Spaces:
Sleeping
Sleeping
File size: 17,457 Bytes
ce7bf5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 |
# Copyright Generate Biomedicines, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Layers for batched 3D transformations, such as residue poses.
This module contains pytorch layers for computing and composing with
3D, 6-degree-of freedom transformations.
"""
from typing import Optional, Tuple
import torch
import torch.nn.functional as F
from chroma.layers import graph
from chroma.layers.structure import geometry
def compose_transforms(
R_a: torch.Tensor, t_a: torch.Tensor, R_b: torch.Tensor, t_b: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Compose transforms `T_compose = T_a * T_b` (broadcastable).
Args:
R_a (torch.Tensor): Transform `T_a` rotation matrix with shape `(...,3,3)`.
t_a (torch.Tensor): Transform `T_a` translation with shape `(...,3)`.
R_b (torch.Tensor): Transform `T_b` rotation matrix with shape `(...,3,3)`.
t_b (torch.Tensor): Transform `T_b` translation with shape `(...,3)`.
Returns:
R_composed (torch.Tensor): Composed transform `a * b` rotation matrix with
shape `(...,3,3)`.
t_composed (torch.Tensor): Composed transform `a * b` translation vector with
shape `(...,3)`.
"""
R_composed = R_a @ R_b
t_composed = t_a + (R_a @ t_b.unsqueeze(-1)).squeeze(-1)
return R_composed, t_composed
def compose_translation(
R_a: torch.Tensor, t_a: torch.Tensor, t_b: torch.Tensor
) -> torch.Tensor:
"""Compose translation component of `T_compose = T_a * T_b` (broadcastable).
Args:
R_a (torch.Tensor): Transform `T_a` rotation matrix with shape `(...,3,3)`.
t_a (torch.Tensor): Transform `T_a` translation with shape `(...,3)`.
t_b (torch.Tensor): Transform `T_b` translation with shape `(...,3)`.
Returns:
t_composed (torch.Tensor): Composed transform `a * b` translation vector with
shape `(...,3)`.
"""
t_composed = t_a + (R_a @ t_b.unsqueeze(-1)).squeeze(-1)
return t_composed
def compose_inner_transforms(
R_a: torch.Tensor, t_a: torch.Tensor, R_b: torch.Tensor, t_b: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Compose the relative inner transform `T_ab = T_a^{-1} * T_b`.
Args:
R_a (torch.Tensor): Transform `T_a` rotation matrix with shape `(...,3,3)`.
t_a (torch.Tensor): Transform `T_a` translation with shape `(...,3)`.
R_b (torch.Tensor): Transform `T_b` rotation matrix with shape `(...,3,3)`.
t_b (torch.Tensor): Transform `T_b` translation with shape `(...,3)`.
Returns:
R_ab (torch.Tensor): Composed transform `T_a * T_b` rotation matrix with
shape `(...,3,3)`. Inner dimensions are broadcastable.
t_ab (torch.Tensor): Composed transform `T_a * T_b` translation vector with
shape `(...,3)`.
"""
R_a_inverse = R_a.transpose(-1, -2)
R_ab = R_a_inverse @ R_b
t_ab = (R_a_inverse @ ((t_b - t_a).unsqueeze(-1))).squeeze(-1)
return R_ab, t_ab
def fuse_gaussians_isometric_plus_radial(
x: torch.Tensor,
p_iso: torch.Tensor,
p_rad: torch.Tensor,
direction: torch.Tensor,
dim: int,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Fuse Gaussians along a dimension ``dim``. This assumes the Gaussian
precision matrices are a sum of an isometric part P_iso together with
a part P_rad that provides information only along one direction.
Args:
x (torch.Tensor): A (...,3)-shaped tensor of means.
p_iso (torch.Tensor): A (...)-shaped tensor of weights of the isometric part of the
precision matrix.
p_rad (torch.Tensor): A (...)-shaped tensor of weights of the radial part of the
precision matrix.
direction (torch.Tensor): A (...,3)-shaped tensor of directions along which
information is available.
dim (int): The dimension over which to aggregate (fuse).
Returns:
A tuple ``(x_fused, P_fused)`` of fused mean and precision, with
specified ``dim`` removed.
