File size: 36,144 Bytes
ce7bf5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
# Copyright Generate Biomedicines, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Layers for multivariate normal models of protein structure.

This module contains pytorch layers for perturbing protein structure with noise,
which can be useful both for data augmentation, benchmarking, or denoising based
training.
"""

import math
from typing import Optional

import numpy as np
import torch
import torch.nn.functional as F

from chroma.layers import conv
from chroma.layers.structure import backbone


class BackboneMVNGlobular(torch.nn.Module):
    """
    Gaussian model for protein backbones.
    """

    def __init__(
        self,
        covariance_model="brownian",
        complex_scaling=False,
        sigma_translation=1.0,
        **kwargs,
    ):
        super().__init__()

        # These constant was derived from fitting uniform phi,psi chains
        self._scale = 1.5587407701549267

        # These parameterize the scaling law, *per xyz dimension*
        # Rg = Rg0 * N_atoms ^ nu
        self._nu = 2.0 / 5.0
        self._rg_0_1D = 2.0 / 3.0

        # Exact solution for Rg0, agrees with above to 2 decimals.
        # We divide the literature prefactor for a per-residue
        # scaling law (John J Tanner 2016) by two terms:
        #   1. a conversion factor from residues to atoms (4^nu)
        #   2. the sqrt(3) to account for isotropic dimensional (xyz) Rg contributions
        # self._rg_0_1D = 2.0 / (4 ** self._nu * np.sqrt(3))

        self.covariance_model = covariance_model
        self.complex_scaling = complex_scaling
        self.sigma_translation = sigma_translation

    def _atomic_mean(self, X_flat, mask):
        """Compute the mean across all 4 atom types by mask expansion"""
        mask_expand = mask.unsqueeze(-1).expand(-1, -1, 4)
        mask_atomic = mask_expand.reshape(mask.shape[0], -1).unsqueeze(-1)
        X_mean = torch.sum(mask_atomic * X_flat, 1, keepdims=True) / (
            torch.sum(mask_atomic, 1, keepdims=True)
        )
        return X_mean, mask_atomic

    def _C_atomic(self, C):
        # Expand chain map into atomic level masking
        C_expand = C.unsqueeze(-1).expand(-1, -1, 4)
        C_atomic = C_expand.reshape(C.shape[0], -1)
        return C_atomic

    def _globular_parameters(self, C_mask_all, translation_inflation=None):
        """Compute parameters for enforcing Rg scaling"""
        # Rg scaling constants
        nu = self._nu
        a = self._scale
        r = self._rg_0_1D

        # C_mask_all is ()
        # Monomer and complex sizes (batch, {chains})
        C_mask = C_mask_all.squeeze(-1)
        N_per_chain = C_mask.sum(1)
        N_per_complex = C_mask.sum([1, 2])

        # Compute expected Rg^2 values per complex
        Rg2_complex = (r ** 2) * N_per_complex ** (2.0 * nu)
        Rg2_chain = (r ** 2) * N_per_chain ** (2.0 * nu)

        # Compute OU process parameters
        N_per_chain = torch.clip(N_per_chain, 1, 1e6)

        # Decay parameter B is related to global spring coefficient
        # as k = (1-B)^2
        B = (3.0 / N_per_chain) + N_per_chain ** (-nu) * torch.sqrt(
            N_per_chain ** (2 * (nu - 1)) * (N_per_chain ** 2 + 9) - (a / r) ** 2
        )
        B = torch.clip(B, 1e-4, 1.0 - 1e-4)

        # OU process equilibrium standard deviation warm-starts process
        x_init_std = torch.sqrt(1.0 / (1.0 - B ** 2))

        # Compute size-weighted average Rg^2 per chain
        Rg2_chain_avg = (N_per_chain * Rg2_chain).sum(1) / (N_per_chain.sum(1) + 1e-5)
        Rg2_centers_of_mass = torch.clip(Rg2_complex - Rg2_chain_avg, min=1)
        Rg_centers_of_mass = torch.sqrt(Rg2_centers_of_mass)

