File size: 15,692 Bytes
ce7bf5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
# Copyright Generate Biomedicines, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import torch
import torch.nn as nn

"""
们实现了Transformer模型中的关键组件:缩放点积注意力(Scaled Dot Product Attention)和多头注意力(Multi-Head Attention)。
"""
class ScaledDotProductAttention(nn.Module):
    """Scaled dot product attention as described in Eqn 1 of Vaswani et al. 2017 [https://arxiv.org/abs/1706.03762].

    Attention(Q, K, V) = softmax(QK^T / sqrt(d_k))V

    Note that the dimension of the query has to match the dimension of the keys (here specified as ```d_k```) and the length of keys has to match
    the length of the values. See for instance 'The Illustrated Transformer' [http://jalammar.github.io/illustrated-transformer/]
    for pictorial depiction of attention.

    Inputs:
        Q (torch.tensor): of shape (batch_size, sequence_length_q, d_k)
        K (torch.tensor):  of shape (batch_size, sequence_length_k, d_k)
        V (torch.tensor):  of shape (batch_size, sequence_length_k, d_v)
        mask (torch.tensor):  of dtype (bool) or (byte) and shape (batch_size, 1, sequence_length_k), optional
             zeroes (or False) indicate positions that cannot contribute to attention
    Outputs:
        output (torch.tensor) of shape (batch_size, sequence_length_q, d_v). The [i-j]-entry output[i,j,:] is formed as a convex combination of values:
        \sum_k a_k V[i,k,:] and \sum_k a_k = 1.
        attentions (torch.tensor) of shape (batch_size, sequence_length_q, sequence_length_k)) where the [b,i,j]-element
        corresponds to the attention value (e.g relative contribution) of position j in the key-tensor to position i in the query tensor in element b of the batch.
    """

    def __init__(self):
        super(ScaledDotProductAttention, self).__init__()
        self.softmax = nn.Softmax(dim=-1)

    def forward(self, Q, K, V, mask=None):
        _, _, d = K.size()
        attn = torch.bmm(Q, K.transpose(1, 2)) / d ** 0.5
        if mask is not None:
            attn = attn.float().masked_fill(mask == 0, -1e9)

        attn = self.softmax(attn)
        if mask is not None:
            attn = attn.float().masked_fill(mask == 0, 0)

        if V.dtype == torch.float16:
            attn = attn.half()
        output = torch.bmm(attn, V)
        return output, attn


class MultiHeadAttention(nn.Module):
    """Multi-head attention with scaled dot product attention. See 'The Annotated Transformer'
    http://nlp.seas.harvard.edu/2018/04/03/attention.html or 'The Illustrated Transformer' http://jalammar.github.io/illustrated-transformer/
    for details and intuition.

     Args:
         n_head (int): number of attention heads
         d_k (int): dimension of the keys and queries in each attention head
         d_v (int): dimension of the values in each attention head
         d_model (int): input and output dimension for the layer
         dropout (float): dropout rate, default is 0.1

    Inputs:
        Q (torch.tensor): query tensor of shape ```(batch_size, sequence_length_q, d_model)```
        K (torch.tensor):  key tensor of shape ```(batch_size, sequence_length_k, d_model)```
        V (torch.tensor): value tensor of shape ```(batch_size, sequence_length_k, d_model)```
        mask (torch.tensor): (optional) of dtype ```bool`` or ```byte``` and size (batch_size, 1, sequence_length_k),
                    zeroes (or False) indicate positions that cannot contribute to attention

    Outputs:
        output (torch.tensor) :  of shape ```(batch_size, sequence_length_q, d_model)```
        attentions (torch.tensor): of shape ```(batch_size * n_head, sequence_length_q, sequence_length_k) where
        ```attentions[batch_size*(i):batch_size*(i+1),:,:]``` corresponds to the batch of attention blocks for i'th head. See
        ```chroma.layers.attention.ScaledDotProductAttention``` for more details
    """

    def __init__(self, n_head, d_k, d_v, d_model, dropout=0.1):
        super(MultiHeadAttention, self).__init__()
        self.n_head = n_head
        self.d_k = d_k
        self.d_v = d_v
        self.d_model = d_model
        self.Wq = nn.Parameter(torch.Tensor(n_head, d_model, d_k))
        self.Wk = nn.Parameter(torch.Tensor(n_head, d_model, d_k))
        self.Wv = nn.Parameter(torch.Tensor(n_head, d_model, d_v))
        self.Wo = nn.Parameter(torch.Tensor(n_head * d_v, d_model))
        self.attention = ScaledDotProductAttention()
        self.dropout = nn.Dropout(p=dropout)
        self.reset_parameters()

    def reset_parameters(self):
        nn.init.xavier_normal_(self.Wq)
        nn.init.xavier_normal_(self.Wk)
        nn.init.xavier_normal_(self.Wv)
        nn.init.kaiming_uniform_(self.Wo)

    def forward(self, Q, K, V, bias=None, mask=None):
        mb_size, len_q, d_q_in = Q.size()
        mb_size, len_k, d_k_in = K.size()
        mb_size, len_v, d_v_in = V.size()
        d_model = self.d_model
        if d_q_in != d_model:
            raise ValueError("Dimension of Q does not match d_model.")

        if d_k_in != d_model:
            raise ValueError("Dimension of K does not match d_model.")

        if d_v_in != d_model:
            raise ValueError("Dimension of V does not match d_model.")

