File size: 17,457 Bytes
ce7bf5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
# Copyright Generate Biomedicines, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Layers for batched 3D transformations, such as residue poses.

This module contains pytorch layers for computing and composing with
3D, 6-degree-of freedom transformations.
"""


from typing import Optional, Tuple

import torch
import torch.nn.functional as F

from chroma.layers import graph
from chroma.layers.structure import geometry


def compose_transforms(
    R_a: torch.Tensor, t_a: torch.Tensor, R_b: torch.Tensor, t_b: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
    """Compose transforms `T_compose = T_a * T_b` (broadcastable).

    Args:
        R_a (torch.Tensor): Transform `T_a` rotation matrix with shape `(...,3,3)`.
        t_a (torch.Tensor): Transform `T_a` translation with shape `(...,3)`.
        R_b (torch.Tensor): Transform `T_b` rotation matrix with shape `(...,3,3)`.
        t_b (torch.Tensor): Transform `T_b` translation with shape `(...,3)`.

    Returns:
        R_composed (torch.Tensor): Composed transform `a * b` rotation matrix with
            shape `(...,3,3)`.
        t_composed (torch.Tensor): Composed transform `a * b` translation vector with
            shape `(...,3)`.
    """
    R_composed = R_a @ R_b
    t_composed = t_a + (R_a @ t_b.unsqueeze(-1)).squeeze(-1)
    return R_composed, t_composed


def compose_translation(
    R_a: torch.Tensor, t_a: torch.Tensor, t_b: torch.Tensor
) -> torch.Tensor:
    """Compose translation component of `T_compose = T_a * T_b` (broadcastable).

    Args:
        R_a (torch.Tensor): Transform `T_a` rotation matrix with shape `(...,3,3)`.
        t_a (torch.Tensor): Transform `T_a` translation with shape `(...,3)`.
        t_b (torch.Tensor): Transform `T_b` translation with shape `(...,3)`.

    Returns:
        t_composed (torch.Tensor): Composed transform `a * b` translation vector with
            shape `(...,3)`.
    """
    t_composed = t_a + (R_a @ t_b.unsqueeze(-1)).squeeze(-1)
    return t_composed


def compose_inner_transforms(
    R_a: torch.Tensor, t_a: torch.Tensor, R_b: torch.Tensor, t_b: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
    """Compose the relative inner transform `T_ab = T_a^{-1} * T_b`.

    Args:
        R_a (torch.Tensor): Transform `T_a` rotation matrix with shape `(...,3,3)`.
        t_a (torch.Tensor): Transform `T_a` translation with shape `(...,3)`.
        R_b (torch.Tensor): Transform `T_b` rotation matrix with shape `(...,3,3)`.
        t_b (torch.Tensor): Transform `T_b` translation with shape `(...,3)`.

    Returns:
        R_ab (torch.Tensor): Composed transform `T_a * T_b` rotation matrix with
            shape `(...,3,3)`. Inner dimensions are broadcastable.
        t_ab (torch.Tensor): Composed transform `T_a * T_b` translation vector with
            shape `(...,3)`.
    """
    R_a_inverse = R_a.transpose(-1, -2)
    R_ab = R_a_inverse @ R_b
    t_ab = (R_a_inverse @ ((t_b - t_a).unsqueeze(-1))).squeeze(-1)
    return R_ab, t_ab


def fuse_gaussians_isometric_plus_radial(
    x: torch.Tensor,
    p_iso: torch.Tensor,
    p_rad: torch.Tensor,
    direction: torch.Tensor,
    dim: int,
) -> Tuple[torch.Tensor, torch.Tensor]:
    """Fuse Gaussians along a dimension ``dim``. This assumes the Gaussian
    precision matrices are a sum of an isometric part P_iso together with
    a part P_rad that provides information only along one direction.

    Args:
        x (torch.Tensor): A (...,3)-shaped tensor of means.
        p_iso (torch.Tensor): A (...)-shaped tensor of weights of the isometric part of the
            precision matrix.
        p_rad (torch.Tensor): A (...)-shaped tensor of weights of the radial part of the
            precision matrix.
        direction (torch.Tensor): A (...,3)-shaped tensor of directions along which
            information is available.
        dim (int): The dimension over which to aggregate (fuse).

