Spaces:
Sleeping
Sleeping
File size: 58,642 Bytes
ce7bf5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 |
# Copyright Generate Biomedicines, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Layers for conditioning diffusion generative processes.
"""
from typing import Optional, Tuple, Union
import numpy as np
import torch
import torch.nn.functional as F
from scipy.sparse.csgraph import shortest_path
from torch import nn
import chroma.utility.chroma
from chroma.data.protein import Protein
from chroma.data.xcs import validate_XC
from chroma.layers.structure import backbone, mvn, optimal_transport, symmetry
from chroma.layers.structure.backbone import expand_chain_map
from chroma.models import graph_classifier, procap
from chroma.models.graph_backbone import GraphBackbone
from chroma.models.graph_classifier import GraphClassifier
from chroma.models.graph_design import GraphDesign
from chroma.models.procap import ProteinCaption
class Conditioner(torch.nn.Module):
"""
A composable function for parameterizing protein design problems.
Conditioners provide a general framework for expressing complex protein
design problems in terms of simpler, composable sub-conditions in
a way that enables automatic sampling. To accomplish this, Conditioners
parameterize time-dependent transformations to the global coordinate system
and total energy by mapping from unconstrained coordinates and energy to
potentially updated coordinates and energy. This convention can subsume
classifier guidance, bijective change-of-variables constrained MCMC, and
linear subspace constrained MCMC as special cases.
A conditioner is implemented as a function which maps from state-energy pairs
at a time point `t` to updated state-energy pairs which may reflect hard constraints
(typically updates to coordinates and energy) and restraintes (updates just to
energy). Conditioners take in and return 5 arguments `X, C, O, U, t`,
where `X,C,O` is the protein complex in the `XCS` convention with `S` expressed as a
one-hot tensor `O`, `U` is the total system energy and `t` is the diffusion time.
Because conditioners have matched input and output types, they can be composed via
sequential chaining. Further examples and descriptions of Conditioners can be found
throughout this module.
Args:
*args: Variable length argument list.
**kwargs: Arbitrary keyword arguments.
Inputs:
X (torch.Tensor): Coordinates with shape `(batch_size, num_residues, 4, 3)`.
C (torch.LongTensor): Chain map with shape `(batch_size, num_residues)`.
O (torch.Tensor): One-hot sequence with shape
`(batch_size, num_residues, num_alphabet)`.
U (torch.Tensor): energy tensor with shape `(batch_size,)`.
t (Union[torch.Tensor, float]): Time tensor with shape `(batch_size,)` or
a scalar.
Outputs:
X_out (torch.Tensor): Updated coordinates with shape
`(batch_size, num_residues_out, 4, 3)`.
C_out (torch.LongTensor): Updated chain map with shape
`(batch_size, num_residues_out)`.
O (torch.Tensor): Updated one-hot sequences with shape
`(batch_size, num_residues_out, num_alphabet)`.
U_out (torch.Tensor): Modified energy tensor with shape `(batch_size,)`.
t_out (Union[torch.Tensor, float]): Modified time tensor with shape
`(batch_size,)` or a scalar.
"""
def __init__(self, *args, **kwargs):
super().__init__()
def forward(
self,
X: torch.Tensor,
C: torch.LongTensor,
O: torch.Tensor,
U: torch.Tensor,
t: Union[torch.Tensor, float],
) -> Tuple[
torch.Tensor,
torch.LongTensor,
torch.Tensor,
torch.Tensor,
Union[torch.Tensor, float],
]:
pass
class Identity(Conditioner):
def __init__(self):
super().__init__()
@validate_XC()
def forward(
self,
X: torch.Tensor,
C: torch.LongTensor,
O: torch.Tensor,
U: torch.Tensor,
t: Union[torch.Tensor, float],
) -> Tuple[
torch.Tensor,
torch.LongTensor,
torch.Tensor,
torch.Tensor,
Union[torch.Tensor, float],
]:
return X, C, O, U, t
class ComposedConditioner(Conditioner):
def __init__(self, conditioners):
super().__init__()
self.conditioners = nn.ModuleList(conditioners)
@validate_XC()
def forward(
self,
X: torch.Tensor,
C: torch.LongTensor,
O: torch.Tensor,
U: torch.Tensor,
t: Union[torch.Tensor, float],
) -> Tuple[
torch.Tensor,
torch.LongTensor,
torch.Tensor,
torch.Tensor,
Union[torch.Tensor, float],
]:
for conditioner in self.conditioners:
X, C, O, U, t = conditioner(X, C, O, U, t)
return X, C, O, U, t
def _postprocessing_(
self, protein: Protein, output_dict: Optional[dict] = None
) -> Union[Protein, Tuple[Protein, dict]]:
for _conditioner in self.conditioners:
if hasattr(_conditioner, "_postprocessing_"):
if output_dict is None:
protein = _conditioner._postprocessing_(protein, output_dict)
else:
protein, output_dict = _conditioner._postprocessing_(
protein, output_dict
)
if output_dict is None:
return protein
else:
return protein, output_dict
class SubsequenceConditioner(Conditioner):
"""
SequenceConditioner:
A Chroma Conditioning module which, given a GraphDesign model and a subset of
residues for which sequence information is known, can add gradients to sampling
that bias the samples towards increased `log p(sequence | structure)`
Args:
design_model (GraphDesign): Trained GraphDesign model.
S_condition (torch.Tensor): Of shape (1, num_residues) specifying sequence
information.
mask_condition (torch.Tensor, optional): Of shape (1, num_residues) specifying
which residues to include when computing `log p(sequence | structure)`
weight (float, optional): Overall weight to which the gradient is scaled.
renormalize_grad (bool, optional): Whether to renormalize gradient to have
overall variance `weight`.
"""
def __init__(
self,
design_model: GraphDesign,
protein: Protein,
selection: str = "all",
weight: float = 1.0,
renormalize_grad: Optional[bool] = False,
):
super().__init__()
self.design_model = design_model
# Register sequence buffers
X, C, S = protein.to_XCS()
mask_condition = protein.get_mask(selection)
self.register_buffer("S_condition", S)
self.register_buffer("mask_condition", mask_condition)
self.weight = weight
self.renormalize_grad = renormalize_grad
def _transform_gradient(self, grad, C, t):
# grad = clip_atomic_magnitudes_percentile(grad)
scale = self.weight / self.design_model.noise_perturb.noise_schedule.sigma(
t
).to(C.device)
grad = scale * grad / grad.square().mean().sqrt()
return grad
@validate_XC()
def forward(
self,
X: torch.Tensor,
C: torch.LongTensor,
O: torch.Tensor,
U: torch.Tensor,
t: Union[torch.Tensor, float],
) -> Tuple[
torch.Tensor,
torch.LongTensor,
torch.Tensor,
torch.Tensor,
Union[torch.Tensor, float],
]:
X_input = X + 0.0
if self.renormalize_grad:
X_input.register_hook(lambda _X: self._transform_gradient(_X, C, t))
if X.shape[2] == 4:
X_input = F.pad(X_input, [0, 0, 0, 10])
priority = None
if self.mask_condition is not None:
priority = 1.0 - self.mask_condition
out = self.design_model(X_input, C, self.S_condition, t, priority=priority)
logp_S = out["logp_S"]
if self.mask_condition is not None:
logp_S = self.mask_condition * logp_S
U = U + self.weight * -logp_S.sum()
return X, C, O, U, t
class ShapeConditioner(Conditioner):
"""Volumetric potential for optimizing towards arbitrary geometries.
