File size: 8,196 Bytes
ce7bf5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
from collections import Counter
from itertools import product

import numpy as np
import pytest
import torch
from torch.nn import functional as F

from chroma.layers.structure.potts import (
    GraphPotts,
    compute_potts_energy,
    fold_symmetry,
    sample_potts,
)


def test_graphpotts():
    # Testing symmetry
    # Create non-symmetric Potts model and symmetrize using serial or not
    potts = GraphPotts(128, 128, 20, symmetric_J=False)

    node_h = torch.rand(1, 3, 128)
    edge_h = torch.rand(1, 3, 2, 128)
    edge_idx = torch.tensor([[[1, 2], [0, 2], [0, 1]]])
    mask_i = torch.ones(1, 3)
    mask_ij = torch.ones(1, 3, 2)

    h, J = potts(node_h, edge_h, edge_idx, mask_i, mask_ij)

    assert (
        potts._symmetrize_J(J, edge_idx, mask_ij)
        != potts._symmetrize_J_serial(J, edge_idx, mask_ij)
    ).sum().detach().numpy() == 0

    mask_ij = torch.tensor([[[1, 1], [1, 0], [1, 0]]])
    h, J = potts(node_h, edge_h, edge_idx, mask_i, mask_ij)

    assert (
        potts._symmetrize_J(J, edge_idx, mask_ij)
        != potts._symmetrize_J_serial(J, edge_idx, mask_ij)
    ).sum().detach().numpy() == 0


def test_symmetry_folding():
    N, Q = 12, 3
    symmetry_order = 3
    N_au = N // symmetry_order

    # Testing symmetry
    mask_i = torch.ones(1, N)
    mask_ij = (1.0 - torch.eye(N))[None, ...]
    h = torch.randn([1, N, Q])
    J = torch.randn([1, N, N, Q, Q])
    J = J + J.permute([0, 2, 1, 4, 3])
    # J = torch.eye(Q)[None,None,None,...].expand([1, N, N, Q, Q])
    J = J * mask_ij[..., None, None]
    edge_idx = torch.arange(N).long()[None, None, :].expand([1, N, N])

    h_fold, J_fold, edge_idx_fold, mask_i_fold, mask_ij_fold = fold_symmetry(
        symmetry_order, h, J, edge_idx, mask_i, mask_ij, normalize=False
    )
    # Validate dimensions
    assert tuple(h_fold.shape) == (1, N_au, Q)
    assert tuple(J_fold.shape) == (1, N_au, N_au, Q, Q)
    assert tuple(edge_idx_fold.shape) == (1, N_au, N_au)
    assert tuple(mask_i_fold.shape) == (1, N_au)
    assert tuple(mask_ij_fold.shape) == (1, N_au, N_au)

    # Does the folded Potts model return same energies as full?
    S_test_fold = torch.randint(high=Q, size=[1, N_au])
    S_test = S_test_fold[:, None, :].expand([1, symmetry_order, N_au]).reshape([1, N])

    U, U_i = compute_potts_energy(S_test, h, J, edge_idx)
    U_fold, U_i_fold = compute_potts_energy(S_test_fold, h_fold, J_fold, edge_idx_fold)

    assert torch.allclose(U, U_fold)


@pytest.mark.parametrize("proposal", ["dlmc", "chromatic"])
def test_potts_mcmc(proposal, debug=False):
    """MCMC test for Chromatic Gibbs sampling."""
    # Build a test, fully connected Potts model
    if debug:
        # Heavy duty sampling with large state space
        N = 5
        q = 4
        num_sweeps = 1000
        num_chains = 1000
        rtol = 0.05
    else:
        # Quick and dirty small state space
        N = 3
        q = 3
        num_sweeps = 200
        num_chains = 1000
        rtol = 0.1

    beta = 0.1
    warmup_fraction = 0.1

    torch.manual_seed(1)
    mask_i = torch.ones([1, N]).float()
    mask_ij = (1 - torch.eye(N))[None, ...].float()
    edge_idx = torch.arange(N)[None, None, :].expand([1, N, N])

    h = beta * torch.randn([1, N, q])
    J = beta * torch.randn([1, N, N, q, q])
    J = mask_ij[..., None, None] * (J + J.permute([0, 2, 1, 4, 3])) / np.sqrt(2)

    # Enumerate all of sequence space
    alphabet = "ABCDEFGHIJK"[:q]
    sequences = ["".join(x) for x in product(alphabet, repeat=N)]
    S_exact = torch.Tensor(
        [[alphabet.index(s) for s in seq] for seq in sequences]
    ).long()
    print(f"Enumerated {len(sequences)} sequences")

    if torch.cuda.is_available():
        device = "cuda"
        h = h.to(device)
        J = J.to(device)
        edge_idx = edge_idx.to(device)
        mask_i = mask_i.to(device)
        mask_ij = mask_ij.to(device)
        S_exact = S_exact.to(device)

