Spaces:
Sleeping
Sleeping
File size: 30,076 Bytes
ce7bf5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 |
# Copyright Generate Biomedicines, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Layers for modeling protein side chain conformations.
This module contains layers for building, measuring, and scoring protein side
chain conformations in a differentiable way. These can be used for tasks such
as building differentiable all-atom structures from chi-angles, computing chi
angles from existing structures, and scoring or optimizing side chains using
symmetry-aware rmsds.
"""
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from chroma import constants
from chroma.layers import graph
from chroma.layers.structure import protein_graph
from chroma.layers.structure.geometry import (
dihedrals,
extend_atoms,
frames_from_backbone,
quaternions_from_rotations,
rotations_from_quaternions,
)
class SideChainBuilder(nn.Module):
"""Protein side chain builder from chi angles.
When only partial information is given such as chi angles, this module
will default to using the ideal geometries given in the CHARMM toppar
topology files.
`Optimization of the additive CHARMM all-atom protein force
field targeting improved sampling of the backbone phi,
psi and side-chain chi1 and chi2 dihedral angles`
Inputs:
X (tensor): Backbone coordinates with shape
`(batch_size, num_residues, 4, 3)`.
C (tensor): Chain map with shape `(batch_size, num_residues)`.
S (tensor): Sequence tokens with shape `(batch_size, num_residues)`.
chi (tensor): Backbone chi angles with shape
`(batch_size, num_residues, 4)`.
Outputs:
X (tensor): All-atom coordinates with shape
`(batch_size, num_residues, 14, 3)`.
mask_X (tensor): Atomic mask with shape
`(batch_size, num_residues, 14, 1)`
"""
def __init__(self, distance_eps=1e-6):
super(SideChainBuilder, self).__init__()
self.num_atoms = 10
self.num_chi = 4
self.num_aa = len(constants.AA20)
self.distance_eps = distance_eps
self._init_maps()
def _init_maps(self):
"""Build geometry and topology maps in tensor form."""
shape = (3, self.num_atoms, self.num_aa)
self.register_buffer("_Z", torch.zeros(shape, dtype=torch.float))
self.register_buffer("_parents", torch.zeros(shape, dtype=torch.long))
self.register_buffer(
"_chi_ix", 10 * torch.ones((self.num_chi, self.num_aa), dtype=torch.long)
)
for i, aa in enumerate(constants.AA20_3):
aa_dict = constants.AA_GEOMETRY[aa]
atoms_parents = ["N", "CA", "C", "O"] + aa_dict["atoms"]
for j, atom in enumerate(aa_dict["atoms"]):
# Internal coordinates per atom
self._Z[0, j, i] = aa_dict["z-lengths"][j]
self._Z[1, j, i] = aa_dict["z-angles"][j]
self._Z[2, j, i] = aa_dict["z-dihedrals"][j]
# Parent indices per atom
parents = [atoms_parents.index(p) for p in aa_dict["parents"][j]]
self._parents[0, j, i] = parents[0]
self._parents[1, j, i] = parents[1]
self._parents[2, j, i] = parents[2]
# Map which chi angles are flexible
for j, parent_ix in enumerate(aa_dict["chi_indices"]):
self._chi_ix[j, i] = parent_ix
# Convert angles from degrees to radians
self._Z[1:, :, :] = self._Z[1:, :, :] * np.pi / 180.0
