Spaces:
Sleeping
Sleeping
File size: 24,486 Bytes
ce7bf5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 |
# Copyright Generate Biomedicines, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import numpy as np
import torch
import torch.linalg
import torch.nn as nn
from chroma.layers import graph
from chroma.layers.linalg import eig_leading
from chroma.layers.structure import geometry, protein_graph
class CrossRMSD(nn.Module):
"""Compute optimal RMSDs between two sets of structures.
This module uses the quaternion-based approach for calculating RMSDs as
described in `Using Quaternions to Calculate RMSD`, 2004, by Coutsias,
Seok, and Dill. The minimal RMSD and associated rotation are computed in
terms of the most positive eigenvalue and associated eigvector of a special
4x4 matrix.
Args:
method (str, optional): Method for calculating the most postive
eigenvalue. Can be `power` or `symeig`. If `symeig`, this will use
`torch.symeig`, which is the most accurate method but tends to be
very slow on GPU for large batches of RMSDs. If `power`, then use
power iteration to estimate leading eigenvalues. Default is `power`.
method_iter (int, optional): When the method is `power`, this argument
sets the number of power iterations used for approximation.
The default is 50, which has tended to produce estimates of optimal
RMSD with sub-angstrom accuracy on test problems. Note: Convergence
rates of power iteration can be highly variable dependening on the
system. If accuracy is important, it is recommended to compare
outputs with `symeig`-based RMSDs.
当使用 "power" 方法时,此参数设置幂迭代的次数
Inputs:
X_mobile (Tensor): Mobile coordinates, i.e. the "mobile" coordinates,
with shape `(num_source, num_atoms, 3)`.
X_target (Tensor): Target coordinates with shape
`(num_target, num_atoms, 3)`.
Outputs:
RMSD (Tensors): RMSDs after optimal superposition for all pairs of
source and target structures with shape `(num_source, num_target)`.
While `forward` returns the Cartesian product of all possible
alignments, i.e. (`num_source * num_target` alignments), the
`pairedRMSD` will do the same calculation for zipped batches, i.e.
`num_source` total alignments.
"""
"""
method:计算最大特征值的方法,可以是 "power" 或 "symeig"。
method_iter:当使用 "power" 方法时,此参数设置幂迭代的次数。
_eps:一个小的正数,用于避免除以零的错误。
dither:一个布尔值,用于决定是否在计算中加入随机扰动。
"""
def __init__(self, method="power", method_iter=50, dither=True):
super(CrossRMSD, self).__init__()
self.method = method
self.method_iter = method_iter
self._eps = 1e-5
self.dither = dither
# R_to_F converts xyz cross-covariance matrices (3x3) to the (4x4) F
# matrix of Coutsias et al. This F matrix encodes the optimal RMSD in
# its spectra; namely, the eigenvector associated with the most
# positive eigenvalue of F is the quaternion encoding the optimal
# 3D rotation for superposition.
# fmt: off
R_to_F = np.zeros((9, 16)).astype("f")
F_nonzero = [
[(0,0,1.),(1,1,1.),(2,2,1.)], [(1,2,1.),(2,1,-1.)], [(2,0,1.),(0,2,-1.)], [(0,1,1.),(1,0,-1.)],
[(1,2,1.),(2,1,-1.)], [(0,0,1.),(1,1,-1.),(2,2,-1.)], [(0,1,1.),(1,0,1.)], [(0,2,1.),(2,0,1.)],
[(2,0,1.),(0,2,-1.)], [(0,1,1.),(1,0,1.)], [(0,0,-1.),(1,1,1.),(2,2,-1.)], [(1,2,1.),(2,1,1.)],
[(0,1,1.),(1,0,-1.)], [(0,2,1.),(2,0,1.)], [(1,2,1.),(2,1,1.)], [(0,0,-1.),(1,1,-1.),(2,2,1.)]