Args:
X_target (numpy array): Target point cloud with shape `(num_points, 3)`.
noise_schedule (GaussianNoiseSchedule): Diffusion time schedule for loss
scaling.
autoscale (bool): If True, automatically rescale target point cloud coordinates
such that they are approximately volume-scaled to a target protein size.
Volume is roughly estimated by converting the point cloud to a sphere cloud
with radii large enough to overlap with near neighbors and double counting
corrections via inclusion-exclusion.
autoscale_num_residues (int): Target protein size for auto-scaling.
autoscale_target_ratio (float): Scale factor for adjusting the target protein
volume.
scale_invariant (bool): If True, compute the loss in a size invariant manner
by dynamically renormalizing the point clouds to match Radii of gyration.
This approach can be more unstable to integrate and require more careful tuning.
shape_loss_weight (float): Scale factor for the overall restraint.
shape_loss_cutoff (float): Minimal distance deviation that is penalized in the loss,
e.g. to treat as a flat-bottom restraint below the cutoff.
sinkhorn_iterations (int): Number of Sinkhorn iterations for Optimal Transport
calculations.
sinkhorn_scale (float): Entropy regularization scaling parameter for Optimal
Transport calculations.
sinkhorn_iterations_gw (int): Number of Sinkhorn iterations for Gromov-Wasserstein
Optimal Transport calculations.
sinkhorn_scale_gw (float): Entropy regularization scaling parameter for
Gromov-Wasserstein Optimal Transport calculations.
gw_layout (bool): If True, use Gromov-Wasserstein Optimal Transport to compute
a point cloud correspondence assuming ideal protein distance scaling.
gw_layout_coefficient (float): Scale factor with which to combine average
inter-point cloud distances according to OT (Wasserstein) versus
Gromov-Wasserstein couplings.
"""
def __init__(
self,
X_target,
noise_schedule,
autoscale: bool = True,
autoscale_num_residues: int = 500,
autoscale_target_ratio: float = 0.4,
scale_invariant: bool = False,
shape_loss_weight: float = 20.0,
shape_loss_cutoff: float = 0.0,
shape_cutoff_D: float = 0.01,
scale_max_rg_ratio: float = 1.5,
sinkhorn_iterations: int = 10,
sinkhorn_scale: float = 1.0,
sinkhorn_scale_gw: float = 200.0,
sinkhorn_iterations_gw: int = 30,
gw_layout: bool = True,
gw_layout_coefficient: float = 0.4,
eps: float = 1e-3,
debug: bool = False,
):
super().__init__()
self.eps = eps
self.noise_schedule = noise_schedule
# Shape control parameters
self.shape_loss_weight = shape_loss_weight
self.shape_loss_cutoff = shape_loss_cutoff
self.scale_invariant = scale_invariant
self.shape_cutoff_D = shape_cutoff_D
self.scale_max_rg_ratio = scale_max_rg_ratio
# Autoscale volumes (in units of cubic angstroms)
self.autoscale = autoscale
self.autoscale_num_residues = autoscale_num_residues
self.autoscale_target_ratio = autoscale_target_ratio
self.sinkhorn_iterations = sinkhorn_iterations
self.sinkhorn_scale = sinkhorn_scale
self.sinkhorn_iterations_gw = sinkhorn_iterations_gw
self.sinkhorn_scale_gw = sinkhorn_scale_gw
self.debug = debug
if torch.is_tensor(X_target):
X_target = X_target.cpu().data.numpy()
if self.autoscale:
X_target, self.shape_cutoff_D = chroma.utility.chroma.point_cloud_rescale(
X_target,
self.autoscale_num_residues,
scale_ratio=self.autoscale_target_ratio,
)
# Map coupling with Gromov Wasserstein optimal transport
self.gw_layout = gw_layout
self.gw_layout_coefficient = gw_layout_coefficient
if self.gw_layout:
self._map_gw_coupling_ideal_glob(
X_target, num_residues=autoscale_num_residues
)
X_target = torch.Tensor(X_target)
self.register_buffer("X_target", X_target[None, ...].clone().detach())
def _distance_knn(self, X, top_k=12, max_scale=10.0):
"""Topology distance."""