# Manually fix Arginine, for which CHARMM places NH1 in trans to CD
self._Z[2, 5, constants.AA20.index("R")] = 0.0
def forward(self, X, C, S, chi=None):
num_batch, num_residues = list(S.shape)
if X.shape[2] > 4:
X = X[:, :, :4, :]
# Expand sequence indexing tensors for gathering residue-specific info
# (B,L) => (B,L,4)
S_expand3 = S.unsqueeze(-1).expand(-1, -1, 4)
# (B,L) => (B,AA,ATOM,L)
S_expand4 = S.reshape([num_batch, 1, 1, num_residues]).expand(
-1, 3, self.num_atoms, -1
)
def _gather(Z):
Z_expand = Z.unsqueeze(0).expand([num_batch, -1, -1, -1])
# (B,3,ATOM,AA) @ (B,3,ATOM,L) => (B,3,ATOM,L) => (B,L,3,ATOM)
Z_i = torch.gather(Z_expand, -1, S_expand4).permute([0, 3, 1, 2])
return Z_i
# Build ideal geometry length, angle, and dihedral tensors 3x(B,L,10)
B, A, D = _gather(self._Z).unbind(-2)
if chi is not None:
# Scatter chi angles (B,L,4) onto their corresponding dihedrals (B,L,10)
# (4,AA) => (B,AA,4)
chi_ix_expand = (
self._chi_ix.unsqueeze(0).expand([num_batch, -1, -1]).transpose(-2, -1)
)
# (B,AA,4) @ (B,L,4) => (B,L,4)
chi_ix_i = torch.gather(chi_ix_expand, -2, S_expand3)
# Scatter extra chi angles into an extra pad dimension & re-slice
# (B,L,10) <- (B,L,4),(B,L,4) => (B,L,10)
D_pad = F.pad(D, (0, 1))
D_pad = torch.scatter(D_pad, -1, chi_ix_i, chi)
D = D_pad[:, :, : self.num_atoms]
# Build indices of parent atoms (B,L,3,10)
X_full = F.pad(X, (0, 0, 0, self.num_atoms))
parents = _gather(self._parents)
# Build atom i given current frame
for i in range(self.num_atoms):
# Gather parents (B,L,A,3) => (B,L,3,3)
parents_expand = parents[:, :, :, i].unsqueeze(-1).expand(-1, -1, -1, 3)
# (B,L,A,3) @ (B,L,3,3) => (B,L,3,3)
X1, X2, X3 = torch.gather(X_full, -2, parents_expand).unbind(-2)
# Extend atom i
X4 = extend_atoms(
X1,
X2,
X3,
B[:, :, i],
A[:, :, i],
D[:, :, i],
degrees=False,
distance_eps=self.distance_eps,
)
# Scatter
# X[:,:,i+4,:] = X4
# scatter_ix = (i+4) * torch.ones(
# (num_batch,num_residues,1,3), dtype=torch.long
# )
# print(X_full.shape, X4.shape, scatter_ix.shape, i+4)
# print(scatter_ix)
# X_full.scatter_(-2, scatter_ix, X4.unsqueeze(-2))
# X_full = torch.scatter(X_full, -2, scatter_ix, X4)
# X_full = X_full + 0.1*X4.mean()
# For some reason direct scatter causes autograd issues
X4_expand = F.pad(X4.unsqueeze(-2), (0, 0, 4 + i, 9 - i))
X_full = X_full + X4_expand
# DEBUG: TEST
if False:
D_reconstruct = dihedrals(X1, X2, X3, X4)
D_error = (
(torch.cos(D[:, :, i]) - torch.cos(D_reconstruct)) ** 2
+ (torch.sin(D[:, :, i]) - torch.sin(D_reconstruct)) ** 2
).mean()
print(D_error)
mask_X = atom_mask(C, S).unsqueeze(-1)
X_full = mask_X * X_full
return X_full, mask_X
class ChiAngles(nn.Module):
"""Computes Chi-angles from an all-atom protein structure.
Inputs:
X (tensor): Atomic coordinates with shape
`(batch_size, num_residues, 14, 3)`.
C (tensor): Chain map with shape `(batch_size, num_residues)`.
S (tensor): Sequence tokens with shape `(batch_size, num_residues)`.
Outputs:
chi (tensor): Backbone chi angles with shape
`(batch_size, num_residues, 4)`.
mask_chi (tensor): Chi angle mask with shape
`(batch_size, num_residues, 4)`.