]
# fmt: on
for F_ij, nonzero in enumerate(F_nonzero):
for R_i, R_j, sign in nonzero:
R_to_F[R_i * 3 + R_j, F_ij] = sign
self.register_buffer("R_to_F", torch.tensor(R_to_F))
"""
在这个方法中,首先对坐标进行中心化处理,然后计算交叉协方差矩阵,
R 展平并与 R_to_F 矩阵相乘得到 F 矩阵。
之后,根据 method 参数选择的方法计算 F 矩阵的最大特征值,并使用这个特征值来计算 RMSD.
"""
def forward(self, X_mobile, X_target):
num_source = X_mobile.size(0)
num_target = X_target.size(0)
num_atoms = X_mobile.size(1)
# Center coordinates
X_mobile = X_mobile - X_mobile.mean(dim=1, keepdim=True)
X_target = X_target - X_target.mean(dim=1, keepdim=True)
# CrossCov matrices contract over atoms
R = torch.einsum("sai,taj->stij", [X_mobile, X_target])
# F Matrix has leading eigenvector as optimal quaternion
R_flat = R.reshape(num_source, num_target, 9)
F = torch.matmul(R_flat, self.R_to_F).reshape(num_source, num_target, 4, 4)
# Compute optimal quaternion by extracting leading eigenvector
if self.method == "symeig":
top_eig = torch.linalg.eigvalsh(F)[:, :, 3]
elif self.method == "power":
top_eig, vec = eig_leading(F, num_iterations=self.method_iter)
else:
raise NotImplementedError
# Compute RMSD in terms of RMSD using the scheme of Coutsias et al
norms = (X_mobile ** 2).sum(dim=[-1, -2]).unsqueeze(1) + (X_target ** 2).sum(
dim=[-1, -2]
).unsqueeze(0)
sqRMSD = torch.relu((norms - 2 * top_eig) / (num_atoms + self._eps))
RMSD = torch.sqrt(sqRMSD)
return RMSD
def pairedRMSD(
self,
X_mobile,
X_target,
mask=None,
compute_alignment=False,
align_unmasked=False,
):
"""Compute optimal RMSDs between each corresponding batch members.
Args:
X_mobile (Tensor): Mobile coordinates with shape
`(..., num_atoms, 3)`.
X_target (Tensor): Target coordinates with shape
`(..., num_atoms, 3)`.
mask (Tensor, optional): Binary mask tensor for missing atoms with
shape `(..., num_atoms)`.
compute_alignment (boolean, optional): If True, also return the
superposed coordinates.
Returns:
RMSD (Tensors): Optimal RMSDs after superposition for all pairs of
input structures with shape `(...)`.
X_mobile_transform (Tensor, optional): Superposed coordinates with
shape `(..., num_atoms, 3)`. Requires
`compute_alignment` = True`.
"""
# Collapse all leading batch dimensions
num_atoms = X_mobile.size(-2)
batch_dims = list(X_mobile.shape)[:-2]
X_mobile = X_mobile.reshape([-1, num_atoms, 3])
X_target = X_target.reshape([-1, num_atoms, 3])
num_batch = X_mobile.size(0)
if mask is not None:
mask = mask.reshape([-1, num_atoms])
# Center coordinates
if mask is None:
X_mobile_mean = X_mobile.mean(dim=1, keepdim=True)
X_target_mean = X_target.mean(dim=1, keepdim=True)
else:
mask_expand = mask.unsqueeze(-1)
X_mobile_mean = torch.sum(mask_expand * X_mobile, 1, keepdim=True) / (
torch.sum(mask_expand, 1, keepdim=True) + self._eps
)
X_target_mean = torch.sum(mask_expand * X_target, 1, keepdim=True) / (
torch.sum(mask_expand, 1, keepdim=True) + self._eps
)
X_mobile_center = X_mobile - X_mobile_mean
X_target_center = X_target - X_target_mean
if mask is not None:
X_mobile_center = mask_expand * X_mobile_center
X_target_center = mask_expand * X_target_center
# Cross-covariance matrices contract over atoms
R = torch.einsum("sai,saj->sij", [X_mobile_center, X_target_center])
# F Matrix has leading eigenvector as optimal quaternion
R_flat = R.reshape(num_batch, 9)
R_to_F = self.R_to_F.type(R_flat.dtype)