    Returns:
        A tuple ``(x_fused, P_fused)`` of fused mean and precision, with
        specified ``dim`` removed.
    """
    assert dim >= 0, "dimension must index from the left"

    # P_rad has information only parallel to the edge.
    outer = direction.unsqueeze(-1) * direction.unsqueeze(-2)
    inner = direction.square().sum(-1).clamp(min=1e-10)
    P_rad = (p_rad / inner)[..., None, None] * outer
    P_iso = p_iso.unsqueeze(-1).expand(p_iso.shape + (3,)).diag_embed()
    P = P_iso + P_rad

    # Compute the Bayesian fusion aka product-of-experts of the Gaussians.
    P_fused = P.sum(dim)
    Px_fused = (P @ x.unsqueeze(-1)).squeeze(-1).sum(dim)
    # There might be a cheaper way to do this, either via Cholesky
    # or hand-coding the 3x3 matrix solve operation.
    x_fused = torch.linalg.solve(P_fused, Px_fused)

    return x_fused, P_fused


def collect_neighbor_transforms(
    R_i: torch.Tensor, t_i: torch.Tensor, edge_idx: torch.LongTensor
) -> Tuple[torch.Tensor, torch.Tensor]:
    """Collect neighbor transforms.

    Args:
        R_i (torch.Tensor): Transform `T` rotation matrices with shape
            `(num_batch, num_residues, 3, 3)`.
        t_i (torch.Tensor): Transform `T` translations with shape
            `(num_batch, num_residues, 3)`.
        edge_idx (torch.LongTensor): Edge indices for neighbors with shape
            `(num_batch, num_nodes, num_neighbors)`.

    Returns:
       R_j (torch.Tensor): Rotation matrices of neighbor transforms, with shape
           `(num_batch, num_residues, num_neighbors, 3, 3)`.
       t_j (torch.Tensor): Translations of neighbor transforms, with shape
           `(num_batch, num_residues, num_neighbors, 3)`.
    """
    num_batch, num_residues, num_neighbors = edge_idx.shape
    R_i_flat = R_i.reshape([num_batch, num_residues, 9])
    R_j = graph.collect_neighbors(R_i_flat, edge_idx).reshape(
        [num_batch, num_residues, num_neighbors, 3, 3]
    )
    t_j = graph.collect_neighbors(t_i, edge_idx)
    return R_j, t_j


def collect_neighbor_inner_transforms(
    R_i: torch.Tensor, t_i: torch.Tensor, edge_idx: torch.LongTensor
) -> Tuple[torch.Tensor, torch.Tensor]:
    """Collect inner transforms between neighbors.

    Args:
        R_i (torch.Tensor): Transform `T` rotation matrices with shape
            `(num_batch, num_residues, 3, 3)`.
        t_i (torch.Tensor): Transform `T` translations with shape
            `(num_batch, num_residues, 3)`.
        edge_idx (torch.LongTensor): Edge indices for neighbors with shape
            `(num_batch, num_nodes, num_neighbors)`.

    Returns:
       R_ji (torch.Tensor): Rotation matrices of neighbor transforms, with shape
           `(num_batch, num_residues, num_neighbors, 3, 3)`.
       t_ji (torch.Tensor): Translations of neighbor transforms, with shape
           `(num_batch, num_residues, num_neighbors, 3)`.
    """
    R_j, t_j = collect_neighbor_transforms(R_i, t_i, edge_idx)
    R_ji, t_ji = compose_inner_transforms(
        R_j, t_j, R_i.unsqueeze(-3), t_i.unsqueeze(-2)
    )
    return R_ji, t_ji


def equilibrate_transforms(
    R_i: torch.Tensor,
    t_i: torch.Tensor,
    R_ji: torch.Tensor,
    t_ji: torch.Tensor,
    logit_ij: torch.Tensor,
    mask_ij: torch.Tensor,
    edge_idx: torch.LongTensor,
    iterations: int = 1,
    R_global: Optional[torch.Tensor] = None,
    t_global: Optional[torch.Tensor] = None,
    R_global_i: Optional[torch.Tensor] = None,
    t_global_i: Optional[torch.Tensor] = None,
    logit_global_i: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
    """Equilibrate neighbor transforms.