"""
def __init__(self, distance_eps=1e-6):
super(ChiAngles, self).__init__()
self.num_atoms = 10
self.num_chi = 4
self.num_aa = len(constants.AA20)
self.distance_eps = distance_eps
self._init_maps()
def _init_maps(self):
"""Build geometry and topology maps in tensor form."""
self.register_buffer(
"_chi_atom_sets",
torch.zeros((self.num_aa, self.num_chi, 4), dtype=torch.long),
)
for i, aa in enumerate(constants.AA20_3):
aa_dict = constants.AA_GEOMETRY[aa]
atoms_names = ["N", "CA", "C", "O"] + aa_dict["atoms"]
# Map which chi angles are flexible
for j, parent_ix in enumerate(aa_dict["chi_indices"]):
atom_quartet = aa_dict["parents"][parent_ix] + [
aa_dict["atoms"][parent_ix]
]
for k, atom in enumerate(atom_quartet):
self._chi_atom_sets[i, j, k] = atoms_names.index(atom)
def forward(self, X, C, S):
num_batch, num_residues = list(S.shape)
# (B,L) => (B,L,16)
S_expand = S.unsqueeze(-1).expand([-1, -1, 16])
# (AA,CHI,ATOM) => (AA,16) => (B,AA,16)
chi_indices_per_aa = self._chi_atom_sets.reshape([1, self.num_aa, 16])
chi_indices_per_aa = chi_indices_per_aa.expand([num_batch, -1, -1])
# (B,AA,16) @ (B,L,16) => (B,L,16) => (B,L,16)
chi_indices = torch.gather(chi_indices_per_aa, -2, S_expand)
chi_indices = chi_indices.unsqueeze(-1).expand([-1, -1, -1, 3])
# (B,L,14,3) @ (B,L,16,3) => (B,L,16,3) => (B,L,4,4,3) => (B,L,4)
X_chi = torch.gather(X, -2, chi_indices)
X_1, X_2, X_3, X_4 = X_chi.reshape([num_batch, num_residues, 4, 4, 3]).unbind(
-2
)
chi = dihedrals(X_1, X_2, X_3, X_4, distance_eps=self.distance_eps)
mask_chi = chi_mask(C, S)
chi = chi * mask_chi
return chi, mask_chi
class SideChainSymmetryRenamer(nn.Module):
"""Rename atom to their 180-degree symmetry alternatives via permutation.
Inputs:
X (tensor): Atomic coordinates with shape
`(batch_size, num_residues, 14, 3)`.
S (tensor): Sequence tokens with shape `(batch_size, num_residues)`.
Outputs:
X_renamed (tensor): Renamed atomic coordinates with shape
`(batch_size, num_residues, 14, 3)`.
"""
def __init__(self):
super(SideChainSymmetryRenamer, self).__init__()
self.num_atoms = 10
self.num_aa = len(constants.AA20)
# Build symmetry indices give alternative atom labelings
self.register_buffer(
"_symmetry_indices",
torch.arange(self.num_atoms).unsqueeze(0).repeat(self.num_aa, 1),
)
for i, aa in enumerate(constants.AA20_3):
if aa in constants.ATOM_SYMMETRIES:
for aa_1, aa_2 in constants.ATOM_SYMMETRIES[aa]:
atom_names = constants.AA_GEOMETRY[aa]["atoms"]
ix_1 = atom_names.index(aa_1)
ix_2 = atom_names.index(aa_2)
self._symmetry_indices[i, ix_1] = ix_2
self._symmetry_indices[i, ix_2] = ix_1
def _gather_per_residue(self, AA_table, S):
num_batch, num_residues = list(S.shape)
# (B,L) => (B,L,ATOM)
S_expand = S.unsqueeze(-1).expand([-1, -1, self.num_atoms])
# (AA,ATOM) => (B,AA,ATOM)
value_per_aa = AA_table.unsqueeze(0).expand([num_batch, -1, -1])
# (B,AA,ATOM) @ (B,L,ATOM) => (B,L,ATOM)
value_per_residue = torch.gather(value_per_aa, -2, S_expand)
return value_per_residue
def forward(self, X, S):
alt_indices = self._gather_per_residue(self._symmetry_indices, S)
alt_indices = alt_indices.unsqueeze(-1).expand(-1, -1, -1, 3)
X_bb, X_sc = X[:, :, :4, :], X[:, :, 4:, :]
X_sc_alternate = torch.gather(X_sc, -2, alt_indices)
X_alternate = torch.cat([X_bb, X_sc_alternate], dim=-2)
return X_alternate
class AllAtomFrameBuilder(nn.Module):
"""Build all-atom protein structure from oriented C-alphas and chi angles.