X_np = X.cpu().data.numpy()
D = np.sqrt(
((X_np[:, :, np.newaxis, :] - X_np[:, np.newaxis, :, :]) ** 2).sum(-1)
)
# Distance cutoff
D_cutoff = np.mean(np.sort(D[0, :, :], axis=-1)[:, top_k])
D[D > D_cutoff] = max_scale * np.max(D)
D = shortest_path(D[0, :, :])[np.newaxis, :, :]
D = torch.Tensor(D).float().to(X.device)
return D
@torch.no_grad()
def _map_gw_coupling_ideal_glob(self, X_target, num_residues):
"""Plan a layout using Gromov-Wasserstein Optimal transport"""
X_target = torch.Tensor(X_target).float().unsqueeze(0)
if torch.cuda.is_available():
X_target = X_target.to("cuda")
chain_ix = torch.arange(4 * num_residues, device=X_target.device) / 4.0
distance_1D = (chain_ix[None, :, None] - chain_ix[None, None, :]).abs()
# Scaling fit log-log to large scale single chain 6HYP
D_model = 7.21 * distance_1D**0.322
D_model = D_model / D_model.mean([1, 2], keepdims=True)
D_target = self._distance_knn(X_target)
D_target = D_target / D_target.mean([1, 2], keepdims=True)
T_gw, D_gw = optimal_transport.optimize_couplings_gw(
D_model,
D_target,
scale=self.sinkhorn_scale_gw,
iterations_outer=self.sinkhorn_iterations_gw,
iterations_inner=self.sinkhorn_iterations,
)
self.register_buffer("T_gw", T_gw.clone().detach())
return
def _distance(self, X_i, X_j):
dX = X_i.unsqueeze(2) - X_j.unsqueeze(1)
D = torch.sqrt((dX**2).sum(-1) + self.eps)
return D
@validate_XC()
def forward(
self,
X: torch.Tensor,
C: torch.LongTensor,
O: torch.Tensor,
U: torch.Tensor,
t: Union[torch.Tensor, float],
) -> Tuple[
torch.Tensor,
torch.LongTensor,
torch.Tensor,
torch.Tensor,
Union[torch.Tensor, float],
]:
# Distance matrix is
# [Num_batch, Num_atoms_target, Num_atoms_model]
X_target = self.X_target
X_model = X.reshape([X.shape[0], -1, 3])
# Radius of gyration ceiling
num_residues = X.shape[1]
min_rg = 2.0 * num_residues**0.333
max_rg = self.scale_max_rg_ratio * 2.0 * num_residues**0.4
shape_cutoff_D = self.shape_cutoff_D
def _center(_X):
_X = _X - _X.mean(1, keepdim=True)
return _X
def _rg(_X):
_X = _X - _X.mean(1, keepdim=True)
rsq = _X.square().sum(2, keepdim=True)
rg = rsq.mean(1, keepdim=True).sqrt()
return rg
X_model = _center(X_model)
X_target = _center(X_target)
if self.scale_invariant:
def _resize(_X, target_rg):
_X = _X - _X.mean(1, keepdim=True)
rsq = _X.square().sum(2, keepdim=True)
rg = rsq.mean(1, keepdim=True).sqrt()
return _X / rg * target_rg
X_model = _resize(X_model, _rg(X_target))
# Compute interatomic distances
D_inter = self._distance(X_model, X_target)
# Estimate Wasserstein Distance
cost = D_inter
T_w = optimal_transport.optimize_couplings_sinkhorn(
cost, scale=self.sinkhorn_scale, iterations=self.sinkhorn_iterations
)
if self.gw_layout:
T_w = T_w + self.T_gw * self.gw_layout_coefficient
T_w = T_w / T_w.sum([-1, -2], keepdims=True)
D_w = (T_w * D_inter).sum([-1, -2])
# Scale by sqrt(SNR_t) and constant factor
scale_t = self.shape_loss_weight * self.noise_schedule.SNR(t).sqrt().clamp(
min=1e-3, max=3.0
)
neglogp = scale_t * F.softplus(D_w - self.shape_loss_cutoff)
U = U + neglogp
return X, C, O, U, t
class ProCapConditioner(Conditioner):
"""Natural language conditioning for protein backbones.
This conditioner uses an underlying `ProteinCaption` model to determine the
likelihood of a noised structure corresponding to a given caption. Captions
can be specified as corresopnding to a particular chain of the structure, or
to the entire complex. The encoded structures and captions are passed to the
model together, and the output loss that adjusts the energy is the masked
cross-entropy over the caption tokens.
Args:
caption (str): Caption for the conditioner. Currently, a separate
conditioner should be constructed for each desired caption, even
with a single `ProteinCaption` model.
chain_id (int): The 1-indexed chain to which the caption corresponds, or
-1 for captions corresponding to the entire structure. The provided
checkpoints are trained with UniProt captions for chain_id > 0 and
PDB caption for chain_id = -1. Regardless of whether the caption is
specific to one chain, the conditioner acts on the entire structure.
weight (float): Overall factor by which the caption gradient is scaled.
model (generate.models.procap.ProteinCaption, optional): The
input model whose likelihoods are used. If not given, defaults to
the checkpoint used for the paper.
use_sequence (bool): Whether to use input sequence, default False.
device (str, optional): Device on which to store model. If not given,
GPU will be used when available.
Inputs:
X (torch.Tensor): Structure tensor with shape
`(batch_size, num_residues, 4, 3)`.
C (torch.LongTensor): Chain map tensor with shape
`(batch_size, num_residues)`
O (torch.Tensor, optional): One-hot tensor allowing the input of
sequence information, of shape (1, num_residues, num_alphabet).
U (torch.Tensor): Energy tensor with shape `(batch_size,)`.
t (Union[torch.Tensor, float]): Time tensor with shape `(batch_size,)`
or a scalar.
Outputs:
X_out (torch.Tensor): Unchanged structure tensor with shape
`(batch_size, num_residues, 4, 3)`.
C_out (torch.LongTensor): Unchanged chain map tensor with shape
`(batch_size, num_residues)`.
O_out (torch.Tensor, optional): One-hot tensor allowing the output of
sequence information, of shape (1, num_residues, num_alphabet).
U_out (torch.Tensor): Modified energy tensor with shape `(batch_size,)`.
t_out (Union[torch.Tensor, float]): Modified time tensor with shape
`(batch_size,)` or a scalar.
"""
def __init__(
self,
caption: str,
chain_id: int,
weight: float = 10,
model: Union[ProteinCaption, str] = "named:public",
use_sequence: bool = False,
device: Optional[str] = None,
) -> None:
super().__init__()
if isinstance(model, ProteinCaption):
self.model = model
elif isinstance(model, str):
self.model = procap.load_model(
model, device=device, strict_unexpected=False
)
self.model.eval()
if device is None:
if torch.cuda.is_available():
self.model.to("cuda")
else:
self.model.to(device)
self.caption = caption
self.register_buffer("chain_id", torch.Tensor([int(chain_id)]))
self.weight = weight
self.use_sequence = use_sequence
@validate_XC()
def forward(
self,
X: torch.Tensor,
C: torch.LongTensor,
O: torch.Tensor,
U: torch.Tensor,
t: Union[torch.Tensor, float],
) -> Tuple[
torch.Tensor,
torch.LongTensor,
torch.Tensor,
torch.Tensor,
Union[torch.Tensor, float],
]:
loss = self.model(
X,
C,
[self.caption] * X.shape[0],
self.chain_id.to(X.device).expand(X.shape[0], 1),
O=O if self.use_sequence else None,
add_noise=False,
t=t,
).loss
U = U + self.weight * loss
return X, C, O, U, t
class ProClassConditioner(Conditioner):
"""
ProClassConditioner:
A Chroma Conditioning module which can specify chain level annotations for fold,
function, and organism. The current labels that can be conditioned on are:
* cath: protein domain annotations from <https://www.cathdb.info/>. Annotation
examples include `2`, `2.40`, `2.40.155`.
* funfam: domain level functional annotations.
* organism: the organism of origin of a protein. Annotation examples include `Homo
sapiens (Human)`, `Escherichia coli`, `Pseudomonas putida (Arthrobacter
siderocapsulatus)`, `Rattus norvegicus (Rat)`
* pfam: protein family annotations which represent domain level structural
characteristics.