    Args:
        R_i (torch.Tensor): Transform `T` rotation matrices with shape
            `(num_batch, num_residues, 3, 3)`.
        t_i (torch.Tensor): Transform `T` translations with shape
            `(num_batch, num_residues, 3)`.
        R_ji (torch.Tensor): Rotation matrices to go between frames for nodes i and j
            with shape `(num_batch, num_residues, num_neighbors, 3, 3)`.
        t_ji (torch.Tensor): Translations to go between frames for nodes i and j with
            shape `(num_batch, num_residues, num_neighbors, 3)`.
        logit_ij (torch.Tensor): Logits for averaging neighbor transforms with shape
            `(num_batch, num_residues, num_neighbors, num_weights)`. Note that
            `num_weights` must be 1, 2, or 3; see the documentation for
            `generate.layers.structure.transforms.average_transforms` for an
            explanation of the interpretations with different `num_weights`.
        mask_ij (torch.Tensor): Mask for averaging neighbor transforms with shape
            `(num_batch, num_residues, num_neighbors)`.
        edge_idx (torch.LongTensor): Edge indices for neighbors with shape
            `(num_batch, num_nodes, num_neighbors)`.
        iterations (int): Number of iterations to equilibrate for.
        R_global (torch.Tensor): Optional global frame rotation matrix with shape
            `(num_batch, 3, 3)`.
        t_global (torch.Tensor): Optional global frame translation with shape
            `(num_batch, 3)`.
        R_global_i (torch.Tensor): Optional rotation matrix for global frame from
            nodes with shape `(num_batch, num_residues, 3, 3)`.
        t_global_i (torch.Tensor): Optional translation for global frame from nodes
            with shape `(num_batch, num_residues, 3)`.
        logit_global_i (torch.Tensor): Logits for averaging global frame transform
            with shape `(num_batch, num_residues, num_weights)`. `num_weights`
            should match that of `logit_ij`.

    Returns:
       R_i (torch.Tensor): Rotation matrices of equilibrated transforms, with shape
           `(num_batch, num_residues, 3, 3)`.
       t_i (torch.Tensor): Translations of equilibrated transforms, with shape
           `(num_batch, num_residues, 3)`.
    """

    # Optional global frames are treated as additional neighbor
    update_global = False
    if None not in [R_global, t_global, R_global_i, t_global_i, logit_global_i]:
        update_global = True
        num_batch, num_residues, num_neighbors = list(mask_ij.shape)
        R_global_i = R_global_i.unsqueeze(2)
        t_global_i = t_global_i.unsqueeze(2)
        R_ji = torch.cat((R_ji, R_global_i), dim=2)
        t_ji = torch.cat((t_ji, t_global_i), dim=2)
        logit_ij = torch.cat((logit_ij, logit_global_i.unsqueeze(2)), dim=2)
        R_global = R_global.reshape([num_batch, 1, 1, 3, 3]).expand(R_global_i.shape)
        t_global = t_global.reshape([num_batch, 1, 1, 3]).expand(t_global_i.shape)
        mask_i = (mask_ij.sum(2, keepdims=True) > 0).float()
        mask_ij = torch.cat((mask_ij, mask_i), dim=2)

    t_edge = None
    for i in range(iterations):
        R_j, t_j = collect_neighbor_transforms(R_i, t_i, edge_idx)
        if update_global:
            R_j = torch.cat((R_j, R_global), dim=2)
            t_j = torch.cat((t_j, t_global), dim=2)
        R_i_pred, t_i_pred = compose_transforms(R_j, t_j, R_ji, t_ji)

        if logit_ij.size(-1) == 3:
            # Compute i-j displacement in the same coordinate system as
            # t_i_pred, i.e. in global coords. Sign does not matter.
            t_edge = t_j - t_i_pred

        R_i, t_i = average_transforms(
            R_i_pred, t_i_pred, logit_ij, mask_ij, t_edge=t_edge, dim=2
        )

    return R_i, t_i


def average_transforms(
    R: torch.Tensor,
    t: torch.Tensor,
    w: torch.Tensor,
    mask: torch.Tensor,
    dim: int,
    t_edge: Optional[torch.Tensor] = None,
    dither: Optional[bool] = True,
    dither_eps: float = 1e-4,
) -> Tuple[torch.Tensor, torch.Tensor]:
    """Average transforms with optional dithering.

    Args:
        R (torch.Tensor): Transform `T` rotation matrix with shape `(...,3,3)`.
        t (torch.Tensor): Transform `T` translation with shape `(...,3)`.
        w (torch.Tensor): Logits for averaging weights with shape
            `(...,num_weights)`. `num_weights` can be 1 (single scalar
            weight per transform), 2 (separate weights for each rotation
            and translation), or 3 (one weight for rotation, two weights
            for translation corresponding to precision in all directions /
            along t_edge).
        mask (torch.Tensor): Mask for averaging weights with shape `(...)`.
        dim (int): Dimension to average along.
        t_edge (torch.Tensor, optional): Translation `T` of shape `(..., 3)`
            indicating the displacement between source and target nodes.
        dither (bool): Whether to noise final rotations.
        dither_eps (float): Fractional amount by which to noise rotations.