        # Mean scaling parameter deflates equilibrium variance to unity and
        # optionally re-inflates the per center of mass variance to implement
        # complex scaling
        if translation_inflation is not None:
            # This argument overrides default per-chain translational scaling
            # to [translation_inflation * Complex Rg]
            marginal_COM_std = translation_inflation * Rg2_complex.sqrt()
            mean_shift_scale = (x_init_std - marginal_COM_std[..., None]) / (x_init_std)
        elif self.complex_scaling:
            N_chains_per_complex = (C_mask.sum(1) > 0).sum(1)
            # Correct for the fact that we are sampling chains IID (not
            # centered) but want to control centered Rg
            std_correction = torch.sqrt(
                N_chains_per_complex / (N_chains_per_complex - 1).clamp(min=1)
            )
            marginal_COM_std = std_correction * Rg_centers_of_mass
            mean_shift_scale = (x_init_std - marginal_COM_std[..., None]) / (x_init_std)
        else:
            mean_shift_scale = (x_init_std - 1.0) / (x_init_std)

        return B[..., None], x_init_std[..., None], mean_shift_scale[..., None]

    def _expand_masks(self, C):
        C_atomic = self._C_atomic(C)
        C_mask_all = backbone.expand_chain_map(torch.abs(C_atomic))[..., None]
        C_mask_present = backbone.expand_chain_map(C_atomic)[..., None]
        return C_mask_all, C_mask_present

    def _expand_per_chain(self, Z, C):
        """Build augmented [num_batch, 4*num_residues, num_chains, 3] system"""
        # Build masks and augmented [B,4N,C,3] system
        C_mask_all, C_mask_present = self._expand_masks(C)
        Z_expand = C_mask_all * Z[..., None, :]
        return C_mask_all, C_mask_present, Z_expand

    def _shift_means(self, X_expand, C_mask_mean, C_mask_apply, scale, shift=None):
        """Inflate or deflate per-chain means by a scale factor."""
        X_chain_mean = (C_mask_mean * X_expand).sum(1, keepdims=True) / (
            C_mask_mean.sum(1, keepdims=True) + 1e-5
        )
        shift = shift if shift is not None else 0
        shift = shift + scale * X_chain_mean
        X_expand = C_mask_apply * (X_expand + shift)
        return X_expand

    def _translate_by_x1(self, X_expand, C_mask, scale_mean, scale_x1):
        """Shift mean to mean <- mean + scale_mean * mean + scale_x1 * x1"""
        X_1 = self._gather_chain_init(X_expand, C_mask)
        X_expand = self._shift_means(
            X_expand, C_mask, C_mask, scale=scale_mean, shift=X_1 * scale_x1
        )
        return X_expand

    def _translate_by_x1_transpose(self, X_expand, C_mask, scale_mean, scale_x1):
        """Transpose of _translate_by_x1."""

        # Shift mean (Symmetric under transpose)
        X_chain_sum = (C_mask * X_expand).sum(1, keepdims=True)
        X_chain_mean = X_chain_sum / (C_mask.sum(1, keepdims=True) + 1e-5)
        X_expand = C_mask * (X_expand + scale_mean * X_chain_mean)

        # Update to X_init
        # The transpose of updating all by X_init is updating X_init by all
        first_index = torch.max(C_mask, 1, keepdim=True)[1]
        first_index_expand = first_index.expand(-1, -1, -1, 3)
        X_init = torch.gather(X_expand, 1, first_index_expand)
        X_init_update = X_init + scale_x1 * X_chain_sum
        X_expand = X_expand.scatter(1, first_index_expand, X_init_update)
        return X_expand

    def _gather_chain_init(self, X_expand, C_mask):
        """Extract first coordinates, per chain"""
        first_index = torch.max(C_mask, 1, keepdim=True)[1]
        first_index_expand = first_index.expand(-1, -1, -1, 3)
        X_init = torch.gather(X_expand, 1, first_index_expand)
        return X_init

    def _multiply_R(self, Z, C):
        """Multiply by the square root of the covariance matrix"""
        if Z.dim() == 4:
            Z = Z.reshape(Z.shape[0], -1, 3)

        C_mask_all, C_mask_present, Z_expand = self._expand_per_chain(Z, C)

        if self.covariance_model == "brownian":
            # Step 1. Scaled cumsum along each chain (including missing residues)
            # [B,4N,3] -> [B,4N,C,3]
            R_Z_expand = C_mask_all * torch.cumsum(Z_expand, 1) * self._scale