F = torch.matmul(R_flat, R_to_F).reshape(num_batch, 4, 4)
if self.dither:
F = F + 1e-5 * torch.randn_like(F)
# Compute optimal quaternion by extracting leading eigenvector
if self.method == "symeig":
L, V = torch.linalg.eigh(F)
top_eig = L[:, 3]
vec = V[:, :, 3]
elif self.method == "power":
top_eig, vec = eig_leading(F, num_iterations=self.method_iter)
else:
raise NotImplementedError
# Compute RMSD using top eigenvalue
norms = (X_mobile_center ** 2).sum(dim=[-1, -2]) + (X_target_center ** 2).sum(
dim=[-1, -2]
)
sqRMSD = torch.relu((norms - 2 * top_eig) / (num_atoms + self._eps))
rmsd = torch.sqrt(sqRMSD)
if not compute_alignment:
# Unpack leading batch dimensions
rmsd = rmsd.reshape(batch_dims)
return rmsd
else:
R = geometry.rotations_from_quaternions(vec, normalize=False)
X_mobile_transform = torch.einsum("bxr,bir->bix", R, X_mobile_center)
X_mobile_transform = X_mobile_transform + X_target_mean
if mask is not None:
X_mobile_transform = mask_expand * X_mobile_transform
# Return the RMSD of the transformed coordinates
rmsd_direct = rmsd_unaligned(X_mobile_transform, X_target, mask)
# Unpack leading batch dimensions
rmsd_direct = rmsd_direct.reshape(batch_dims)
X_mobile_transform = X_mobile_transform.reshape(batch_dims + [num_atoms, 3])
if align_unmasked:
X_mobile_transform = X_mobile - X_mobile_mean
X_mobile_transform = torch.einsum(
"bxr, bir -> bix",
R,
X_mobile_transform.view(X_mobile.size(0), -1, 3),
)
X_mobile_transform = X_mobile_transform + X_target_mean
return rmsd_direct, X_mobile_transform
class BackboneRMSD(nn.Module):
"""Compute optimal RMSDs between two sets of backbones.
This wraps `CrossRMSD` for use with XCS-formatted protein data.
Args:
method (str, optional): Method for calculating the most postive
eigenvalue. Can be `power` or `symeig`. Default is `power`.
method_iter (int, optional): Number of power iterations for eigenvalue
approximation. Requires `method=power`. Default is 50.
Inputs:
X_mobile (Tensor): Mobile coordinates with shape
`(num_source, num_atoms, 4, 3)`.
X_target (Tensor): Target coordinates with shape
`(num_target, num_atoms, 4, 3)`.
C (Tensor): Chain map with shape `(num_batch, num_residues)`.
Outputs:
X_aligned (Tensor, optional): Superposed `X_mobile` with shape
`(num_batch, num_atoms, 3)`.
rmsd (Tensors): Optimal RMSDs after superposition with shape
`(num_batch)`.
"""
def __init__(self, method="symeig"):
super(BackboneRMSD, self).__init__()
self.rmsd = CrossRMSD(method=method)
"""
在 align 方法中,首先根据链映射 C 创建一个掩码 mask。这个掩码用于确定蛋白质中哪些部分将被用于对齐计算。
接着,将输入的蛋白质坐标 X_mobile 和 X_target 重塑为适合 RMSD 计算的格式。
然后,使用 CrossRMSD 实例的 pairedRMSD 方法计算 RMSD 并获取对齐后的坐标。
最后,将对齐后的坐标重新塑形为原始蛋白质坐标的格式并返回.
"""
def align(self, X_mobile, X_target, C, align_unmasked=False):
mask = (C > 0).type(torch.float32)
mask_flat = mask.unsqueeze(-1).expand(-1, -1, 4).reshape(mask.shape[0], -1)
X_mobile_flat = X_mobile.reshape(X_mobile.size(0), -1, 3)
X_target_flat = X_target.reshape(X_target.size(0), -1, 3)
rmsd, X_aligned = self.rmsd.pairedRMSD(
X_mobile_flat,
X_target_flat,
mask=mask_flat,
compute_alignment=True,
align_unmasked=align_unmasked,
)
X_aligned = X_aligned.reshape(X_mobile.size()).contiguous()
return X_aligned, rmsd
class LossFragmentRMSD(nn.Module):
"""Compute optimal fragment-pair RMSDs between two sets of backbones.