For a complete list of valid value label pairs import the value dictionary from the
`GraphClassifierLoader` in the zoo.
Note:
This conditioner is a research preview. Conditioning with it can be inconsistent
and depends on the relative prevalence of a given label in the dataset.
With repeated tries it will produce successful results for more abundant labels.
Please see the supplement to the paper for details. This is currently not
recommended for production use. The most reproducible labels are C level
annotations in cath, (e.g. `1`,`2`,`3`).
Args:
label (str): The annotation to condition on in the set [cath, funfam, pfam,
organism, secondary_structure].
value (str, optional): The particular annotation string to use. For a complete
list of values for a given label use the static method
:meth:`possible_conditions`. Defaults to None.
model (GraphClassifier, optional): A ProClass instance to use for conditioning.
if None is provided the recommended model is automatically loaded. Defaults
to None.
weight (float, optional): The weighting of the conditioner relative to the
backbone model. Defaults to 1.
max_norm (float, optional): The maximum magnitude of the gradient, above which
the magnitude is clipped. Defaults to None.
renormalize_grad (bool, optional): Whether to renormalize gradient to have
overall variance `weight`.
use_sequence (bool, optional): Whether to use input sequence, default False.
device (str, optional): the device to put the conditioner on, accepts `cpu`
and `cuda`. If None is provided it will automatically try to put it on the
GPU if possible. Defaults to None.
debug (bool, optional): provides gradient values during optimization for
setting weights and debugging.
"""
def __init__(
self,
label: str,
value: Union[Optional[str], torch.Tensor] = None,
model: Union[GraphClassifier, str] = "named:public",
weight: float = 5,
max_norm: Optional[float] = 20,
renormalize_grad: Optional[bool] = False,
use_sequence: bool = False,
device: Optional[str] = None,
debug: bool = False,
) -> None:
super().__init__()
self.label = label
self.value = value
self.max_norm = max_norm
self.renormalize_grad = renormalize_grad
self.weight = weight
self.use_sequence = use_sequence
self.debug = debug
if isinstance(model, str):
self.proclass_model = graph_classifier.load_model(model, device=device)
elif isinstance(model, GraphClassifier):
self.proclass_model = model
self.proclass_model.eval()
# Move Model to the indicated device
if device is None:
if torch.cuda.is_available():
self.proclass_model.to("cuda")
else:
self.proclass_model.to(device)
self._transform_inputs()
self._validate_inputs()
def _transform_inputs(self):
# Automatically handle heirarchical inputs in the format X.Y.Z.W
if self.label.lower() in ["cath", "funfam"]:
self.label = self.label.lower()
self.label += "_" + str(self.value.count("."))
# Correct Capitalization
if self.label.lower() == "organism":
self.label = "Organism"
# Support Normative PFam IDs
if self.label.lower() == "pfam":
valid_values = self.proclass_model.class_config["pfam"]["tokens"]
if self.value.count(".") == 0:
valid_ids = [s for s in valid_values if self.value in s]
if len(valid_ids) == 1:
self.value = valid_ids[0]
else:
raise Exception(f"Invalid Value {self.value} for {self.label}.")
def _validate_inputs(self):
# Check Labels
valid_labels = list(self.proclass_model.heads["chain"].keys())
valid_labels += list(self.proclass_model.heads["first_order"])
if self.label not in valid_labels:
valid_label_str = ", ".join(valid_labels)
raise Exception(f"Invalid Label. Label must be one of: {valid_label_str}.")
# Check Values
if self.label in list(self.proclass_model.heads["chain"].keys()):
valid_values = self.proclass_model.class_config[self.label]["tokens"]
if self.value not in valid_values:
raise Exception(f"Invalid Value {self.value} for {self.label}.")
def _proclass_neglogp(self, X, C, t, label, value=None, O=None, mask=None):
"""
Args:
X (torch.tensor): (batch, num_res, 4, 3) or (batch, num_res, 14, 3)
C (torch.tensor): (batch, num_res)
t (float): 0 < t <= 1
label (string): class label to condition on, chosen from
`self.class_config.keys()`
mask (torch.tensor): (optional) bool tensor of shape (batch, num_res) for
first order scores, (batch, num_chains) for hain-based scores, and (
batch, num_res, num_res) for second order scores. The order of your
score can be determined by inspecting self.class_config[label]['level']
value (string): (optional) the token-based representation of the value you
would like to condition `label` on, you can select options from
`self.class_config[label]['tokens']` for all scores except `is_interface`
or `contact` for which you should leave a `value` of None.
O (torch.tensor): one-hot sequence tensor of size (batch, num_res, num_alphabet)
"""
self.proclass_model.eval()
_bak = self.proclass_model.encoder.checkpoint_gradients
self.proclass_model.encoder.checkpoint_gradients = False
level = self.proclass_model.class_config[label]["level"]
head, pool = self.proclass_model.heads[level][label]
node_h, edge_h, edge_idx, mask_i, mask_ij = self.proclass_model.encode(
X, C, O if self.use_sequence else None, t
)
if level == "chain":
node_h, c_mask = pool(node_h, C)
c_mask = c_mask
elif level == "first_order":
c_mask = C > 0
elif level == "second_order":
c_mask = (C > 0).unsqueeze(-2) & (C > 0).unsqueeze(-1)
node_h = head(node_h)
if mask is not None:
c_mask = mask & c_mask
if self.proclass_model.class_config[label]["loss"] == "ce":
neglogp = node_h.log_softmax(dim=-1).mul(-1)
else:
neglogp = node_h.sigmoid().log().mul(-1)
if level == "chain":
index = (
self.proclass_model.class_config[label]["tokenizer"][value]
if value is not None
else 0
)
neglogp = neglogp[..., index][c_mask].sum()
elif level == "first_order":
if isinstance(value, str):
index = torch.LongTensor(
[
self.proclass_model.class_config[label]["tokenizer"][v]
for v in value
]
).to(neglogp.device)
neglogp = torch.gather(
neglogp, 2, index.unsqueeze(0).unsqueeze(2)
).sum()
elif isinstance(
value, torch.Tensor
): # Mask Tensor is Passed for SS Conditioning
logp = -1 * neglogp
masked_log_probs = torch.where(
value > 0, logp, -float("inf") * torch.ones_like(logp)
)
log_probs_sum = torch.logsumexp(masked_log_probs, dim=-1)
log_probs_sum = torch.where(
value.sum(-1) > 0, log_probs_sum, torch.zeros_like(log_probs_sum)
)
neglogp = -1 * log_probs_sum.sum()
self.proclass_model.encoder.checkpoint_gradients = _bak
return neglogp
def _transform_gradient(self, grad, C, t):
if self.debug:
print("conditioning grad norm:", grad.norm().item())
if grad.norm() > 1e-8: # Don't rescale zero gradients!