        # treat as a (n_head) size batch and project to d_k and d_v
        q_s = torch.cat([Q @ W for W in self.Wq])  # (n_head*mb_size) x len_q x d_k
        k_s = torch.cat([K @ W for W in self.Wk])  # (n_head*mb_size) x len_k x d_k
        v_s = torch.cat([V @ W for W in self.Wv])  # (n_head*mb_size) x len_v x d_v

        # Attention
        if mask is not None:
            mask = mask.repeat(self.n_head, 1, 1)
        outputs, attns = self.attention(q_s, k_s, v_s, mask=mask)

        # Back to original mb_size batch, result size = mb_size x len_q x (n_head*d_v)
        outputs = torch.cat(torch.split(outputs, mb_size, dim=0), dim=-1)

        # Project back to residual size
        outputs = outputs @ self.Wo
        outputs = self.dropout(outputs)
        return outputs, attns


class AttentionChainPool(nn.Module):
    """Pools residue-based representations to chain-based representations using a chain mask and attention.
    Args:
        n_head (int): number of attention heads
        d_model (int): dimension of embeddings to be pooled

    Inputs:
        h (torch.tensor): of size (batch_size, sequence_length, d_model)
        C (torch.tensor): of size (batch_size, sequence_length)

    Outputs:
        output (torch.tensor): of size (batch_size, n_chains, d_model)
        chain_mask (torch.tensor): of size (batch_size, n_chains)
    """

    def __init__(self, n_head, d_model):
        super().__init__()
        self.attention = MultiHeadAttention(
            n_head, d_model, d_model, d_model, dropout=0.0
        )

    def get_query(self, x):
        return torch.ones(x.size(0), 1, x.size(2)).type(x.dtype).to(x.device)

    def forward(self, h, C):
        bs, num_res = C.size()
        chains = C.abs().unique()
        chains = (
            chains[chains > 0].unsqueeze(-1).repeat(1, bs).reshape(-1).unsqueeze(-1)
        )
        num_chains = len(chains.unique())

        h_repeat = h.repeat(num_chains, 1, 1)
        C_repeat = C.repeat(num_chains, 1)
        mask = (C_repeat == chains).unsqueeze(-2)

        output, _ = self.attention(
            self.get_query(h_repeat), h_repeat, h_repeat, mask=mask
        )
        output = torch.cat(output.split(bs), 1)
        chain_mask = torch.stack(mask.squeeze(1).any(dim=-1).split(bs), -1)
        return output, chain_mask


class Attention(nn.Module):
    """
    A multi-head attention layer with optional gating and bias as implemented in Jumper et al. (2021)
    Args:
        n_head (int): Number of heads of attention
        d_model (int): Dimension of input and outputs
        d_k (int): Dimension of keys/queries
        d_v (int): Dimension of values
        gate (bool): Whether to include a gate connection (as in Jumper et al. (2021))

    Inputs:
        Q (torch.tensor): of size (batch_size, num_queries, d_model)
        K (torch.tensor): of size (batch_size, num_keys, d_model)
        V (torch.tensor): of size (batch_size, num_keys, d_model)
        bias (torch.tensor): (optional) of size (batch_size, n_head, num_queries, num_keys)
        mask (torch.tensor): (optional) of size (batch_size, n_head, num_queries, num_keys)

    Outputs:
        output (torch.tensor): of size (batch_size, num_queries, d_model)
    """

    def __init__(self, n_head, d_model, d_k=None, d_v=None, gate=False):
        super().__init__()
        self.n_head = n_head
        self.d_model = d_model
        self.d_k = d_model // n_head if d_k is None else d_k
        self.d_v = d_model // n_head if d_v is None else d_v
        self.gate = gate
        self.q_weights = nn.Parameter(torch.Tensor(d_model, n_head, self.d_k))
        self.k_weights = nn.Parameter(torch.Tensor(d_model, n_head, self.d_k))
        self.v_weights = nn.Parameter(torch.Tensor(d_model, n_head, self.d_v))
        self.o_weights = nn.Parameter(torch.Tensor(n_head, self.d_v, d_model))
        self.o_bias = nn.Parameter(torch.Tensor(d_model))
        if self.gate:
            self.g_weights = nn.Parameter(torch.Tensor(d_model, n_head, self.d_v))
            self.g_bias = nn.Parameter(torch.Tensor(n_head, self.d_v))
        self.softmax = nn.Softmax(dim=-1)
        self.reset_parameters()

    def reset_parameters(self):
        nn.init.xavier_uniform_(self.q_weights)
        nn.init.xavier_uniform_(self.k_weights)
        nn.init.xavier_uniform_(self.v_weights)
        nn.init.xavier_uniform_(self.o_weights)
        nn.init.zeros_(self.o_bias)
        if self.gate:
            nn.init.zeros_(self.g_weights)
            nn.init.ones_(self.g_bias)

