes:
dim_out (int): Number of dimensions of the output features.
Inputs:
X (torch.Tensor): Backbone coordinates with shape
`(num_batch, num_residues, num_atom_types, 3)`.
edge_idx (torch.LongTensor): Graph indices for expansion with shape
`(num_batch, num_residues, num_neighbors)`.
C (torch.LongTensor): Chain map with shape
`(num_batch, num_residues)`.
Outputs:
edge_h (torch.Tensor): Node relative coordinates features with shape
`(num_batch, num_residues, 3 * (num_atom_types)**2)`
"""
def __init__(self, scale_factor: float = 0.3, num_atom_types: int = 4):
super(NodeCartesianCoords, self).__init__()
self.scale_factor = scale_factor
self.num_atom_types = num_atom_types
# Public attribute
self.dim_out = 3 * (num_atom_types**2)
def forward(
self,
X: torch.Tensor,
edge_idx: torch.LongTensor,
C: Optional[torch.LongTensor] = None,
) -> torch.Tensor:
num_batch, num_residues, num_neighbors = list(edge_idx.shape)
dX = X.unsqueeze(-2) - X.unsqueeze(-3)
node_h = self.scale_factor * dX.reshape([num_batch, num_residues, -1])
if C is not None:
mask_i = chain_map_to_mask(C)
node_h = mask_i.unsqueeze(-1) * node_h
return node_h
class EdgeCartesianCoords(nn.Module):
"""Edge features containing raw relative coordinates.
Warning: these features are not rotationally invariant.
Args:
scale_factor (float, optional): Scale factor to rescale raw coordinates
for neural network processing. Default is 0.1.
num_atom_types (int, optional): Number of atom types. Default is 4.
Attributes:
dim_out (int): Number of dimensions of the output features.
Inputs:
X (torch.Tensor): Backbone coordinates with shape
`(num_batch, num_residues, num_atom_types, 3)`.
edge_idx (torch.LongTensor): Graph indices for expansion with shape
`(num_batch, num_residues, num_neighbors)`.
C (torch.LongTensor): Chain map with shape
`(num_batch, num_residues)`.
Outputs:
edge_h (torch.Tensor): Edge relative coordinates features with shape
`(num_batch, num_residues, num_neighbors, 3 * (num_atom_types)**2)`
"""
def __init__(self, scale_factor: float = 0.1, num_atom_types: int = 4):
super(EdgeCartesianCoords, self).__init__()
self.scale_factor = scale_factor
self.num_atom_types = num_atom_types
# Public attribute
self.dim_out = 3 * (num_atom_types**2)
def forward(
self,
X: torch.Tensor,
edge_idx: torch.LongTensor,
C: Optional[torch.LongTensor] = None,
) -> torch.Tensor:
num_batch, num_residues, num_neighbors = list(edge_idx.shape)
# Collect coordiates and j
X_flat = X.reshape([num_batch, num_residues, -1])
X_j_flat = graph.collect_neighbors(X_flat, edge_idx)
X_j = X_j_flat.reshape(
[num_batch, num_residues, num_neighbors, 1, self.num_atom_types, 3]
)
X_i = X.reshape([num_batch, num_residues, 1, self.num_atom_types, 1, 3])
dX = X_j - X_i
edge_h = self.scale_factor * dX.reshape(
[num_batch, num_residues, num_neighbors, -1]
)
if C is not None:
mask_i = chain_map_to_mask(C)
mask_i_expand = mask_i.unsqueeze(-1)
mask_j = graph.collect_neighbors(mask_i_expand, edge_idx)
mask_ij = mask_j * mask_i_expand.unsqueeze(-1)
edge_h = mask_ij * edge_h
return edge_h
def chain_map_to_mask(C: torch.LongTensor) -> torch.Tensor:
"""Convert chain map into a mask.
Args:
C (torch.LongTensor): Chain map with shape
`(num_batch, num_residues)`.
Returns:
mask (Tensor, optional): Mask tensor with shape
`(num_batch, num_residues)`.
"""
return (C > 0).type(torch.float32)
def _cgo_cylinder(X1, X2, radius=0.5, rgb=(0.0, 0.0, 1.0)):
x1, y1, z1 = X1.data.numpy().flatten().tolist()
x2, y2, z2 = X2.data.numpy().flatten().tolist()
r1, g1, b1 = rgb
r2, g2, b2 = rgb
cgo_str = (
f"[ 9.0, {x1}, {y1}, {z1}, {x2}, {y2}, {z2}, {radius}, {r1}, {g1}, {b1}, {r2},"
f" {g2}, {b2} ]"
)
return cgo_str
def _cgo_sphere(X1, radius=1.0):
x1, y1, z1 = X1.data.numpy().flatten().tolist()
cgo_str = f"[ 7.0, {x1}, {y1}, {z1}, {radius}]"
return cgo_str
def _cgo_color(rgb=(0.0, 0.0, 1.0)):
r, g, b = rgb
cgo_str = f"[ 6.0, {r}, {g}, {b}]"
return cgo_str
if __name__ == "__main__":
_debug_plot_random_graphs(num_neighbors=60)
|