            # Step 2. Translate by rescaled X_1
            R_Z_expand = self._translate_by_x1(
                R_Z_expand, C_mask_all, scale_mean=-1, scale_x1=self.sigma_translation
            )
        elif self.covariance_model == "globular":
            # Build coefficients per chain as as [B,C,1]
            B, x_init_std, mean_shift_scale = self._globular_parameters(C_mask_all)

            # Step 1. R_init
            # Scale z_1 to have equilibrium variance
            # z_1 will be the position where (1 - mask_{i-1}) = mask_i
            C_mask_prev = F.pad(C_mask_all[:, :-1, :, :], (0, 0, 0, 0, 1, 0))
            mask_init = (1.0 - C_mask_prev) * C_mask_all
            # Inflate z_1 by the equilibrium variance
            Z_expand = (1.0 - mask_init) * Z_expand + mask_init * x_init_std[
                :, None, ...
            ] * Z_expand

            # Step 2. R_sum
            # Apply linear recurrence `x_i = z_i + b * x_{i-1}`
            # Repack all independent signals and coeffs (B,C,3) in 1D
            num_B, num_N, num_C, _ = Z_expand.shape
            # [B,4N,C,3] => [B,C,3,4N] => [BC3, 4N]
            Z_1D = Z_expand.permute([0, 2, 3, 1]).reshape([-1, num_N])
            # [B,C,1] => [BC,1] => [BC,3] => [BC3]
            B_1D = B.reshape([-1, 1]).expand([-1, 3]).reshape([-1])
            R_Z_1D = self._scale * conv.filter1D_linear_decay(Z_1D, B_1D)
            # [BC3,4N] -> [B,C,3,4N] -> [B,4N,C,3]
            R_Z_expand = R_Z_1D.reshape([num_B, num_C, 3, num_N]).permute([0, 3, 1, 2])
            R_Z_expand = C_mask_all * R_Z_expand

            # Step 3. R_center
            # Rescale translational variance
            scale = -mean_shift_scale[:, None, ...]
            R_Z_expand = self._shift_means(
                R_Z_expand, C_mask_all, C_mask_all, scale=scale
            )

        # Collapse out chain dimension
        R_Z = R_Z_expand.sum(2).reshape(Z.shape[0], -1, 4, 3)
        return R_Z

    def _multiply_R_transpose(self, Z, C):
        """Multiply by the square root of the covariance matrix (transpose)"""
        if Z.dim() == 4:
            Z = Z.reshape(Z.shape[0], -1, 3)

        # Inflate chain dimension [B,4N,C,3]
        C_mask_all, C_mask_present, Z_expand = self._expand_per_chain(Z, C)

        if self.covariance_model == "brownian":
            # Step 2. [Transpose of] Translate by rescaled X_1
            Z_expand = self._translate_by_x1_transpose(
                Z_expand, C_mask_all, scale_mean=-1, scale_x1=self.sigma_translation
            )

            # Step 1. [Transpose of] Scaled cumsum along each chain
            Rt_Z_expand = torch.flip(torch.cumsum(torch.flip(Z_expand, [1]), 1), [1])
            Rt_Z_expand = C_mask_all * Rt_Z_expand * self._scale

        elif self.covariance_model == "globular":
            # Build coefficients per chain as as [B,C,1]
            B, x_init_std, mean_shift_scale = self._globular_parameters(C_mask_all)
            Rt_Z_expand = Z_expand

            # Step 3. R_center_transpose = R_center (by symmetry)
            scale = -mean_shift_scale[:, None, ...]
            Rt_Z_expand = self._shift_means(
                Rt_Z_expand, C_mask_all, C_mask_all, scale=scale
            )