Inputs:
x (Tensor): C-alpha coordinates with shape `(num_batch, num_residues, 3)`.
q (Tensor): Quaternions representing C-alpha orientiations with shape
with shape `(num_batch, num_residues, 4)`.
chi (tensor): Backbone chi angles with shape
`(num_batch, num_residues, 4)`.
C (tensor): Chain map with shape `(num_batch, num_residues)`.
S (tensor): Sequence tokens with shape `(num_batch, num_residues)`.
Outputs:
X (Tensor): All-atom protein coordinates with shape
`(num_batch, num_residues, 14, 3)`
"""
def __init__(self):
super(AllAtomFrameBuilder, self).__init__()
self.sidechain_builder = SideChainBuilder()
self.chi_angles = ChiAngles()
# Build idealized backbone fragment
# IC +N CA *C O 1.3558 116.8400 180.0000 122.5200 1.2297
dX = torch.tensor(
[
[1.459, 0.0, 0.0], # N-C via Engh & Huber is 1.459
[0.0, 0.0, 0.0], # CA is origin
[-0.547, 0.0, -1.424], # C is placed 1.525 A @ 111 degrees from N
],
dtype=torch.float32,
)
self.register_buffer("_dX_local", dX)
def forward(self, x, q, chi, C, S):
# Build backbone
R = rotations_from_quaternions(q, normalize=True)
dX = torch.einsum("ay,nixy->niax", self._dX_local, R)
X_chain = x.unsqueeze(-2) + dX
# Build carboxyl groups
X_N, X_CA, X_C = X_chain.unbind(-2)
# TODO: fix this behavior for termini
mask_next = (C > 0).float()[:, 1:].unsqueeze(-1)
X_N_next = F.pad(mask_next * X_N[:, 1:,], (0, 0, 0, 1),)
num_batch, num_residues = C.shape
ones = torch.ones(list(C.shape), dtype=torch.float32, device=C.device)
X_O = extend_atoms(
X_N_next,
X_CA,
X_C,
1.2297 * ones,
122.5200 * ones,
180 * ones,
degrees=True,
)
X_bb = torch.stack([X_N, X_CA, X_C, X_O], dim=-2)
# Build sidechains
X, mask_atoms = self.sidechain_builder(X_bb, C, S, chi)
return X, mask_atoms
def inverse(self, X, C, S):
X_bb = X[:, :, :4, :]
R, x = frames_from_backbone(X_bb)
q = quaternions_from_rotations(R)
chi, mask_chi = self.chi_angles(X, C, S)
return x, q, chi
class LossSideChainRMSD(nn.Module):
"""Compute side chain RMSDs per residues from an all-atom protein structure.
Inputs:
X (tensor): Atomic coordinates with shape
`(batch_size, num_residues, 14, 3)`.
X_target (tensor): Atomic coordinates with shape
`(batch_size, num_residues, 14, 3)`.
S (tensor): Sequence tokens with shape `(batch_size, num_residues)`.
Outputs:
chi (tensor): Backbone chi angles with shape
`(batch_size, num_residues, 4)`.