# grad = clip_atomic_magnitudes_percentile(grad,percentile=0.95)
if self.renormalize_grad:
scale = (
self.weight
/ self.proclass_model.noise_perturb.noise_schedule.sigma(t).to(
C.device
)
)
grad = scale * (grad / grad.norm())
else:
grad = self.weight * grad
if self.max_norm is not None:
if grad.norm() > self.max_norm:
grad = self.max_norm * (grad / grad.norm())
if self.debug:
print("output_grad_norm", grad.norm().item())
return grad
@validate_XC()
def forward(
self,
X: torch.Tensor,
C: torch.LongTensor,
O: torch.Tensor,
U: torch.Tensor,
t: Union[torch.Tensor, float],
) -> Tuple[
torch.Tensor,
torch.LongTensor,
torch.Tensor,
torch.Tensor,
Union[torch.Tensor, float],
]:
X_input = X + 0.0
X_input.register_hook(lambda _X: self._transform_gradient(_X, C, t))
neglogp = self._proclass_neglogp(
X_input, C, t, self.label, value=self.value, O=O
)
if self.debug:
print("time", t.item(), "neglogp:", neglogp.item())
return X, C, O, neglogp + U, t
class SubstructureConditioner(Conditioner):
"""
SubstructureConditioner:
A Chroma Conditioning module which can specifiy a subset of residues for which to
condition on absolute atomic coordinates, see supplementary section M for more
details.
Args:
protein (generate.data.protein.Protein): Object containing structural
information to condition on.
backbone_model (generate.models.GraphBackbone): The `GraphBackbone`
object one is conditioning
selection (str): A string specifying the selection to condition on, will be
retrieved by `protein.get_mask(selection)` . The selection can be defined
from a set of residue indices `indices` by
`protein.sys.setSelection(indices, selection)`.
rg (bool, optional): Whether or not to add reconstruction guidance gradients,
see supplementary section M for a discussion. This can reduce incidence of
clashes / bond violations / discontinuities at the cost of inference time
and some stability.
weight (float, optional): Overall weight of the reconstruction guidance term
(untransformed).
tspan (Tuple[float, float], optional): Time interval over which to appl
y reconstruction guidance, can be helpful to turn off at times close to
zero. tspan[0] should be < tspan[1].
weight_max (float, optional): Final rg gradient is rescaled to have `scale`
variance, where `scale` is clamped to have a maximum value of `max_weight`.
gamma (Optional[float]): Gamma inflates the translational degree of freedom
of the underlying conditional multivariate normal, making it easier for
Chroma to move the center of mass of the infilled samples.
Setting to [0.01, 0.1, 1.0] is a a plausible place to start to increase
sample Rg.
center_init (Optional[bool]): Whether to center the input structural data
"""
def __init__(
self,
protein: Protein,
backbone_model: GraphBackbone,
selection: str,
rg: bool = False,
weight: float = 1.0,
tspan: Tuple[float, float] = (1e-1, 1),
weight_max: float = 3.0,
gamma: Optional[float] = None,
center_init: Optional[bool] = True,
):
super().__init__()
self.protein = protein
self.backbone_model = backbone_model
X, C, S = protein.to_XCS()
X = X[:, :, :4, :]
if center_init:
X = backbone.center_X(X, C)
D = protein.get_mask(selection).bool()
self.base_distribution = self.backbone_model.noise_perturb.base_gaussian
self.noise_schedule = self.backbone_model.noise_perturb.noise_schedule
self.conditional_distribution = mvn.ConditionalBackboneMVNGlobular(
covariance_model=self.base_distribution.covariance_model,
complex_scaling=self.base_distribution.complex_scaling,
X=X,
C=C,
D=D,
gamma=gamma,
)
X = self.conditional_distribution.sample(1)
self.tspan = tspan
self.weight = weight
self.weight_max = weight_max
self.rg = rg
self.register_buffer("X", X)
self.register_buffer("C", C)
self.register_buffer("S", S)
self.register_buffer("D", D)
print(
"Note: We recommend using sde_func='langevin' for sampling with SubstructureCondtioner"
)
def _transform_gradient(self, grad, C, t):
mask = (t > self.tspan[0]) & (t < self.tspan[1])
scale = (
(self.weight / self.noise_schedule.sigma(t).to(C.device))
.clamp(max=self.weight_max)
.masked_fill(~mask, 0.0)
)
grad = scale * grad / grad.square().mean(dim=[1, 2, 3], keepdim=True).sqrt()
return grad
def _rg_loss(self, X0, C):
C_clamp = torch.where(self.D, C, -C.abs())
X0 = backbone.impute_masked_X(X0, C_clamp)
X_target = backbone.impute_masked_X(self.X.repeat(X0.size(0), 1, 1, 1), C_clamp)
loss = (
self.base_distribution._multiply_R_inverse(X_target - X0, C).square().sum()
)
return loss
@validate_XC()
def forward(
self,
X: torch.Tensor,
C: torch.LongTensor,
O: torch.Tensor,
U: torch.Tensor,
t: Union[torch.Tensor, float],
) -> Tuple[
torch.Tensor,
torch.LongTensor,
torch.Tensor,
torch.Tensor,
Union[torch.Tensor, float],
]:
loss = 0.0
Z = self.base_distribution._multiply_R_inverse(X, C)
X = self.conditional_distribution.sample(Z=Z)
# Reconstruction guidance
if self.rg:
X_input = X + 0.0
X_input.register_hook(lambda _X: self._transform_gradient(_X, C, t))
X0 = self.backbone_model.denoise(X_input, C, t)
loss = self._rg_loss(X0, C)
U = U + loss
return X, C, O, U, t
class SymmetryConditioner(Conditioner):
"""A class that implements a symmetry conditioner for a protein structure.
A symmetry conditioner applies a set of symmetry operations to a protein structure
and enforces constraints on the resulting conformations. It can be used to model
symmetric complexes or assemblies of proteins.
Args:
G (torch.Tensor or str): A tensor of shape (n_sym, 3, 3) representing the symmetry
operations as rotation matrices.
num_chain_neighbors (int): The number of neighbors to consider for each chain in
the complex.
freeze_com (bool): Whether to freeze the center of mass of the complex during
optimization.
grad_com_surgery (bool): Whether to apply gradient surgery to remove the center
of mass component from the gradient.
interface_restraint (bool): Whether to apply a flat-bottom potential to restrain
the distance between neighboring chains in the complex.
restraint_grad (bool): Whether to include the restraint gradient in the total
gradient.
enable_rigid_drift (bool): Whether to enable rigid body drift correction for
the complex.
canonicalize (bool): Whether to canonicalize the chain order and orientation
of the complex.