            # Step 2. R_sum_transpose = R_sum @ R_flip
            # Apply linear recurrence `x_i = z_i + b * x_{i-1}`
            # Repack all independent signals and coeffs (B,C,3) in 1D
            num_B, num_N, num_C, _ = Rt_Z_expand.shape
            # [B,4N,C,3] => [B,C,3,4N] => [BC3, 4N]
            Z_1D = Rt_Z_expand.permute([0, 2, 3, 1]).reshape([-1, num_N])
            Z_1D_reverse = torch.flip(Z_1D, [1])
            # [B,C,1] => [BC,1] => [BC,3] => [BC3]
            B_1D = B.reshape([-1, 1]).expand([-1, 3]).reshape([-1])
            Rt_Z_1D_reverse = self._scale * conv.filter1D_linear_decay(
                Z_1D_reverse, B_1D
            )
            Rt_Z_1D = torch.flip(Rt_Z_1D_reverse, [1])
            # [BC3,4N] -> [B,C,3,4N] -> [B,4N,C,3]
            Rt_Z_expand = Rt_Z_1D.reshape([num_B, num_C, 3, num_N]).permute(
                [0, 3, 1, 2]
            )
            Rt_Z_expand = C_mask_all * Rt_Z_expand

            # Step 1. R_init_transpose = R_init (by symmetry)
            # Scale z_1 to have equilibrium variance
            # z_1 will be the position where (1 - mask_{i-1}) = mask_i
            C_mask_prev = F.pad(C_mask_all[:, :-1, :, :], (0, 0, 0, 0, 1, 0))
            mask_init = (1.0 - C_mask_prev) * C_mask_all
            # Inflate z_1 by the equilibrium variance
            Rt_Z_expand = (1.0 - mask_init) * Rt_Z_expand + mask_init * x_init_std[
                :, None, ...
            ] * Rt_Z_expand

        # Collapse out chain dimension
        Rt_Z = Rt_Z_expand.sum(2).reshape(Z.shape[0], -1, 4, 3)
        return Rt_Z

    def _multiply_R_inverse(self, X, C):
        """Multiply by the inverse of the square root of the covariance matrix"""
        if X.dim() == 4:
            X = X.reshape(X.shape[0], -1, 3)

        # Inflate chain dimension [B,4N,C,3]
        C_mask_all, C_mask_present, X_expand = self._expand_per_chain(X, C)

        if self.covariance_model == "brownian":
            # Step 2. [Inverse of] Translate by rescaled X_1
            X_expand = self._translate_by_x1(
                X_expand, C_mask_all, scale_mean=1 / self.sigma_translation, scale_x1=-1
            )

            # Step 1. [Inverse of] Scaled cumsum per chain [X_i - X_(i-1)]
            Ri_X_expand = X_expand - F.pad(X_expand[:, :-1, :, :], (0, 0, 0, 0, 1, 0))
            Ri_X_expand = C_mask_all * Ri_X_expand / self._scale

        elif self.covariance_model == "globular":
            # Build coefficients per chain as as [B,C,1]
            B, x_init_std, mean_shift_scale = self._globular_parameters(C_mask_all)

            # Step 3. R_center_inverse
            # Rescale translational variance
            mean_shift_scale_inverse = mean_shift_scale / (1 - mean_shift_scale)
            scale = mean_shift_scale_inverse[:, None, ...]
            X_expand = self._shift_means(X_expand, C_mask_all, C_mask_all, scale=scale)

            # Step 2. R_sum_inverse
            # Apply linear recurrence `x_i = z_i + b * x_{i-1}`
            X_prev = F.pad(X_expand[:, :-1, :, :], (0, 0, 0, 0, 1, 0))
            Ri_X_expand = (
                C_mask_all * (X_expand - B[:, None, ...] * X_prev) / self._scale
            )

            # Step 1. R_init_inverse
            # Scale z_1 to have equilibrium variance
            # z_1 will be the position where (1 - mask_{i-1}) = mask_i
            C_mask_prev = F.pad(C_mask_all[:, :-1, :, :], (0, 0, 0, 0, 1, 0))
            mask_init = (1.0 - C_mask_prev) * C_mask_all
            Ri_X_expand = (
                1.0 - mask_init
            ) * Ri_X_expand + mask_init * Ri_X_expand / x_init_std[:, None, ...]