"""
assert dim >= 0, "dimension must index from the left"
# P_rad has information only parallel to the edge.
outer = direction.unsqueeze(-1) * direction.unsqueeze(-2)
inner = direction.square().sum(-1).clamp(min=1e-10)
P_rad = (p_rad / inner)[..., None, None] * outer
P_iso = p_iso.unsqueeze(-1).expand(p_iso.shape + (3,)).diag_embed()
P = P_iso + P_rad
# Compute the Bayesian fusion aka product-of-experts of the Gaussians.
P_fused = P.sum(dim)
Px_fused = (P @ x.unsqueeze(-1)).squeeze(-1).sum(dim)
# There might be a cheaper way to do this, either via Cholesky
# or hand-coding the 3x3 matrix solve operation.
x_fused = torch.linalg.solve(P_fused, Px_fused)
return x_fused, P_fused
def collect_neighbor_transforms(
R_i: torch.Tensor, t_i: torch.Tensor, edge_idx: torch.LongTensor
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Collect neighbor transforms.
Args:
R_i (torch.Tensor): Transform `T` rotation matrices with shape
`(num_batch, num_residues, 3, 3)`.
t_i (torch.Tensor): Transform `T` translations with shape
`(num_batch, num_residues, 3)`.
edge_idx (torch.LongTensor): Edge indices for neighbors with shape
`(num_batch, num_nodes, num_neighbors)`.
Returns:
R_j (torch.Tensor): Rotation matrices of neighbor transforms, with shape
`(num_batch, num_residues, num_neighbors, 3, 3)`.
t_j (torch.Tensor): Translations of neighbor transforms, with shape
`(num_batch, num_residues, num_neighbors, 3)`.
"""
num_batch, num_residues, num_neighbors = edge_idx.shape
R_i_flat = R_i.reshape([num_batch, num_residues, 9])
R_j = graph.collect_neighbors(R_i_flat, edge_idx).reshape(
[num_batch, num_residues, num_neighbors, 3, 3]
)
t_j = graph.collect_neighbors(t_i, edge_idx)
return R_j, t_j
def collect_neighbor_inner_transforms(
R_i: torch.Tensor, t_i: torch.Tensor, edge_idx: torch.LongTensor
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Collect inner transforms between neighbors.
Args:
R_i (torch.Tensor): Transform `T` rotation matrices with shape
`(num_batch, num_residues, 3, 3)`.
t_i (torch.Tensor): Transform `T` translations with shape
`(num_batch, num_residues, 3)`.
edge_idx (torch.LongTensor): Edge indices for neighbors with shape
`(num_batch, num_nodes, num_neighbors)`.
Returns:
R_ji (torch.Tensor): Rotation matrices of neighbor transforms, with shape
`(num_batch, num_residues, num_neighbors, 3, 3)`.
t_ji (torch.Tensor): Translations of neighbor transforms, with shape
`(num_batch, num_residues, num_neighbors, 3)`.
"""
R_j, t_j = collect_neighbor_transforms(R_i, t_i, edge_idx)
R_ji, t_ji = compose_inner_transforms(
R_j, t_j, R_i.unsqueeze(-3), t_i.unsqueeze(-2)
)
return R_ji, t_ji
def equilibrate_transforms(
R_i: torch.Tensor,
t_i: torch.Tensor,
R_ji: torch.Tensor,
t_ji: torch.Tensor,
logit_ij: torch.Tensor,
mask_ij: torch.Tensor,
edge_idx: torch.LongTensor,
iterations: int = 1,
R_global: Optional[torch.Tensor] = None,
t_global: Optional[torch.Tensor] = None,
R_global_i: Optional[torch.Tensor] = None,
t_global_i: Optional[torch.Tensor] = None,
logit_global_i: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Equilibrate neighbor transforms.
Args:
R_i (torch.Tensor): Transform `T` rotation matrices with shape
`(num_batch, num_residues, 3, 3)`.
t_i (torch.Tensor): Transform `T` translations with shape
`(num_batch, num_residues, 3)`.
R_ji (torch.Tensor): Rotation matrices to go between frames for nodes i and j
with shape `(num_batch, num_residues, num_neighbors, 3, 3)`.
t_ji (torch.Tensor): Translations to go between frames for nodes i and j with
shape `(num_batch, num_residues, num_neighbors, 3)`.
logit_ij (torch.Tensor): Logits for averaging neighbor transforms with shape
`(num_batch, num_residues, num_neighbors, num_weights)`. Note that
`num_weights` must be 1, 2, or 3; see the documentation for
`generate.layers.structure.transforms.average_transforms` for an
explanation of the interpretations with different `num_weights`.
mask_ij (torch.Tensor): Mask for averaging neighbor transforms with shape
`(num_batch, num_residues, num_neighbors)`.
edge_idx (torch.LongTensor): Edge indices for neighbors with shape
`(num_batch, num_nodes, num_neighbors)`.
iterations (int): Number of iterations to equilibrate for.