Inputs:
X (torch.Tensor): Data tensor with shape `(batch_size, num_residues, 4, 3)`.
C (torch.LongTensor): Conditioning tensor with shape `(batch_size,
num_residues)`.
O (torch.Tensor): One-hot sequence with shape
`(batch_size, num_residues, num_alphabet)`.
U (torch.Tensor): Energy tensor with shape `(batch_size,)`.
t (Union[torch.Tensor, float]): Time tensor with shape `(batch_size,)` or a
scalar.
Outputs:
X_out (torch.Tensor): Modified data tensor with shape `(batch_size, num_residues
, 4, 3)`.
C_out (torch.LongTensor): Modified conditioning tensor with shape `(batch_size,
num_residues)`.
O_out (torch.Tensor, optional): Modified one-hot tensor with sequence
of shape `(batch_size, num_residues, num_alphabet)`.
U_out (torch.Tensor): Modified Energy tensor with shape `(batch_size,)`.
t_out (Union[torch.Tensor, float]): Modified time tensor with shape `(batch_size
,)` or a scalar.
"""
def __init__(
self,
G,
num_chain_neighbors,
freeze_com=False,
grad_com_surgery=False,
interface_restraint=False,
restraint_grad=False,
enable_rigid_drift=True,
canonicalize=True,
seed_idx=None,
):
super().__init__()
if type(G) == str:
self.G = symmetry.get_point_group(G)
else:
self.G = G
self.num_chain_neighbors = num_chain_neighbors
self.freeze_com = freeze_com
self.grad_com_surgery = grad_com_surgery
self.interface_restraint = interface_restraint
self.restraint_grad = restraint_grad
self.enable_rigid_drift = enable_rigid_drift
self.canonicalize = canonicalize
self.seed_idx = seed_idx
if num_chain_neighbors > self.G.shape[0] - 1:
self.num_chain_neighbors = self.G.shape[0] - 1
self.potts_symmetry_order = self.num_chain_neighbors + 1
print(
"Note: We recommend using sde_func='langevin' for sampling with SymmetryConditioner"
)
def flat_bottom_potential(self, r, r0, k, d):
condition = torch.abs(r - r0) < d
return torch.where(
condition, torch.zeros_like(r), k * (torch.abs(r - r0) - d) ** 2
)
def translational_scaling(self, C):
"""Compute parameters for enforcing Rg scaling"""
# Build expanded map per chain
C_expand = C.unsqueeze(-1).expand(-1, -1, 4)
C_atomic = C_expand.reshape(C.shape[0], -1)
C_mask_all = backbone.expand_chain_map(torch.abs(C_atomic))[..., None]
a = 1.5587407701549267 # TODO: this can change if our prior changed
nu = 2.0 / 5.0
r = 2.0 / 3.0
# C_mask_all is ()
# Monomer and complex sizes (batch, {chains})
C_mask = C_mask_all.squeeze(-1)
N_per_chain = C_mask.sum(1)
N_per_complex = C_mask.sum([1, 2])
# Compute expected Rg^2 values per complex
Rg2_complex = (r**2) * N_per_complex ** (2.0 * nu)
Rg2_chain = (r**2) * N_per_chain ** (2.0 * nu)
# Compute OU process parameters
N_per_chain = torch.clip(N_per_chain, 1, 1e6)
# Compute size-weighted average Rg^2 per chain
Rg2_chain_avg = (N_per_chain * Rg2_chain).sum(1) / (N_per_chain.sum(1) + 1e-5)
Rg2_centers_of_mass = torch.clip(Rg2_complex - Rg2_chain_avg, min=1)
Rg_centers_of_mass = torch.sqrt(Rg2_centers_of_mass)
N_chains_per_complex = (C_mask.sum(1) > 0).sum(1)
# Correct for the fact that we are sampling chains IID (not
# centered) but want to control centered Rg
std_correction = torch.sqrt(
N_chains_per_complex / (N_chains_per_complex - 1).clamp(min=1)
)
marginal_COM_std = std_correction * Rg_centers_of_mass
return marginal_COM_std
def expand_C(self, C, k):
missing = C < 0
Cs = []
for i in range(k):
newC = C.abs() + C.unique().max() * i
newC[missing] = -newC[missing]
Cs += [newC]
C = torch.cat(Cs, dim=1)
return C
def expand_S(self, S, k):
S = torch.cat([S] * k, dim=1)
return S
def expand_au(self, X, C, G, scale=True):
n_atoms_per_res = X.shape[-2]
C_au = C
# compute new chain mask
C = self.expand_C(C, G.shape[0])
# compute COM inflation due to tesselate
if scale:
if self.enable_rigid_drift:
translate_ratio = self.translational_scaling(C) / (
self.translational_scaling(C_au)
* (self.num_chain_neighbors + 1) ** 0.5
)
else:
translate_ratio = 1.0
mask_expand = (
(C_au > 0)
.float()
.reshape(list(C_au.shape) + [1, 1])
.expand([-1, -1, n_atoms_per_res, -1])
)
X_com = (mask_expand * X).sum([1, 2], keepdims=True) / (
mask_expand.sum([1, 2], keepdims=True)
)
X_shifted_mean = X_com * translate_ratio
X = (X - X_com) + X_shifted_mean
X = torch.einsum("gij,braj->bgrai", G, X).reshape(1, -1, n_atoms_per_res, 3)
return X, C
def _postprocessing_(
self, protein: Protein, output_dict: Optional[dict] = None
) -> Union[Protein, Tuple[Protein, dict]]:
X, C, S = protein.to_XCS(all_atom=True)
X_sym, C_sym, S_sym = self.symmetrize_output(X, C, S)
protein_sym = Protein.from_XCS(X_sym, C_sym, S_sym)
if output_dict is None:
return protein_sym
else:
trajectory = output_dict["trajectory"]
traj_sym, C_sym, S_sym = self.symmetrize_output(
trajectory.to_XCS_trajectory()[0], C, S
)
trajectory_sym = Protein.from_XCS_trajectory(traj_sym, C_sym, S_sym)
output_dict["trajectory"] = trajectory_sym
return protein_sym, output_dict
def center_X(self, X, C):
mask_expand = (
(C > 0).float().reshape(list(C.shape) + [1, 1]).expand([-1, -1, 4, -1])
)
# compute mean based on backbone coordinates
X_mean = (mask_expand * X[:, :, :4, :]).sum([1, 2], keepdims=True) / (
mask_expand.sum([1, 2], keepdims=True)
)
X_centered = X - X_mean
return X_centered
def symmetrize_output(self, X, C, S):
if type(X) == torch.Tensor:
assert len(X.shape) == 4
X = [X]
n_chains = (
self.num_chain_neighbors + 1
if self.num_chain_neighbors + 1 < self.G.shape[0]
else self.G.shape[0]
)
C_seed = C.reshape(1, n_chains, -1)[:, 0]
S_seed = S.reshape(1, n_chains, -1)[:, 0]