        # Collapse out chain dimension
        Ri_X = Ri_X_expand.sum(2).reshape(X.shape[0], -1, 4, 3)
        return Ri_X

    def _multiply_R_inverse_transpose(self, X, C):
        """Multiply by the inverse trasnpose of the square root of the
        covariance matrix
        """
        if X.dim() == 4:
            X = X.reshape(X.shape[0], -1, 3)

        C_mask_all, C_mask_present, X_expand = self._expand_per_chain(X, C)

        if self.covariance_model == "brownian":
            # Step 1. [Inverse transpose of] Scaled cumsum per chain [X_i - X_(i+1)]
            Rit_X_expand = X_expand - F.pad(X_expand[:, 1:, :, :], (0, 0, 0, 0, 0, 1))
            Rit_X_expand = C_mask_all * Rit_X_expand / self._scale

            # Step 2. [Inverse transpose of] Translate by rescaled X_1
            Rit_X_expand = self._translate_by_x1_transpose(
                Rit_X_expand,
                C_mask_all,
                scale_mean=1 / self.sigma_translation,
                scale_x1=-1,
            )
        elif self.covariance_model == "globular":
            # Build coefficients per chain as as [B,C,1]
            B, x_init_std, mean_shift_scale = self._globular_parameters(C_mask_all)
            Rit_X_expand = X_expand

            # Step 1. R_init_inverse_transpose = R_init_inverse (by symmetry)
            # Scale z_1 to have equilibrium variance
            # z_1 will be the position where (1 - mask_{i-1}) = mask_i
            C_mask_prev = F.pad(C_mask_all[:, :-1, :, :], (0, 0, 0, 0, 1, 0))
            mask_init = (1.0 - C_mask_prev) * C_mask_all
            Rit_X_expand = (
                1.0 - mask_init
            ) * Rit_X_expand + mask_init * Rit_X_expand / x_init_std[:, None, ...]

            # Step 2. R_sum_inverse_transpose
            # Apply linear recurrence `x_i = z_i + b * x_{i-1}`
            X_future = F.pad(Rit_X_expand[:, 1:, :, :], (0, 0, 0, 0, 0, 1))
            Rit_X_expand = (
                C_mask_all * (Rit_X_expand - B[:, None, ...] * X_future) / self._scale
            )

            # Step 3. R_center_inverse_transpose = R_center_inverse (by symmetry)
            # Rescale translational variance
            mean_shift_scale_inverse = mean_shift_scale / (1 - mean_shift_scale)
            scale = mean_shift_scale_inverse[:, None, ...]
            Rit_X_expand = self._shift_means(
                Rit_X_expand, C_mask_all, C_mask_all, scale=scale
            )

        Rit_X = Rit_X_expand.sum(2).reshape(X.shape[0], -1, 4, 3)
        return Rit_X

    def multiply_covariance(self, dX, C):
        """Multiply by the covariance matrix.

        Args:
            dX (Tensor): Backbone tensor with dimensions
                `(num_batch, num_residues, 4, 3)`.
            (Note: this will typically be a gradient or direction vector,
            such as the score function. Not absolute coordinates).
            C (Tensor): Chain map with dimensions

        returns:
            C_dX (Tensor): The matrix-vector product resulting from
        left-multiplying by the covariance matrix.
        """
        # Covariance C = G @ G.T
        dX_flat = dX.reshape([dX.shape[0], -1, 3])
        Rt_dX = self._multiply_R_transpose(dX_flat, C)
        C_dX = self._multiply_R(Rt_dX, C)
        C_dX = C_dX.reshape(dX.shape)
        return C_dX

    def multiply_inverse_covariance(self, dX, C):
        """Multiply by the inverse covariance matrix.

        Args:
            dX (Tensor): Backbone tensor with dimensions
                `(num_batch, num_residues, 4, 3)`.
            C (Tensor): Chain map with dimensions

        returns:
            Ci_dX (Tensor): The matrix-vector product resulting from
        left-multiplying by the inverse covariance matrix.
        """
        # Covariance C = G @ G.T
        dX_flat = dX.reshape([dX.shape[0], -1, 3])
        Ri_dX = self._multiply_R_inverse(dX_flat, C)
        Ci_dX = self._multiply_R_inverse_transpose(Ri_dX, C)
        Ci_dX = Ci_dX.reshape(dX.shape)
        return Ci_dX

    def log_determinant(self, C):
        """Compute log determinant of the covariance matrix"""
        C_mask_all, C_mask_present = self._expand_masks(C)

        B, x_init_std, xi = self._globular_parameters(C_mask_all)
        a = self._scale
        B = B[..., 0]
        xi = xi[..., 0]

        # Compute determinants per chain
        N_chain = C_mask_all.sum([1, 3])
        logdet_chain = (
            N_chain * np.log(a) + torch.log(1.0 - xi) - 0.5 * torch.log(1.0 - B ** 2)
        )