    # Compute exact distribution over sequence space
    B = S_exact.shape[0]
    h_expand = h.expand([B, -1, -1])
    J_expand = J.expand([B, -1, -1, -1, -1])
    edge_idx_expand = edge_idx.expand([B, -1, -1])
    mask_i_expand = mask_i.expand([B, -1])
    mask_ij_expand = mask_ij.expand([B, -1, -1])
    U, _ = compute_potts_energy(S_exact, h_expand, J_expand, edge_idx_expand)
    p_exact = F.softmax(-U, -1).tolist()

    # Estimate distribution from sampled sequences
    h_expand = h.expand([num_chains, -1, -1])
    J_expand = J.expand([num_chains, -1, -1, -1, -1])
    edge_idx_expand = edge_idx.expand([num_chains, -1, -1])
    mask_i_expand = mask_i.expand([num_chains, -1])
    mask_ij_expand = mask_ij.expand([num_chains, -1, -1])

    S, U, S_trajectory, U_trajectory = sample_potts(
        h_expand,
        J_expand,
        edge_idx_expand,
        mask_i_expand,
        mask_ij_expand,
        num_sweeps=num_sweeps,
        proposal=proposal,
        rejection_step=True,
        verbose=True,
        return_trajectory=True,
    )
    if warmup_fraction is not None:
        S_trajectory = S_trajectory[int(warmup_fraction * len(S_trajectory)) :]

    S_samples = torch.cat(S_trajectory, 0)
    U_trajectory = torch.stack(U_trajectory, 1).cpu().data.numpy()
    S_samples = S_samples.cpu().data.numpy()
    sample_counts = Counter(["".join([alphabet[c] for c in s]) for s in S_samples])
    p_sample = [sample_counts[seq] / S_samples.shape[0] for seq in sequences]

    if debug:
        from matplotlib import pyplot as plt

        plt.figure(figsize=(6, 3))
        plt.subplot(1, 2, 1)
        plt.plot(p_exact, p_sample, "k.")
        plt.grid()
        plt.axis("square")
        plt.xlabel("Probability, exact enumeration")
        plt.ylabel("Sampling frequencey (MCMC)")
        plt.title(f"Random Potts model over {q}^{N} sequences")
        plt.subplot(1, 2, 2)
        plt.plot(U_trajectory[0, :])
        plt.xlabel("Iterations")
        plt.ylabel("Energy")
        plt.tight_layout()
        plt.show()

    # The frequencies of states visited via MCMC should reproduce their
    # exact probabilities (via enumeration) within rtol percent error
    assert np.allclose(p_sample, p_exact, rtol=rtol)


def debug_potts_2D():
    """Debug test for Potts model"""
    N = 100
    q = 4

    num_sites = N * N
    mask_i = torch.ones([1, N]).float()
    ix = torch.arange(num_sites).long()

    # Build 2D lattice topology
    edge_idx = torch.stack([ix + 1, ix - 1, ix + N, ix - N], -1)
    mask_ij = torch.ones_like(edge_idx).float()[None, :, :]
    edge_idx = torch.remainder(edge_idx, num_sites)[None, :, :].long()

    # Ferromagnetic parameters
    h = torch.zeros([1, num_sites, q])
    h[:, :, 0] = h[:, :, 0]
    mask_J = mask_ij[:, :, :, None, None] * torch.eye(q)[None, None, None, :, :]

    if torch.cuda.is_available():
        device = "cuda"
        h = h.to(device)
        edge_idx = edge_idx.to(device)
        mask_J = mask_J.to(device)
        mask_ij = mask_ij.to(device)

    import numpy as np
    from matplotlib import pyplot as plt
    from matplotlib.animation import FuncAnimation

    temp_range = (1.2, 0.8)
    plt.figure(figsize=(5, 5), dpi=600)
    _, _, S_trajectory, U_trajectory = sample_potts(
        h,
        -mask_J,
        edge_idx,
        mask_i,
        mask_ij,
        num_sweeps=10000,
        verbose=True,
        return_trajectory=True,
        S=None,
        annealing_fraction=1.0,
        temperature_init=1.2,
        temperature=0.8,
    )

    # Define a function to update the plot for each frame
    num_frames = len(S_trajectory)
    temps = np.linspace(temp_range[0], temp_range[1], len(S_trajectory))
    betas = 1.0 / temps

    def update(frame):
        plt.clf()  # Clear the previous frame
        plt.pcolor(S_trajectory[frame].cpu().data.numpy().reshape([N, N]), cmap="tab10")
        plt.clim([0, 10])
        plt.axis("square")
        plt.axis("off")
        plt.title(f"Beta = {betas[frame]:0.2f}")
        print(frame)

    # Create a figure and set the number of frames
    fig = plt.figure(figsize=(4, 4), dpi=300)
    animation = FuncAnimation(fig, update, frames=num_frames, interval=1000 / 60)
    animation.save("potts.mp4", writer="ffmpeg")
    return