Args:
fragment_k (int, option): Fram
method (str, optional): Method for calculating the most postive
eigenvalue. Can be `power` or `symeig`. Default is `power`.
method_iter (int, optional): Number of power iterations for eigenvalue
approximation. Requires `method=power`. Default is 50.
Inputs:
X_mobile (Tensor): Mobile coordinates with shape
`(num_source, num_atoms, 4, 3)`.
X_target (Tensor): Target coordinates with shape
`(num_target, num_atoms, 4, 3)`.
edge_idx
C (Tensor): Chain map with shape `(num_batch, num_residues)`.
Outputs:
rmsd (Tensor, optional): Per-site fragment RMSDs with shape
`(num_batch)`.
"""
def __init__(self, k=7, method="symeig", method_iter=50):
super(LossFragmentRMSD, self).__init__()
self.k = k
self.rmsd = CrossRMSD(method=method, method_iter=method_iter)
"""
X_mobile 和 X_target:分别表示待对齐的蛋白质和目标蛋白质的坐标。
C:表示链映射,用于确定蛋白质中哪些残基(residues)应该被考虑在对齐过程中。
return_coords:一个布尔值,指示是否返回对齐后的坐标。
在 forward 方法中,首先将输入的蛋白质坐标 X_mobile 和 X_target 限制在背骨原子上。
然后,使用 _collect_X_fragments 函数(这个函数没有在代码中定义,可能是在其他地方定义的)从每个蛋白质中收集片段,并根据链映射 C 创建掩码。
之后,使用 CrossRMSD 实例的 pairedRMSD 方法计算每个片段对的 RMSD,并根据 return_coords 参数决定是否返回对齐后的坐标.
"""
def forward(self, X_mobile, X_target, C, return_coords=False):
# Discard potential sidechain coordinates
X_mobile = X_mobile[:, :, :4, :]
X_target = X_target[:, :, :4, :]
# Build graph and pair fragments
X_fragment_mobile, C_fragment_mobile = _collect_X_fragments(X_mobile, C, self.k)
X_fragment_target, C_fragment_target = _collect_X_fragments(X_target, C, self.k)
shape = list(C.shape) + [-1, 3]
X_fragment_mobile = X_fragment_mobile.reshape(shape)
X_fragment_target = X_fragment_target.reshape(shape)
mask = (C_fragment_mobile > 0).float()
rmsd, X_fragment_mobile_align = self.rmsd.pairedRMSD(
X_fragment_mobile, X_fragment_target, mask, compute_alignment=True
)
if return_coords:
return rmsd, X_fragment_target, X_fragment_mobile, X_fragment_mobile_align
else:
return rmsd
class LossFragmentPairRMSD(nn.Module):
"""Compute optimal fragment-pair RMSDs between two sets of backbones.
Args:
fragment_k (int, option): Fram
method (str, optional): Method for calculating the most postive
eigenvalue. Can be `power` or `symeig`. Default is `power`.
method_iter (int, optional): Number of power iterations for eigenvalue
approximation. Requires `method=power`. Default is 50.
Inputs:
X_mobile (Tensor): Mobile coordinates with shape
`(num_source, num_atoms, 4, 3)`.
X_target (Tensor): Target coordinates with shape
`(num_target, num_atoms, 4, 3)`.
edge_idx
C (Tensor): Chain map with shape `(num_batch, num_residues)`.
Outputs:
rmsd (Tensor, optional): Per-site fragment RMSDs with shape
`(num_batch)`.