        # We pick up one determinant per chain per spatial dimension (xyz)
        logdet = 3.0 * logdet_chain.sum(-1)
        return logdet

    def log_prob(self, X: torch.Tensor, C: torch.Tensor) -> torch.Tensor:
        """
        Compute log probability for Backbone MVN as follows:

        term1 = -n/2 log(2π)
        term2 = -1/2 log|Σ|
        term3 = -1/2 ∑_{i=1}^{n} (x_i - μ)^T Σ^-1 (x_i - μ)
        logP = term1 + term2 + term3

        Args:
            X (torch.Tensor): of size (batch, num_residues, 4, 3)
            C (torch.Tensor): of size (batch, num_residues)

        Returns:
            logp (torch.Tensor): of size (batch,)
        """
        term1 = -(C.shape[1] * 4 * 3) / 2 * np.log(2 * np.pi)
        term2 = -1 / 2 * self.log_determinant(C)
        term3 = -1 / 2 * (X * self.multiply_inverse_covariance(X, C)).sum([1, 2, 3])
        logp = term1 + term2 + term3

        return logp

    def sample(
        self,
        C: torch.Tensor,
        ddX: Optional[torch.Tensor] = None,
        Z: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        """
        Draws samples from the MVN.

        Args:
            C: (torch.Tensor): specifying the shape of the samples.
            ddX (torch.Tensor, optional): Optionally can specify a shift ddX which will be transformed (R^t * ddX) and used to shift Z.
            Z (torch.Tensor, optional): Optionally can specify random normal samples to transform into samples from the backbone MVN.

        Returns:
            X (torch.Tensor): of size (C.size(0), C.size(1), 4, 3) samples from the MVN.
        """
        num_batch = C.shape[0]
        num_residues = C.shape[1]

        if Z is None:
            Z = torch.randn([num_batch, num_residues * 4, 3], device=C.device)
        if ddX is None:
            X_flat = self._multiply_R(Z, C)
        else:
            RtddX = self._multiply_R_transpose(ddX, C)
            X_flat = self._multiply_R(Z + RtddX, C)

        X = X_flat.reshape([num_batch, num_residues, 4, 3])
        return X


class ConditionalBackboneMVNGlobular(BackboneMVNGlobular):
    """
    A conditional MVN distribution where some subset of the atomic coordinates are known.
    Args:
        covariance_model (str): Specifying the covariance_model of the base distribution (which respect to which we are conditioning).
        complex_scaling (bool): Specifying the complex_scaling of the base distribution (which respect to which we are conditioning).
        sigma_translation (float): Specifying the sigma_translation of the base distribution (which respect to which we are conditioning).
        X (torch.Tensor): of size (1, num_residues, 4, 3) containing atomic coordinates
        C (torch.Tensor): of size (1, num_residues) specifying chain specification
        D (torch.Tensor): of size (1, num_residues) containing 1s or 0s, (castable as Byte or Bool) where 1 indicates a residue's structural information
                          is to be conditioned on.
        gamma (float): This inflates variance of the center of mass of the samples generated by the CMVN.
    """

    def __init__(
        self,
        covariance_model: str = "brownian",
        complex_scaling: bool = False,
        sigma_translation: float = 1.0,
        X: Optional[torch.Tensor] = None,
        C: Optional[torch.Tensor] = None,
        D: Optional[torch.Tensor] = None,
        gamma: Optional[float] = None,
        **kwargs,
    ):
        super().__init__(covariance_model, complex_scaling, sigma_translation, **kwargs)
        assert D.shape[0] == 1
        assert C.shape[0] == 1
        assert X.shape[0] == 1
        self.gamma = gamma
        self.register_buffer("X", X)
        self.register_buffer("C", C)
        self.register_buffer("D", D.float())

        self._check_C(self.C.abs())
        R, RRt = self._materialize_RRt(self.C)
        self.register_buffer("R", R)
        self.register_buffer("RRt", RRt)

        R_clamp, RRt_clamp = self._condition_RRt(self.RRt, self.D)
        self.register_buffer("R_clamp", R_clamp)
        self.register_buffer("RRt_clamp", RRt_clamp)