"""
def __init__(self, rmsd_eps=1e-2):
super(LossSideChainRMSD, self).__init__()
self.num_atoms = 10
self.num_aa = len(constants.AA20)
self.rmsd_eps = rmsd_eps
self.renamer = SideChainSymmetryRenamer()
def _rmsd(self, X, X_target, atom_mask):
sd = atom_mask * ((X - X_target) ** 2).sum(-1)
rmsd = torch.sqrt(
sd.sum(-1) / (atom_mask.sum(-1) + self.rmsd_eps) + self.rmsd_eps
)
return rmsd
def forward(self, X, X_target, C, S, include_symmetry=True):
mask_atoms = atom_mask(C, S)
X_alt = self.renamer(X, S)[:, :, 4:, :]
X = X[:, :, 4:, :]
X_target = X_target[:, :, 4:, :]
mask_atoms = mask_atoms[:, :, 4:]
rmsd = self._rmsd(X, X_target, mask_atoms)
if include_symmetry:
rmsd_alternate = self._rmsd(X_alt, X_target, mask_atoms)
# rmsd = torch.minimum(rmsd, rmsd_alternate)
rmsd = torch.stack([rmsd, rmsd_alternate], -1).min(-1)[0]
rmsd = (C > 0).float() * rmsd
return rmsd
class LossFrameAlignedGraph(nn.Module):
"""Compute the frame-aligned loss on a nearest neighbors graph.
Args:
num_neighbors (int): Number of neighbors to build in the graph. Default
is 30.
Inputs:
X (tensor): Atomic coordinates with shape
`(batch_size, num_residues, 14, 3)`.
X_target (tensor): Atomic coordinates with shape
`(batch_size, num_residues, 14, 3)`.
C (tensor): Chain map with shape `(batch_size, num_residues)`.
S (tensor): Sequence tokens with shape `(batch_size, num_residues)`.
Outputs:
D (tensor): Per-residue losses with shape `(batch_size, num_residues)`.
"""
def __init__(
self,
num_neighbors=30,
distance_eps=1e-2,
distance_scale=10.0,
interface_only=False,
):
super(LossFrameAlignedGraph, self).__init__()
self.distance_eps = distance_eps
self.distance_scale = distance_scale
self.renamer = SideChainSymmetryRenamer()
self.graph_builder = protein_graph.ProteinGraph(num_neighbors)
self.interface_only = interface_only
def _frame_ij(self, X, edge_idx):
# Build local frames
num_batch, num_residues, num_atoms, _ = X.shape
# Build frames at neighbor j (B,L,K,3,3), (B,L,K,3)
X_bb_flat = X[:, :, :4, :].reshape([num_batch, num_residues, -1])
X_j_flat = graph.collect_neighbors(X_bb_flat, edge_idx)
X_j = X_j_flat.reshape([num_batch, num_residues, -1, 4, 3])
R_j, X_j_CA = frames_from_backbone(X_j, distance_eps=self.distance_eps)
# (B,L,1,A,3) - (B,L,K,1,3) => (B,L,K,A,3)
X_ij = X.unsqueeze(-3) - X_j_CA.unsqueeze(-2)
# Rotate displacements into local frames
r_ij = torch.einsum("nijax,nijxy->nijay", X_ij, R_j)
return r_ij
def _dist(self, r_ij_1, r_ij_2):
D_sq = (r_ij_1 - r_ij_2) ** 2
D = torch.sqrt(D_sq.sum(-1) + self.distance_eps)
return D
def forward(self, X, X_target, C, S):
if X_target.size(2) == 14:
mask_atoms = atom_mask(C, S)
X_alt = self.renamer(X, S)
elif X_target.size(2) == 4:
mask_atoms = (C > 0).float().unsqueeze(-1).expand([-1, -1, 4])
X_alt = X
else:
raise Exception(
"Size of atom dimension must be 4 (backbone) or 14 (all-atom)."