R_global (torch.Tensor): Optional global frame rotation matrix with shape
`(num_batch, 3, 3)`.
t_global (torch.Tensor): Optional global frame translation with shape
`(num_batch, 3)`.
R_global_i (torch.Tensor): Optional rotation matrix for global frame from
nodes with shape `(num_batch, num_residues, 3, 3)`.
t_global_i (torch.Tensor): Optional translation for global frame from nodes
with shape `(num_batch, num_residues, 3)`.
logit_global_i (torch.Tensor): Logits for averaging global frame transform
with shape `(num_batch, num_residues, num_weights)`. `num_weights`
should match that of `logit_ij`.
Returns:
R_i (torch.Tensor): Rotation matrices of equilibrated transforms, with shape
`(num_batch, num_residues, 3, 3)`.
t_i (torch.Tensor): Translations of equilibrated transforms, with shape
`(num_batch, num_residues, 3)`.
"""
# Optional global frames are treated as additional neighbor
update_global = False
if None not in [R_global, t_global, R_global_i, t_global_i, logit_global_i]:
update_global = True
num_batch, num_residues, num_neighbors = list(mask_ij.shape)
R_global_i = R_global_i.unsqueeze(2)
t_global_i = t_global_i.unsqueeze(2)
R_ji = torch.cat((R_ji, R_global_i), dim=2)
t_ji = torch.cat((t_ji, t_global_i), dim=2)
logit_ij = torch.cat((logit_ij, logit_global_i.unsqueeze(2)), dim=2)
R_global = R_global.reshape([num_batch, 1, 1, 3, 3]).expand(R_global_i.shape)
t_global = t_global.reshape([num_batch, 1, 1, 3]).expand(t_global_i.shape)
mask_i = (mask_ij.sum(2, keepdims=True) > 0).float()
mask_ij = torch.cat((mask_ij, mask_i), dim=2)
t_edge = None
for i in range(iterations):
R_j, t_j = collect_neighbor_transforms(R_i, t_i, edge_idx)
if update_global:
R_j = torch.cat((R_j, R_global), dim=2)
t_j = torch.cat((t_j, t_global), dim=2)
R_i_pred, t_i_pred = compose_transforms(R_j, t_j, R_ji, t_ji)
if logit_ij.size(-1) == 3:
# Compute i-j displacement in the same coordinate system as
# t_i_pred, i.e. in global coords. Sign does not matter.
t_edge = t_j - t_i_pred
R_i, t_i = average_transforms(
R_i_pred, t_i_pred, logit_ij, mask_ij, t_edge=t_edge, dim=2
)
return R_i, t_i
def average_transforms(
R: torch.Tensor,
t: torch.Tensor,
w: torch.Tensor,
mask: torch.Tensor,
dim: int,
t_edge: Optional[torch.Tensor] = None,
dither: Optional[bool] = True,
dither_eps: float = 1e-4,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Average transforms with optional dithering.
Args:
R (torch.Tensor): Transform `T` rotation matrix with shape `(...,3,3)`.
t (torch.Tensor): Transform `T` translation with shape `(...,3)`.
w (torch.Tensor): Logits for averaging weights with shape
`(...,num_weights)`. `num_weights` can be 1 (single scalar
weight per transform), 2 (separate weights for each rotation
and translation), or 3 (one weight for rotation, two weights
for translation corresponding to precision in all directions /
along t_edge).
mask (torch.Tensor): Mask for averaging weights with shape `(...)`.
dim (int): Dimension to average along.
t_edge (torch.Tensor, optional): Translation `T` of shape `(..., 3)`
indicating the displacement between source and target nodes.
dither (bool): Whether to noise final rotations.
dither_eps (float): Fractional amount by which to noise rotations.
Returns:
R_avg (torch.Tensor): Average transform `T_avg` rotation matrix with
shape `(...{reduced}...,3,3)`.
t_avg (torch.Tensor): Average transform `T_avg` translation with
shape `(...{reduced}...,3)`.