        R_clamp_inverse = torch.linalg.pinv(self.R_clamp)
        self.register_buffer("R_clamp_inverse", R_clamp_inverse)
        self.register_buffer("mu_sample", self.mu(X))

    def _center_of_mass(self, X, C):
        mask_expand = (
            (C > 0).float().reshape(list(C.shape) + [1, 1]).expand([-1, -1, 4, -1])
        )
        X_mean = (mask_expand * X).sum([1, 2], keepdims=True) / (
            mask_expand.sum([1, 2], keepdims=True)
        )
        return X_mean

    def mu(self, X: torch.Tensor):
        """
        Returns the mean of the conditional distribution obtained by conditioning on atomic coordinates specified in `X` at
        the residues specified in `self.D`.
        Args:
            X (torch.Tensor): of size (B, num_residues, 4, 3)

        Returns:
            X_mu (torch.Tensor): of size (B, num_residues, 4, 3)
        """
        B, _, _, _ = X.size()
        loc = self._center_of_mass(X, self.D).squeeze().reshape(B, 1, 3)
        m = (self.D_atom[..., None] > 0).repeat(B, 1, 3)
        X_flat = X.reshape(B, -1, 3)
        X_restricted = X_flat[m].reshape(B, -1, 3)
        mu = loc + (self.S12 @ torch.linalg.pinv(self.S22) @ (X_restricted - loc))
        X_mu = X_flat.scatter(1, self.zero_indices[None, ..., None].repeat(B, 1, 3), mu)
        return X_mu.reshape(B, -1, 4, 3)

    def sample(
        self,
        num_batch: int = 1,
        Z: Optional[torch.Tensor] = None,
        mu_X: Optional[torch.Tensor] = None,
    ):
        """
        Draws samples from the conditional MVN with mean `mu_X`.

        Args:
            num_batch (int): Number of samples to draw.
            Z (torch.Tensor, optional): of size (batch, num_residues, 4, 3) random standard normal samples can be specified (that are transformed into samples from the CMVN)
            mu_X (torch.Tensor, optional): of size (batch, num_residues, 4, 3) optionally take the mean with respect to a different `X` tensor than was used to instantiate the class.

        Returns:
            samples (torch.Tensor): of size (num_batch, num_residues, 4, 3)
        """
        if Z is not None:
            num_batch = Z.shape[0]
        C_expand = self.C.repeat(num_batch, 1, 1, 1)
        mu = self.mu_sample.repeat(num_batch, 1, 1, 1)
        if mu_X is not None:
            mu = self.mu(mu_X)
        if Z is None:
            Z = torch.randn_like(mu)
        return mu + self._multiply_R(Z, C_expand)

    def _scatter(self, A, index, source):
        J = torch.zeros_like(A)
        J[index[:, None], index[None, :]] = source
        return J

    def _materialize_RRt(self, C):
        """As in C.4 of `https://www.biorxiv.org/content/10.1101/2022.12.01.518682v1.full.pdf`"""
        a = self._scale
        bs, sl = C.size()
        Z = torch.randn(bs, 4 * sl, 3).to(C.device)
        C_mask_all, C_mask_present, Z_expand = self._expand_per_chain(Z, C)

        gamma = self.gamma if self.gamma is None or self.gamma > 0.0 else None
        b, x_init_std, xi = self._globular_parameters(
            C_mask_all, translation_inflation=gamma
        )

        C_atom = self._C_atomic(C.abs())
        R_center = self._build_R_center(C_atom, xi)
        R_sum = self._build_R_sum(C_atom, b)
        R_init = self._build_R_init(C_atom, b)

        R = a * R_center @ R_sum @ R_init
        RRt = R @ R.t()
        return R, RRt

    def _check_C(self, C):
        _C = C[0][:-1] - C[0][1:]
        if (_C > 0).any():
            raise ValueError("Chain map needs to be increasing in this class!")