traj = []
for each in X:
n_atoms_per_res = each.shape[-2]
X_seed = each.reshape(1, n_chains, -1, n_atoms_per_res, 3)[:, 0]
X_tess, C_tess = self.expand_au(X_seed, C_seed, self.G, scale=False)
S_tess = self.expand_S(S_seed, k=self.G.shape[0])
X_tess = self.center_X(X_tess, C_tess)
traj.append(X_tess)
if len(traj) == 1:
traj = traj[0]
return traj, C_tess, S_tess
@validate_XC()
def forward(
self,
X: torch.Tensor,
C: torch.LongTensor,
O: torch.Tensor,
U: torch.Tensor,
t: Union[torch.Tensor, float],
) -> Tuple[
torch.Tensor,
torch.LongTensor,
torch.Tensor,
torch.Tensor,
Union[torch.Tensor, float],
]:
self.G = self.G.to(X.device)
if self.grad_com_surgery or self.freeze_com:
X_tess, C_tess = self.expand_au(X, C, self.G, scale=False)
else:
X_tess, C_tess = self.expand_au(X, C, self.G, scale=True)
X_subdomain, C_subdomain, subdomain_idx, seed_idx = symmetry.subsample(
X_tess, C_tess, self.G, self.num_chain_neighbors, seed_idx=self.seed_idx
)
if self.canonicalize:
X_canonical = torch.einsum(
"ij,barj->bari", self.G[seed_idx].inverse(), X_subdomain
)
else:
X_canonical = X_subdomain
def grad_surgery(dx):
if self.grad_com_surgery:
# inflate COM signal
translate_ratio = self.translational_scaling(C_tess) / (
self.translational_scaling(C)
)
dx_com = dx.mean([0, 1, 2])
dx_com_scale = dx_com * translate_ratio
dx = (dx - dx_com) + dx_com_scale
if self.freeze_com:
dx = backbone.center_X(dx, C_subdomain)
# averaging grad
dx = dx / (self.num_chain_neighbors + 1)
return dx
X_canonical.register_hook(grad_surgery)
# Tesselate sequence
symmetry_order = C_subdomain.shape[1] // C.shape[1]
O_subdomain = (
O[:, None, :, :]
.expand([-1, symmetry_order, -1, -1])
.reshape(list(C_subdomain.shape) + [O.shape[-1]])
)
return X_canonical, C_subdomain, O_subdomain, U, t
class ScrewConditioner(Conditioner):
"""A class that implements a screw conditioner for a protein structure.
A screw conditioner applies a screw transformation to a protein structure
and repeats it for a given number of times. It can be used to model
helical or cyclic symmetry of proteins.
Attributes:
theta (float): The angle of rotation about the z-axis in radians.
tz (float): The translation along the z-axis.
M (int): The number of repetitions of the screw transformation.
Methods:
prepare_transforms(N_repeat): Compute the rotation matrices and translation
vectors for the screw transformation.
expand_C(C, k): Expand a chain tensor C by duplicating each chain k times with
different labels.
rebuild(X, C, M): Rebuild a protein structure with the screw transformation.
forward(X, C, U, t): Apply the screw transformation to a protein structure and
return modified tensors.
Inputs:
X (torch.Tensor): Data tensor with shape `(batch_size, num_residues, 4, 3)`.
C (torch.LongTensor): Chain tensor with shape `(batch_size, num_residues)`.
O (torch.Tensor): One-hot sequence with shape
`(batch_size, num_residues, num_alphabet)`.
U (torch.Tensor): Energy tensor with shape `(batch_size,)`.
t (Union[torch.Tensor, float]): Time tensor with shape `(batch_size,)` or a s
calar.
Outputs:
X_out (torch.Tensor): Modified data tensor with shape `(batch_size,
num_residues * M, 4, 3)`.
C_out (torch.LongTensor): Modified chain tensor with shape `(batch_size,
num_residues * M)`.
O_out (torch.Tensor, optional): Modified one-hot tensor with sequence
of shape `(batch_size, num_residues, num_alphabet)`.
U_out (torch.Tensor): Modified energy tensor with shape `(batch_size,)`.
t_out (Union[torch.Tensor, float]): Modified time tensor with shape
`(batch_size,)` or a scalar.
"""
def __init__(self, theta, tz, M):
super().__init__()
self.theta = torch.Tensor([theta]).squeeze()
self.tz = tz
self.M = M
self.Rs, self.ts = self.prepare_transforms(M)
def prepare_transforms(self, N_repeat):
# Rotation matrix for rotation about the z-axis
R_base = torch.tensor(
[
[torch.cos(self.theta), -torch.sin(self.theta), 0],
[torch.sin(self.theta), torch.cos(self.theta), 0],
[0, 0, 1],
]
)
t_base = torch.tensor([0, 0, self.tz])
Rs = []
ts = []
R = R_base
t = t_base
for _ in range(N_repeat):
R = R @ R_base
t = t + t_base
Rs.append(R[None])
ts.append(t[None])
Rs = torch.cat(Rs, dim=0)
ts = torch.cat(ts, dim=0)
return Rs, ts
def expand_C(self, C, k):
Cs = []
for i in range(k):
newC = C + C.unique().max() * i
Cs += [newC]
C = torch.cat(Cs, dim=1)
return C
def rebuild(self, X, C, M, au_len):
Rs, ts = self.prepare_transforms(M)
X = torch.einsum("mji,bari->bmarj", Rs.to(X.device), X[:, :au_len])
X_screw = X + ts.to(X.device)[None][:, :, None, None, :]
C_screw = self.expand_C(C[:, :au_len], Rs.shape[0])
X_screw = X_screw.reshape(1, -1, 4, 3)
return X_screw, C_screw
@validate_XC()
def forward(self, X, C, O, U, t):
X.requires_grad = True
X = torch.einsum("mji,bari->bmarj", self.Rs.to(X.device), X)
X_screw = X + self.ts.to(X.device)[None][:, :, None, None, :]
C_screw = self.expand_C(C, self.M)
def grad_surgery(dx):
dx = dx / (self.M)
return dx
X.register_hook(grad_surgery)
X_screw = X_screw.reshape(1, -1, 4, 3)
# Tesselate sequence
symmetry_order = C_screw.shape[1] // C.shape[1]
O_screw = (
O[:, None, :, :]
.expand([-1, symmetry_order, -1, -1])
.reshape(list(C_screw.shape) + [O.shape[-1]])
)
return X_screw, C_screw, O_screw, U, t
class InflateConditioner(Conditioner):
"""Inflate conditioner
This class inherits from the Conditioner class and defines a specific conditioner
that inflates shift the COM of X based on a vector v and a scalar.