)
# Build the union graph
custom_mask_2D = None
if self.interface_only:
custom_mask_2D = torch.ne(C.unsqueeze(1), C.unsqueeze(2)).float()
edge_idx_model, _ = self.graph_builder(
X[:, :, :4, :], C, custom_mask_2D=custom_mask_2D
)
edge_idx_target, _ = self.graph_builder(
X_target[:, :, :4, :], C, custom_mask_2D=custom_mask_2D
)
edge_idx = torch.cat([edge_idx_model, edge_idx_target], 2)
# Build frame-aligned displacement vectors (B,N,K,A,3)
r_ij = self._frame_ij(X, edge_idx)
r_ij_alt = self._frame_ij(X_alt, edge_idx)
r_ij_target = self._frame_ij(X_target, edge_idx)
# Build 2D masks (B,N,K,A)
num_batch, num_residues, num_atoms, _ = X.shape
mask_residues = (C > 0).float()
# (B,N,1,A)
mask_i = mask_atoms.reshape([num_batch, num_residues, 1, num_atoms])
# (B,N,K,1)
mask_j = graph.collect_neighbors(mask_residues.unsqueeze(-1), edge_idx)
mask_ij = mask_i * mask_j
# Build frame-aligned displacement vectors (B,N,N,A)
D = mask_ij * self._dist(r_ij, r_ij_target)
D_alt = mask_ij * self._dist(r_ij_alt, r_ij_target)
# Which definition of atom j gives a better score? (B,N)
mask_reduce = mask_ij.sum([-2, -1])
D_j = D.sum([-2, -1]) / (mask_reduce + self.distance_eps)
D_j_alt = D_alt.sum([-2, -1]) / (mask_reduce + self.distance_eps)
D_j_min = torch.stack([D_j, D_j_alt], -1).min(-1)[0]
# Return as a per-residue loss
return D_j_min
class LossAllAtomDistances(nn.Module):
"""Compute the interatomic distance loss on a nearest neighbors graph.
Args:
num_neighbors (int): Number of neighbors to build in the graph. Default
is 30.
Inputs:
X (tensor): Atomic coordinates with shape
`(batch_size, num_residues, 14, 3)`.
X_target (tensor): Atomic coordinates with shape
`(batch_size, num_residues, 14, 3)`.
C (tensor): Chain map with shape `(batch_size, num_residues)`.
S (tensor): Sequence tokens with shape `(batch_size, num_residues)`.
Outputs:
D (tensor): Per-residue losses with shape `(batch_size, num_residues)`.
"""
def __init__(self, num_neighbors=30, distance_eps=1e-2):
super(LossAllAtomDistances, self).__init__()
self.distance_eps = distance_eps
self.graph_builder = protein_graph.ProteinGraph(num_neighbors)
def _dist_ij(self, X, edge_idx):
# Build local frames
num_batch, num_residues, num_atoms, _ = X.shape
# Build frames at neighbor j (B,L,K,), (B,L,K,A,3)
X_flat = X.reshape([num_batch, num_residues, -1])
X_j_flat = graph.collect_neighbors(X_flat, edge_idx)
X_j = X_j_flat.reshape([num_batch, num_residues, -1, num_atoms, 3])
X_i = X.unsqueeze(2).expand([-1, -1, X_j.shape[2], -1, -1])
X_ij = torch.cat([X_i, X_j], -2)
D_ij = torch.sqrt(
((X_ij.unsqueeze(-2) - X_ij.unsqueeze(-3)) ** 2).sum(-1) + self.distance_eps
)
return D_ij
def _mask_ij(self, C, S, edge_idx):
# (B,L,A)
mask_atoms = atom_mask(C, S)
mask_j = graph.collect_neighbors(mask_atoms, edge_idx)
mask_i = mask_atoms.unsqueeze(2).expand([-1, -1, edge_idx.shape[2], -1])
mask_ij = torch.cat([mask_i, mask_j], -1)
mask_D = mask_ij.unsqueeze(-1) * mask_ij.unsqueeze(-2)
return mask_D
def forward(self, X, X_target, C, S):
# Build the union graph
edge_idx_model, _ = self.graph_builder(X[:, :, :4, :], C)
edge_idx_target, _ = self.graph_builder(X_target[:, :, :4, :], C)
edge_idx = torch.cat([edge_idx_model, edge_idx_target], 2)
mask_ij = self._mask_ij(C, S, edge_idx)
D_model = self._dist_ij(X, edge_idx)
D_target = self._dist_ij(X_target, edge_idx)
loss = torch.sqrt((D_model - D_target) ** 2 + self.distance_eps)
loss_i = (mask_ij * loss).sum([2, 3, 4]) / (
mask_ij.sum([2, 3, 4]) + self.distance_eps
)
return loss_i
class LossSidechainClashes(nn.Module):
"""Count sidechain clashes in a structure using a nearest neighbors graph.