"""
assert dim >= 0, "dimension must index from the left"
w = torch.where(
mask[..., None].bool(), w, torch.full_like(w, torch.finfo(w.dtype).min)
)
# We use different averaging models based on the number of weights
num_transform_weights = w.size(-1)
if num_transform_weights == 1:
# Share a single scalar weight between t and R.
probs = w.softmax(dim)
t_probs = probs
R_probs = probs[..., None]
# Average translation.
t_avg = (t * t_probs).sum(dim)
elif num_transform_weights == 2:
# Use separate scalar weights for each of t and R.
probs = w.softmax(dim)
t_probs, R_probs = probs.unbind(-1)
t_probs = t_probs[..., None]
R_probs = R_probs[..., None, None]
# Average translation.
t_avg = (t * t_probs).sum(dim)
elif num_transform_weights == 3:
# For R use a signed scalar weight.
R_probs = w[..., 2].softmax(dim)[..., None, None]
# For t use a two-parameter precision matrix P = P_isometric + P_radial.
# We need to hand compute softmax over the shared dim x 2 elements.
w_t = w[..., :2]
w_t_total = w_t.logsumexp([dim, -1], True)
p_iso, p_rad = (w_t - w_t_total).exp().unbind(-1)
# Use Gaussian fusion for translation.
t_edge = t_edge * mask.to(t_edge.dtype)[..., None]
t_avg, _ = fuse_gaussians_isometric_plus_radial(t, p_iso, p_rad, t_edge, dim)
else:
raise NotImplementedError
# Average rotation via SVD
R_avg_unc = (R * R_probs).sum(dim)
R_avg_unc = R_avg_unc + dither_eps * torch.randn_like(R_avg_unc)
U, S, Vh = torch.linalg.svd(R_avg_unc, full_matrices=True)
R_avg = U @ Vh
# Enforce that matrix is rotation matrix
d = torch.linalg.det(R_avg)
d_expand = F.pad(d[..., None, None], (2, 0), value=1.0)
Vh = Vh * d_expand
R_avg = U @ Vh
return R_avg, t_avg
def _debug_plot_transforms(
R_ij: torch.Tensor,
t_ij: torch.Tensor,
logits_ij: torch.Tensor,
edge_idx: torch.LongTensor,
mask_ij: torch.Tensor,
dist_eps: float = 1e-3,
):
"""Visualize 6dof frame transformations"""
from matplotlib import pyplot as plt
num_batch = R_ij.shape[0]
num_residues = R_ij.shape[1]
# Masked softmax on logits
# logits_ij = torch.where(
# mask_ij.bool(), logits_ij,
# torch.full_like(logits_ij, torch.finfo(logits_ij.dtype).min)
# )
p_ij = torch.softmax(logits_ij, 2)
p_ij = torch.log_softmax(logits_ij, 2)
# p_ij = torch.softmax(logits_ij, 2)
P_ij = graph.scatter_edges(p_ij[..., None], edge_idx)[..., 0]
q_ij = geometry.quaternions_from_rotations(R_ij)
q_ij = graph.scatter_edges(q_ij, edge_idx)
t_ij = graph.scatter_edges(t_ij, edge_idx)
# Converte to distance, direction, orientation
D = torch.sqrt(t_ij.square().sum(-1))
U = t_ij / (D[..., None] + dist_eps)
D_max = D.max().item()
t_ij = t_ij / D_max
q_axis = q_ij[..., 1:]
# Distance features
D_img = D
D_img_min = D_img.min().item()
D_img_max = D_img.max().item()
def _format(T):
T = T.cpu().data.numpy()
# RGB on (0,1)^3
if len(T.shape) == 3:
T = (T + 1) / 2
return T
base_width = 4
num_cols = 4
plt.figure(figsize=(base_width * 4, base_width * num_batch), dpi=300)
ix = 1
for i in range(num_batch):
plt.subplot(num_batch, num_cols, ix)
plt.imshow(_format(D_img[i, :, :]), cmap="inferno")
# plt.clim([hD_min, hD_max])
plt.axis("off")
plt.subplot(num_batch, num_cols, ix + 1)
plt.imshow(_format(U[i, :, :, :]))
plt.axis("off")
plt.subplot(num_batch, num_cols, ix + 2)
plt.imshow(_format(q_axis[i, :, :, :]))
plt.axis("off")
# Confidence plots
plt.subplot(num_batch, num_cols, ix + 3)
plt.imshow(_format(P_ij[i, :, :]), cmap="inferno")
# plt.clim([0, P_ij[i,:,:].max().item()])
plt.axis("off")
ix = ix + num_cols
plt.tight_layout()
return
|