File size: 5,563 Bytes
ce7bf5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
from pathlib import Path
from unittest import SkipTest, TestCase

import numpy as np
import pytest
import torch

import chroma
from chroma.data import Protein
from chroma.layers.structure.backbone import impute_masked_X
from chroma.layers.structure.mvn import (
    BackboneMVNGlobular,
    BackboneMVNResidueGas,
    ConditionalBackboneMVNGlobular,
)
from chroma.layers.structure.rmsd import BackboneRMSD


@pytest.fixture(params=["brownian", "globular", "residue_gas"])
def noise(request):
    covariance_model = request.param
    if covariance_model in ["brownian", "globular"]:
        return BackboneMVNGlobular(
            covariance_model=covariance_model, complex_scaling=True,
        )
    else:
        return BackboneMVNResidueGas(
            covariance_model=covariance_model, complex_scaling=True,
        )


@pytest.fixture(params=["real", "synthetic"])
def XCS(request):
    xcs_type = request.param
    if xcs_type == "real":
        repo = Path(chroma.__file__).parent.parent
        test_cif = str(Path(repo, "tests", "resources", "6wgl.cif"))
        X, C, S = Protein(test_cif).to_XCS()
    else:
        num_batch, num_residues = 5, 100
        X = 10 * torch.randn([num_batch, num_residues * 4, 3])
        C = torch.ones([num_batch, num_residues])
        S = C.clone()
    return X, C, S


def test_full_covariance_and_sqrt_covariance_computation():
    num_batch, num_residues = 1, 100
    X = 10 * torch.randn([num_batch, num_residues, 4, 3])
    C = torch.ones([num_batch, num_residues])
    S = C.clone()
    D = torch.randint(low=0, high=2, size=(C.size()))

    # Fill in missing pieces
    X = impute_masked_X(X, C)
    C = torch.abs(C)

    mvn = BackboneMVNGlobular(covariance_model="globular", complex_scaling=True,)
    cmvn = ConditionalBackboneMVNGlobular(
        covariance_model="globular", complex_scaling=True, X=X, C=C, D=D
    )

    # Test R
    Z = torch.randn_like(X).reshape(X.shape[0], -1, 3)
    RZ_mvn_implicit = mvn._multiply_R(Z, C)
    RZ_mvn_dense = (cmvn.R @ Z).reshape(RZ_mvn_implicit.shape)
    assert torch.allclose(RZ_mvn_implicit, RZ_mvn_dense, atol=1e-2)

    # Test RRt
    RRt_Z_implicit = mvn.multiply_covariance(Z, C)
    RRt_Z_dense = cmvn.RRt @ Z
    assert torch.allclose(RRt_Z_implicit, RRt_Z_dense, atol=1e-2)


def test_invertibility_R(noise, XCS):
    """Test invertibility of the covariance square root."""
    X, C, S = XCS
    X = X.reshape([X.shape[0], -1, 3])

    Ri_X = noise._multiply_R_inverse(X, C)
    R_Ri_X = noise._multiply_R(Ri_X, C)

    Rti_X = noise._multiply_R_inverse_transpose(X, C)
    Rt_Rti_X = noise._multiply_R_transpose(Rti_X, C)
    X = X.reshape(X.shape[0], C.shape[1], -1, 3)

    Ri_X = Ri_X.reshape(X.shape)
    R_Ri_X = R_Ri_X.reshape(X.shape)
    Rti_X = Rti_X.reshape(X.shape)
    Rt_Rti_X = Rt_Rti_X.reshape(X.shape)

    if False:
        from chroma.layers.structure.diffusion import _debug_viz_XZC

        _debug_viz_XZC(X, Ri_X, C)

    assert torch.allclose(X, R_Ri_X, atol=1e-2)
    assert torch.allclose(X, Rt_Rti_X, atol=1e-2)
    assert not torch.allclose(Ri_X, R_Ri_X, atol=1e-2)
    assert not torch.allclose(Rti_X, Rt_Rti_X, atol=1e-2)


def test_invertibility_covariance(noise, XCS, debug=False):
    """Test invertibility of the covariance matrix.

    Note: the covariance matrix is poorly conditioned for all but
    the smallest systems, so for numerical verification the system needs
    to be small with a large tolerance.
    """
    X, C, S = XCS

    # Cycle constraint
    Ci_X = noise.multiply_inverse_covariance(X, C)
    C_Ci_X = noise.multiply_covariance(Ci_X, C)

    if debug and not torch.allclose(X, C_Ci_X, atol=1e-1):
        from matplotlib import pyplot as plt

        plt.figure()
        plt.subplot(3, 1, 1)
        plt.plot((X - C_Ci_X).data.numpy().flatten(), ".")
        plt.subplot(3, 1, 2)
        plt.plot(X.data.numpy().flatten())
        plt.subplot(3, 1, 3)
        plt.plot(C.data.numpy().flatten())
        plt.savefig(f"test_icov.pdf")

    assert torch.allclose(X, C_Ci_X, atol=1e-1)
    assert not torch.allclose(Ci_X, C_Ci_X, atol=1e-1)


def test_log_determinant(noise):
    """Test log determinant of the covariance matrix."""
    X, C, S = Protein("5imm").to_XCS()

    X = X[0:1, ...]
    C = C[0:1, ...]
    C = torch.abs(C)
    X = impute_masked_X(X, C)

    if hasattr(noise, "covariance_model"):
        # Use the conditional covariance model to build a dense RRt
        cmvn = ConditionalBackboneMVNGlobular(
            covariance_model=noise.covariance_model,
            complex_scaling=noise.complex_scaling,
            X=X,
            C=C,
            D=C.ne(0).float(),
        )

        R, RRt = cmvn._materialize_RRt(C)
        R = R.data.numpy()
        logdet_dense = 3.0 * np.linalg.slogdet(R)[1]
        logdet = noise.log_determinant(C)

        assert logdet.item() == pytest.approx(logdet_dense.item())


def test_cmvn(noise):
    if isinstance(noise, BackboneMVNResidueGas):
        pass
    else:
        aligner = BackboneRMSD()
        protein = Protein("1drf")
        X, C, S = protein.to_XCS()
        protein.sys.save_selection(gti=list(range(14)), selname="clamp")
        cmvn = ConditionalBackboneMVNGlobular(
            covariance_model=noise.covariance_model,
            complex_scaling=noise.complex_scaling,
            X=X,
            C=C,
            D=protein.get_mask("namesel clamp"),
        )

        X_sample = cmvn.sample()
        _, rmsd = aligner.align(X, X_sample, protein.get_mask("namesel clamp"))
        assert rmsd.item() < 1e-1