This uses the Van der Waals radii based definition of bonding
in pymol as described at https://pymolwiki.org/index.php/Connect_cutoff.
Args:
num_neighbors (int, optional): Number of neighbors to
build in the graph. Default is 30.
connect_cutoff (float, optional): Bonding cutoff used in formula
`D_clash_cutoff = D_vdw / 2. + self.connect_cutoff`. Default is
0.35.
use_smooth_cutoff (bool, optional): If True, use a differentiable
definition of clashes by replacing `D < cutoff` with
`sigmoid(smooth_cutoff_alpha * (cutoff - D))`. Default is False.
smooth_cutoff_alpha (float, optional): Steepness parameter for
differentiable clashes, as `alpha -> infinity` it will behave as
discrete cutoff. Default is 1.0.
Inputs:
X (tensor): Atomic coordinates with shape
`(batch_size, num_residues, 14, 3)`.
C (tensor): Chain map with shape `(batch_size, num_residues)`.
S (tensor): Sequence tokens with shape `(batch_size, num_residues)`.
mask_j (tensor, optional): Binary mask encoding which side chains
should be tested for clashing.
Outputs:
clashes (tensor): Per-residue number of clashes with shape
`(batch_size, num_residues)`.
"""
def __init__(
self,
num_neighbors=30,
distance_eps=1e-3,
connect_cutoff=0.35,
use_smooth_cutoff=False,
smooth_cutoff_alpha=1.0,
):
super(LossSidechainClashes, self).__init__()
self.distance_eps = distance_eps
self.graph_builder = protein_graph.ProteinGraph(num_neighbors)
self.connect_cutoff = connect_cutoff
self.use_smooth_cutoff = use_smooth_cutoff
self.smooth_cutoff_alpha = smooth_cutoff_alpha
def _dist_ij(self, X, edge_idx):
num_batch, num_residues, num_atoms, _ = X.shape
# Build frames at neighbor j (B,L,K,), (B,L,K,A,3)
X_flat = X.reshape([num_batch, num_residues, -1])
X_j_flat = graph.collect_neighbors(X_flat, edge_idx)
X_j = X_j_flat.reshape([num_batch, num_residues, -1, num_atoms, 3])
X_i = X.unsqueeze(2).expand([-1, -1, X_j.shape[2], -1, -1])
D_ij = torch.sqrt(
((X_i.unsqueeze(-2) - X_j.unsqueeze(-3)) ** 2).sum(-1) + self.distance_eps
)
return D_ij
def _mask_ij(self, C, S, edge_idx, mask_j=None):
# (B,L,A)
mask_atoms = atom_mask(C, S)
# Mask only present atoms
mask_atoms_j = mask_atoms
if mask_j is not None:
mask_atoms_j = mask_atoms_j * mask_j.unsqueeze(-1)
mask_j = graph.collect_neighbors(mask_atoms_j, edge_idx)
mask_i = mask_atoms.unsqueeze(2).expand([-1, -1, edge_idx.shape[2], -1])
mask_D = mask_i.unsqueeze(-1) * mask_j.unsqueeze(-2)
# Mask self interactions
node_idx = torch.arange(C.shape[1], device=C.device).reshape([1, -1, 1])
mask_ne = torch.ne(edge_idx, node_idx)
mask_D = mask_D * mask_ne.reshape(list(mask_ne.shape) + [1, 1])
return mask_D
def _gather_vdw_radii(self, C, S):
vdw_radii = {"C": 1.7, "N": 1.55, "O": 1.52, "S": 1.8}
# Van der waal radii per atom per residue [AA,ATOM]
R = torch.zeros([20, 14], device=C.device)
for i, aa in enumerate(constants.AA20_3):
atoms = constants.ATOMS_BB + constants.AA_GEOMETRY[aa]["atoms"]