    def forward(self, Q, K, V, bias=None, mask=None):
        self._check_inputs(Q, K, V, bias, mask)
        q = torch.einsum("bqa,ahc->bqhc", Q, self.q_weights) * self.d_k ** (-0.5)
        k = torch.einsum("bka,ahc->bkhc", K, self.k_weights)
        v = torch.einsum("bka,ahc->bkhc", V, self.v_weights)
        logits = torch.einsum("bqhc,bkhc->bhqk", q, k)

        if bias is not None:
            logits = logits + bias

        weights = torch.nn.functional.softmax(logits, dim=-1)

        if mask is not None:
            weights = weights.masked_fill(~mask, 0.0)

        weighted_avg = torch.einsum("bhqk,bkhc->bqhc", weights, v)

        if self.gate:
            gate_values = torch.einsum("bqa,ahc->bqhc", Q, self.g_weights) + self.g_bias
            gate_values = torch.sigmoid(gate_values, dim=-1)
            weighted_avg = weighted_avg * gate_values

        output = (
            torch.einsum("bqhc,hco->bqo", weighted_avg, self.o_weights) + self.o_bias
        )
        return output

    def _check_inputs(self, Q, K, V, bias, mask):
        batch_size_q, num_queries, d_q_in = Q.size()
        batch_size_k, num_keys, d_k_in = K.size()
        batch_size_v, num_values, d_v_in = V.size()

        if d_q_in != self.d_model:
            raise ValueError(
                f"Dimension of Q tensor needs to be (batch_size, number_queries, d_model)"
            )

        if d_k_in != self.d_model:
            raise ValueError(
                f"Dimension of K tensor needs to be (batch_size, number_keys, d_model)"
            )

        if d_v_in != self.d_model:
            raise ValueError(
                f"Dimension of V tensor needs to be (batch_size, number_values, d_model)"
            )

        if num_keys != num_values:
            raise ValueError(f"Number of keys needs to match number of values passed")

        if (batch_size_q != batch_size_k) or (batch_size_k != batch_size_v):
            raise ValueError(
                f"Found batch size mismatch among inputs, all tensors must agree in size of dimension 0"
            )

        if bias is not None:
            if (bias.dim() != 3) and (bias.dim() != 4):
                raise ValueError(
                    f"Bias specified but dimension mismatched: passed {bias.dim()}-dimensional tensor but should be 3-dimensional"
                    f"of shape (n_head, num_queries, num_keys) or 4-dimensional of shape (batch_size, n_head, num_queries, num_keys)"
                )
            if bias.dim() == 3:
                n_head_b, num_queries_b, num_keys_b = bias.size()
                if n_head_b != self.n_head:
                    raise ValueError(
                        f"Bias specified but number of heads (dim of axis=0) does not match number of heads: {self.n_head}"
                    )
                if num_queries_b != num_queries:
                    raise ValueError(
                        f"Bias specified but number of queries (dim of axis=1) does not match number of queries given in Q tensor"
                    )
                if num_keys_b != num_keys:
                    raise ValueError(
                        f"Bias specified but number of keys (dim of axis=2) does not match number of queries given in K tensor "
                        f"(dimenson of axis=1)"
                    )
            elif bias.dim() == 4:
                if bias.dim() == 3:
                    n_batch_b, n_head_b, num_queries_b, num_keys_b = bias.size()
                    if n_head_b != self.n_head:
                        raise ValueError(
                            f"Bias specified but number of heads (dim of axis=0) does not match number of heads: {self.n_head}"
                        )
                    if num_queries_b != num_queries:
                        raise ValueError(
                            f"Bias specified but number of queries (dim of axis=1) does not match number of queries given in Q tensor"
                        )
                    if num_keys_b != num_keys:
                        raise ValueError(
                            f"Bias specified but number of keys (dim of axis=2) does not match number of queries given in K tensor "
                            f"(dimenson of axis=1)"
                        )

        if mask is not None:
            if mask.dtype != torch.bool:
                raise ValueError(
                    f"Mask specified but not given by correct dtype, should be torch.bool but found {mask.dtype}"
                )
            if mask.dim() != 4:
                raise ValueError(
                    f"Mask specified but dimension mismatched: passed {mask.dim()}-dimensional tensor but should be 4-dimensional"
                    f"of shape (batch_size, n_head, num_queries, num_keys)"
                )
            batch_size_b, _, num_queries_b, num_keys_b = mask.size()
            if (num_queries_b != num_queries) and (num_queries_b != 1):
                raise ValueError(
                    f"Bias specified but number of queries (dim of axis=2) does not match number of queries given in Q tensor"
                )
            if (num_keys_b != num_keys) and (num_keys_b != 1):
                raise ValueError(
                    f"Bias specified but number of keys (dim of axis=3) does not match number of queries given in K tensor "
                    f"(dimenson of axis=1)"
                )