    Returns:
        R_avg (torch.Tensor): Average transform `T_avg` rotation matrix with
            shape `(...{reduced}...,3,3)`.
        t_avg (torch.Tensor): Average transform `T_avg` translation with
            shape `(...{reduced}...,3)`.
    """
    assert dim >= 0, "dimension must index from the left"
    w = torch.where(
        mask[..., None].bool(), w, torch.full_like(w, torch.finfo(w.dtype).min)
    )

    # We use different averaging models based on the number of weights
    num_transform_weights = w.size(-1)
    if num_transform_weights == 1:
        # Share a single scalar weight between t and R.
        probs = w.softmax(dim)
        t_probs = probs
        R_probs = probs[..., None]

        # Average translation.
        t_avg = (t * t_probs).sum(dim)
    elif num_transform_weights == 2:
        # Use separate scalar weights for each of t and R.
        probs = w.softmax(dim)
        t_probs, R_probs = probs.unbind(-1)
        t_probs = t_probs[..., None]
        R_probs = R_probs[..., None, None]

        # Average translation.
        t_avg = (t * t_probs).sum(dim)
    elif num_transform_weights == 3:
        # For R use a signed scalar weight.
        R_probs = w[..., 2].softmax(dim)[..., None, None]

        # For t use a two-parameter precision matrix P = P_isometric + P_radial.
        # We need to hand compute softmax over the shared dim x 2 elements.
        w_t = w[..., :2]
        w_t_total = w_t.logsumexp([dim, -1], True)
        p_iso, p_rad = (w_t - w_t_total).exp().unbind(-1)

        # Use Gaussian fusion for translation.
        t_edge = t_edge * mask.to(t_edge.dtype)[..., None]
        t_avg, _ = fuse_gaussians_isometric_plus_radial(t, p_iso, p_rad, t_edge, dim)
    else:
        raise NotImplementedError

    # Average rotation via SVD
    R_avg_unc = (R * R_probs).sum(dim)
    R_avg_unc = R_avg_unc + dither_eps * torch.randn_like(R_avg_unc)
    U, S, Vh = torch.linalg.svd(R_avg_unc, full_matrices=True)
    R_avg = U @ Vh

    # Enforce that matrix is rotation matrix
    d = torch.linalg.det(R_avg)
    d_expand = F.pad(d[..., None, None], (2, 0), value=1.0)
    Vh = Vh * d_expand
    R_avg = U @ Vh
    return R_avg, t_avg


def _debug_plot_transforms(
    R_ij: torch.Tensor,
    t_ij: torch.Tensor,
    logits_ij: torch.Tensor,
    edge_idx: torch.LongTensor,
    mask_ij: torch.Tensor,
    dist_eps: float = 1e-3,
):
    """Visualize 6dof frame transformations"""
    from matplotlib import pyplot as plt

    num_batch = R_ij.shape[0]
    num_residues = R_ij.shape[1]

    # Masked softmax on logits
    # logits_ij = torch.where(
    #     mask_ij.bool(), logits_ij,
    #     torch.full_like(logits_ij, torch.finfo(logits_ij.dtype).min)
    # )
    p_ij = torch.softmax(logits_ij, 2)
    p_ij = torch.log_softmax(logits_ij, 2)
    # p_ij = torch.softmax(logits_ij, 2)
    P_ij = graph.scatter_edges(p_ij[..., None], edge_idx)[..., 0]

    q_ij = geometry.quaternions_from_rotations(R_ij)
    q_ij = graph.scatter_edges(q_ij, edge_idx)
    t_ij = graph.scatter_edges(t_ij, edge_idx)

    # Converte to distance, direction, orientation
    D = torch.sqrt(t_ij.square().sum(-1))
    U = t_ij / (D[..., None] + dist_eps)
    D_max = D.max().item()
    t_ij = t_ij / D_max
    q_axis = q_ij[..., 1:]

    # Distance features
    D_img = D
    D_img_min = D_img.min().item()
    D_img_max = D_img.max().item()

    def _format(T):
        T = T.cpu().data.numpy()
        # RGB on (0,1)^3
        if len(T.shape) == 3:
            T = (T + 1) / 2
        return T

    base_width = 4
    num_cols = 4
    plt.figure(figsize=(base_width * 4, base_width * num_batch), dpi=300)
    ix = 1
    for i in range(num_batch):
        plt.subplot(num_batch, num_cols, ix)
        plt.imshow(_format(D_img[i, :, :]), cmap="inferno")
        # plt.clim([hD_min, hD_max])
        plt.axis("off")

        plt.subplot(num_batch, num_cols, ix + 1)
        plt.imshow(_format(U[i, :, :, :]))
        plt.axis("off")
        plt.subplot(num_batch, num_cols, ix + 2)
        plt.imshow(_format(q_axis[i, :, :, :]))
        plt.axis("off")

        # Confidence plots
        plt.subplot(num_batch, num_cols, ix + 3)
        plt.imshow(_format(P_ij[i, :, :]), cmap="inferno")
        # plt.clim([0, P_ij[i,:,:].max().item()])
        plt.axis("off")
        ix = ix + num_cols

    plt.tight_layout()
    return