for j, atom_name in enumerate(atoms):
R[i, j] = vdw_radii[atom_name[0]]
# (B, AA, ATOM) @ (B, L, ATOM) => (B, L, ATOM)
R = R.reshape([1, 20, 14]).expand([C.shape[0], -1, -1])
S = S.unsqueeze(-1).expand([-1, -1, 14])
atom_radii = torch.gather(R, 1, S)
return atom_radii
def _gather_vdw_diameters(self, C, S, edge_idx):
num_batch, num_residues, num_neighbors = edge_idx.shape
# Gather van der Waals radii
radii_i = self._gather_vdw_radii(C, S)
radii_j = graph.collect_neighbors(radii_i, edge_idx)
radii_i = radii_i.reshape([num_batch, num_residues, 1, -1, 1])
radii_j = radii_j.reshape([num_batch, num_residues, num_neighbors, 1, -1])
D_vdw = radii_i + radii_j
return D_vdw
def forward(self, X, C, S, edge_idx=None, mask_j=None, mask_ij=None):
# Compute sidechain interatomic distances
if edge_idx is None:
edge_idx, mask_ij = self.graph_builder(X[:, :, :4, :], C)
# Distance with shape [B,L,K,AI,AJ]
mask_clash_ij = self._mask_ij(C, S, edge_idx, mask_j)
if mask_ij is not None:
mask_clash_ij = mask_clash_ij * mask_ij.reshape(
list(mask_ij.shape) + [1, 1]
)
D = self._dist_ij(X, edge_idx)
D_vdw = self._gather_vdw_diameters(C, S, edge_idx)
D_clash_cutoff = D_vdw / 2.0 + self.connect_cutoff
# Optionally use a smooth definition of clashes that is differentiable
if self.use_smooth_cutoff:
bond_clash = mask_clash_ij * torch.sigmoid(
self.smooth_cutoff_alpha * (D_clash_cutoff - D)
)
else:
bond_clash = mask_clash_ij * (D < D_clash_cutoff).float()
# Only cound outgoing clashes from sidechain atoms at i
bond_clash = bond_clash[:, :, :, 4:, :]
clashes = bond_clash.sum([2, 3, 4])
return clashes
def _gather_atom_mask(C, S, atoms_per_aa, num_atoms):
device = S.device
atoms_per_aa = torch.tensor(atoms_per_aa, dtype=torch.long)
atoms_per_aa = atoms_per_aa.to(device).unsqueeze(0).expand(S.shape[0], -1)
# (B,A) @ (B,L) => (B,L)
atoms_per_residue = torch.gather(atoms_per_aa, -1, S)
atoms_per_residue = (C > 0).float() * atoms_per_residue
ix_expand = torch.arange(num_atoms, device=device).reshape([1, 1, -1])
mask_atoms = ix_expand < atoms_per_residue.unsqueeze(-1)
mask_atoms = mask_atoms.float()
return mask_atoms
def atom_mask(C, S):
"""Constructs a all-atom coordinate mask from a sequence and chain map.
Inputs:
C (tensor): Chain map with shape `(batch_size, num_residues)`.
S (tensor): Sequence tokens with shape `(batch_size, num_residues)`.
Outputs:
mask_atoms (tensor): Atomic mask with shape
`(batch_size, num_residues, 14)`.
"""
return _gather_atom_mask(C, S, constants.AA20_NUM_ATOMS, 14)
def chi_mask(C, S):
"""Constructs a all-atom coordinate mask from a sequence and chain map.
Inputs:
C (tensor): Chain map with shape `(batch_size, num_residues)`.
S (tensor): Sequence tokens with shape `(batch_size, num_residues)`.
Outputs:
mask_atoms (tensor): Chi angle mask with shape
`(batch_size, num_residues, 4)`.
"""
return _gather_atom_mask(C, S, constants.AA20_NUM_CHI, 4)
|