Args:
v (torch.Tensor): Vector to add to X with shape `(num_residues, 4, 3)`.
scale (float): Scale factor for v.
Inputs:
X (torch.Tensor): Data tensor with shape `(batch_size, num_residues, 4, 3)`.
C (torch.LongTensor): Conditioning tensor with shape `(batch_size,
num_residues)`.
O (torch.Tensor): One-hot sequence with shape
`(batch_size, num_residues, num_alphabet)`.
U (torch.Tensor): Noise tensor with shape `(batch_size,)`.
t (Union[torch.Tensor, float]): Time tensor with shape `(batch_size,)` or a
scalar.
Outputs:
X_out (torch.Tensor): Modified data tensor with shape `(batch_size, num_residues,
4, 3)`.
C_out (torch.LongTensor): Modified conditioning tensor with shape `(batch_size,
num_residues)`.
O_out (torch.Tensor, optional): Modified one-hot tensor with sequence
of shape `(batch_size, num_residues, num_alphabet)`.
U_out (torch.Tensor): Modified noise tensor with shape `(batch_size,)`.
t_out (Union[torch.Tensor, float]): Modified time tensor with shape
`(batch_size,)` or a scalar.
"""
def __init__(self, v: torch.Tensor, scale: float):
super().__init__()
self.v = v / v.norm()
self.scale = scale
@validate_XC()
def forward(
self,
X: torch.Tensor,
C: torch.LongTensor,
O: torch.Tensor,
U: torch.Tensor,
t: Union[torch.Tensor, float],
) -> Tuple[
torch.Tensor,
torch.LongTensor,
torch.Tensor,
torch.Tensor,
Union[torch.Tensor, float],
]:
X.requires_grad = True
X = X + self.v.to(X.device) * self.scale
return X, C, O, U, t
class RgConditioner(Conditioner):
"""Conditioners that penalized backbones for having Rg deviated from the expected Rg
Scaling. The penalty function takes the form of a flat bottom potential
penalty = || ReLU( || Rg(X, C) - Rg_ceiling_scale * expected_Rg(C) || ) ||^2
Args:
scale (float): Scale factor for the penalty
Rg_ceiling_scale (float): the flat bottom potentialy width, needs to be larger
than 1.
complex_rg (bool): whether compute expected Rg based on the complex Rg scaling.
If True, expected Rg will be computed by treating the entire complex as if
it is a single cahin. If False, expected Rg will be computed for individual
chains
Inputs:
X (torch.Tensor): Data tensor with shape `(batch_size, num_residues, 4, 3)`.
C (torch.LongTensor): Conditioning tensor with shape `(batch_size,
num_residues)`.
O (torch.Tensor): One-hot sequence with shape
`(batch_size, num_residues, num_alphabet)`.
U (torch.Tensor): Noise tensor with shape `(batch_size,)`.
t (Union[torch.Tensor, float]): Time tensor with shape `(batch_size,)` or a
scalar.
Outputs:
X_out (torch.Tensor): Modified data tensor with shape `(batch_size, num_residues,
4, 3)`.
C_out (torch.LongTensor): Modified conditioning tensor with shape `(batch_size,
num_residues)`.
O_out (torch.Tensor, optional): Modified one-hot tensor with sequence
of shape `(batch_size, num_residues, num_alphabet)`.
U_out (torch.Tensor): Modified noise tensor with shape `(batch_size,)`.
t_out (Union[torch.Tensor, float]): Modified time tensor with shape
`(batch_size,)` or a scalar.
"""
def __init__(
self,
scale=1.0,
Rg_ceiling_scale=1.5,
complex_rg=False,
):
super().__init__()
self.eps = 1e-5
self.scale = scale
self.Rg_ceiling_scale = Rg_ceiling_scale
self.complex_rg = complex_rg
def means_per_chain(self, _X, _C, eps=1e-5):
"""Compute center of mass for each chain in a complex"""
# (B,N) => (B,N,C) => (B,N,C,A,X)
mask_chains = (expand_chain_map(_C) > 0).float()
mask_chains_expand = mask_chains[..., None, None]
X_masked = mask_chains_expand * _X.unsqueeze(2)
# Compute per chain means
X_mean_chains = X_masked.sum([1, 3], keepdims=True) / (
4 * mask_chains_expand.sum([1, 3], keepdims=True) + eps
)
# Compute per complex mean
X_mean_complex = X_masked.sum([1, 2, 3], keepdims=True) / (
4 * mask_chains_expand.sum([1, 2, 3], keepdims=True) + eps
)
return X_masked, X_mean_chains, X_mean_complex, mask_chains
def expected_Rg(self, N):
"""compute expected Rg"""
nu = 2.0 / 5.0
r = 2.0
return ((r**2) * N ** (2.0 * nu)) ** 0.5
def compute_Rg(
self,
X,
C,
):
"""compute Rg with X and C"""
X.requires_grad = True
X_masked, X_mean_chains, X_mean_complex, mask_chains = self.means_per_chain(
X, C
)
mask_chains_expand = mask_chains[..., None]
r2_i = mask_chains_expand * (X_masked - X_mean_chains).square().sum(-1)
r2_i_mean = (r2_i + self.eps).mean(-1).sum(1) / (mask_chains.sum(1) + self.eps)
r_i_rms = torch.sqrt(r2_i_mean + self.eps)
return r_i_rms
@validate_XC()
def forward(self, X, C, O, U, t):
if self.complex_rg:
C_tmp = torch.ones_like(C)
else:
C_tmp = C
# Compute expected Rg
N_chain = expand_chain_map(torch.abs(C_tmp)).sum(1)
r_i_rms_expected = self.expected_Rg(N_chain)
true_rg = self.compute_Rg(X, C_tmp)
U_Rg = F.relu(true_rg - self.Rg_ceiling_scale * r_i_rms_expected).square()
U = U + self.scale * U_Rg.sum()
return X, C, O, U, t
def clip_atomic_magnitudes_percentile(dX, percentile=0.9):
D = dX.square().sum(-1, keepdims=True).add(1e-5).sqrt()
D_max = D.quantile(percentile)
dX_adjust = dX * D.clamp(max=D_max) / D
return dX_adjust
|