"""
def __init__(self, k=7, method="symeig", method_iter=50, graph_num_neighbors=30):
super(LossFragmentPairRMSD, self).__init__()
self.k = k
self.rmsd = CrossRMSD(method=method, method_iter=method_iter)
self.graph_builder = protein_graph.ProteinGraph(
num_neighbors=graph_num_neighbors
)
def _stack_neighbor(self, node_h, edge_idx):
neighbor_h = graph.collect_neighbors(node_h, edge_idx)
node_h = node_h[:, :, None, :].expand(neighbor_h.shape)
edge_h = torch.cat([neighbor_h, node_h], dim=-1)
return edge_h
def _collect_X_fragment_pairs(self, X, C, edge_idx):
X_kmer, C_kmer = _collect_X_fragments(X, C, self.k)
X_pair = self._stack_neighbor(X_kmer, edge_idx)
C_pair = self._stack_neighbor(C_kmer, edge_idx)
X_pair = X_pair.reshape(list(X_pair.shape)[:-1] + [-1, 3])
return X_pair, C_pair
def forward(self, X_mobile, X_target, C, return_coords=False):
# Discard potential sidechain coordinates
X_mobile = X_mobile[:, :, :4, :]
X_target = X_target[:, :, :4, :]
# Build graph and pair fragments
edge_idx, mask_ij = self.graph_builder(X_target, C)
X_pair_mobile, C_pair_mobile = self._collect_X_fragment_pairs(
X_mobile, C, edge_idx
)
X_pair_target, C_pair_target = self._collect_X_fragment_pairs(
X_target, C, edge_idx
)
mask = (C_pair_mobile > 0).float()
rmsd, X_pair_mobile_align = self.rmsd.pairedRMSD(
X_pair_mobile, X_pair_target, mask, compute_alignment=True
)
if return_coords:
return rmsd, mask_ij, X_pair_target, X_pair_mobile, X_pair_mobile_align
else:
return rmsd, mask_ij
class LossNeighborhoodRMSD(nn.Module):
"""Compute optimal fragment-pair RMSDs between two sets of backbones.
Args:
fragment_k (int, option): Fram
method (str, optional): Method for calculating the most postive
eigenvalue. Can be `power` or `symeig`. Default is `power`.
method_iter (int, optional): Number of power iterations for eigenvalue
approximation. Requires `method=power`. Default is 50.
Inputs:
X_mobile (Tensor): Mobile coordinates with shape
`(num_source, num_atoms, 4, 3)`.
X_target (Tensor): Target coordinates with shape
`(num_target, num_atoms, 4, 3)`.
edge_idx
C (Tensor): Chain map with shape `(num_batch, num_residues)`.
Outputs:
rmsd (Tensor, optional): Per-site fragment RMSDs with shape
`(num_batch)`.
"""
def __init__(self, method="symeig", method_iter=50, graph_num_neighbors=30):
super(LossNeighborhoodRMSD, self).__init__()
self.rmsd = CrossRMSD(method=method, method_iter=method_iter)
self.graph_builder = protein_graph.ProteinGraph(
num_neighbors=graph_num_neighbors
)
def _collect_X_neighborhood(self, X, C, edge_idx):
num_batch, num_nodes, num_atoms, _ = X.shape
shape_flat = [num_batch, num_nodes, -1]
X_flat = X.reshape(shape_flat)
C_flat = C[..., None].expand([-1, -1, num_atoms])
X_neighborhood = graph.collect_neighbors(X_flat, edge_idx).reshape(
[num_batch, num_nodes, -1, 3]
)
C_neighborhood = graph.collect_neighbors(C_flat, edge_idx).reshape(
[num_batch, num_nodes, -1]
)
return X_neighborhood, C_neighborhood
def forward(self, X_mobile, X_target, C, return_coords=False):
# Discard potential sidechain coordinates
X_mobile = X_mobile[:, :, :4, :]
X_target = X_target[:, :, :4, :]
# Build graph and pair fragments
edge_idx, mask_ij = self.graph_builder(X_target, C)
X_neighborhood_mobile, C_neighborhood_mobile = self._collect_X_neighborhood(
X_mobile, C, edge_idx
)
X_neighborhood_target, C_neighborhood_target = self._collect_X_neighborhood(
X_target, C, edge_idx
)
mask = (C_neighborhood_mobile > 0).float()
rmsd, X_neighborhood_mobile_align = self.rmsd.pairedRMSD(
X_neighborhood_mobile, X_neighborhood_target, mask, compute_alignment=True
)
mask = (mask.sum(-1) > 0).float()
if return_coords:
return (
rmsd,
mask,
X_neighborhood_target,
X_neighborhood_mobile,
X_neighborhood_mobile_align,
)
else:
return rmsd, mask
def rmsd_unaligned(X_a, X_b, mask=None, eps=1e-5, _min_rmsd=1e-8):
"""Compute RMSD between two coordinate sets without alignment.
Args:
X_a (Tensor): Coordinate set 1 with shape `(..., num_points, 3)`.
X_b (Tensor): Coordinate set 2 with shape `(..., num_points, 3)`.
mask (Tensor, optional): Mask with shape `(..., num_points)`.
eps (float, optional): Small number to prevent division by zero.
default is 1E-5.
Returns:
rmsd (Tensor): Root mean squared deviations (raw) with shape `(...)`.
"""
squared_dev = ((X_a - X_b) ** 2).sum(-1)
if mask is None:
rmsd = torch.sqrt(squared_dev.mean(-1).clamp(min=_min_rmsd))
else:
rmsd = torch.sqrt(
(mask * squared_dev).sum(-1).clamp(min=_min_rmsd) / (mask.sum(-1) + eps)
)
return rmsd
"""
这两个函数是处理蛋白质结构数据的关键部分,特别是在需要从蛋白质结构中提取和分析特定长度片段的情况下。
_collect_X_fragments 函数处理蛋白质的坐标和链映射信息,以收集和处理特定长度的片段,
而 _collect_kmers 函数则是一个更通用的工具,用于从任何给定的节点特征矩阵中收集 k-mers.
_collect_X_fragments:
函数首先将 X 和 C 转换为扁平形状。
然后,使用 _collect_kmers 函数从 X_flat 和 C_flat 中收集 k-mers,这些 k-mers 本质上是局部的、长度为 k 的片段。
最后,函数使用 torch.where 来处理非连续原子,将它们视为缺失,并返回处理后的 X_kmer 和 C_kmer。
_collect_kmers:
函数的主要步骤包括:
构建索引以定位 k-mers。首先,创建一个长度为 k 的索引数组 k_idx。
然后,使用这个索引和节点的索引 node_idx 生成 k-mers 的索引 kmer_idx。
使用 kmer_idx 从 node_h 中收集相邻节点的特征,形成新的 k-mer 特征矩阵 kmer_h。
这个函数的关键在于它能够从原始的节点特征矩阵中构建出包含局部邻居信息的新矩阵,这对于处理基于图的结构(如蛋白质结构)特别有用。
"""
def _collect_X_fragments(X, C, k):
num_batch, num_nodes, num_atoms, _ = X.shape
shape_flat = [num_batch, num_nodes, -1]
X_flat = X.reshape(shape_flat)
C_flat = C[..., None].expand([-1, -1, num_atoms])
# Grab local kmers
X_kmer = _collect_kmers(X_flat, k).reshape(shape_flat)
C_kmer = _collect_kmers(C_flat, k).reshape(shape_flat)
# Treat noncontiguous atoms as missing
C_kmer = torch.where(C[..., None].eq(C_kmer), C_kmer, -C_kmer.abs())
return X_kmer, C_kmer
def _collect_kmers(node_h, k):
"""Gather `(B,I,H) => (B,I,K,H)`"""
device = node_h.device
num_batch, num_nodes, _ = node_h.shape
# Build indices
k_idx = torch.arange(k, device=device) - (k - 1) // 2
node_idx = torch.arange(node_h.shape[1], device=device)
kmer_idx = node_idx[None, :, None] - k_idx[None, None, :]
kmer_idx = kmer_idx.clamp(min=0, max=num_nodes - 1).long()
kmer_idx = kmer_idx.expand([num_batch, -1, k])
# Collect neighbors
kmer_h = graph.collect_neighbors(node_h, kmer_idx)
return kmer_h
|