    def _build_R_center(self, C_atom, xi):
        chain_indices = C_atom.unique()
        blocks = []
        for chain_index, _xi in zip(chain_indices, xi[0]):
            N = C_atom[C_atom == chain_index].numel()
            blocks.append(
                (
                    torch.eye(N, device=_xi.device)
                    - (_xi / N) * torch.ones(N, N, device=_xi.device)
                )
            )
        return torch.block_diag(*blocks)

    def _build_R_sum(self, C_atom, b):
        chain_indices = C_atom.unique()
        blocks = []
        for chain_index, _b in zip(chain_indices, b[0]):
            N = C_atom[C_atom == chain_index].numel()
            blocks.append(
                (
                    _b
                    ** (
                        torch.arange(N, device=_b.device).unsqueeze(0)
                        - torch.arange(N, device=_b.device).unsqueeze(-1)
                    )
                    .tril()
                    .abs()
                ).tril()
            )
        return torch.block_diag(*blocks)

    def _build_R_init(self, C_atom, b):
        indices = [(C_atom == k).float().argmax(1).item() for k in C_atom.unique()]
        N = C_atom.numel()
        P3 = torch.eye(N).to(C_atom.device)
        for index, _b in zip(indices, b[0]):
            P3.diagonal().data[index] = 1 / math.sqrt(1 - _b ** 2)
        return P3

    def _condition_RRt(self, RRt, D):
        """
        Args:
            RRt (torch.tensor): of size (N x N) the original full covariance
            D (torch.tensor): of dtype float and size (1xN) containing 1.0 for known indices else 0.0.
        """
        self.register_buffer("D_atom", self._C_atomic(D))
        self.register_buffer("zero_indices", torch.nonzero((1 - self.D_atom[0]))[:, 0])
        self.register_buffer("nonzero_indices", torch.nonzero(self.D_atom[0])[:, 0])

        self.register_buffer("S11", RRt[self.zero_indices][:, self.zero_indices])
        self.register_buffer("S12", RRt[self.zero_indices][:, self.nonzero_indices])
        self.register_buffer("S21", RRt[self.nonzero_indices][:, self.zero_indices])
        self.register_buffer("S22", RRt[self.nonzero_indices][:, self.nonzero_indices])

        S_clamp = self.S11 - ((self.S12 @ torch.linalg.pinv(self.S22) @ self.S21))
        R_clamp = torch.linalg.cholesky(S_clamp)
        self.register_buffer("RRt_clamp_restricted", R_clamp @ R_clamp.t())
        RRt_clamp = self._scatter(
            torch.zeros_like(RRt), self.zero_indices, self.RRt_clamp_restricted
        )
        R_clamp = self._scatter(torch.zeros_like(RRt), self.zero_indices, R_clamp)
        return R_clamp, RRt_clamp

    def _multiply_R(self, Z, C):
        Z_flat = Z.reshape([Z.shape[0], -1, 3])
        return (self.R_clamp @ Z_flat).reshape(Z.shape)

    def _multiply_R_transpose(self, Z, C):
        Z_flat = Z.reshape([Z.shape[0], -1, 3])
        return (self.R_clamp.t() @ Z_flat).reshape(Z.shape)

    def _multiply_R_inverse(self, X, C):
        X_flat = X.reshape([X.shape[0], -1, 3])
        return (self.R_clamp_inverse @ X_flat).reshape(X.shape)

    def _multiply_R_inverse_transpose(self, X, C):
        X_flat = X.reshape([X.shape[0], -1, 3])
        return (self.R_clamp_inverse.t() @ X_flat).reshape(X.shape)

    def multiply_covariance(self, dX, C):
        dX_flat = dX.reshape([dX.shape[0], -1, 3])
        return (self.RRt_clamp @ dX_flat).reshape(dX.shape)

    def multiply_inverse_covariance(self, dX, C):
        dX_flat = dX.reshape([dX.shape[0], -1, 3])
        return (self.RRt_clamp_inverse @ dX_flat).reshape(dX.shape)


class BackboneMVNResidueGas(torch.nn.Module):
    """
    Gaussian model for protein backbones.
    """

    def __init__(self, stddev_CA=10.0, stddev_atoms=1.0, **kwargs):
        super().__init__()
        self.stddev_CA = stddev_CA
        self.stddev_atoms = stddev_atoms

        # The full R matrix factorizes into a block diagonal of 4x4 matrices
        s1 = stddev_CA
        s2 = stddev_atoms
        # Atoms are N-CA-C=O
        R_local = torch.tensor(
            [[s2, s1, 0, 0], [0, s1, 0, 0], [0, s1, s2, 0], [0, s1, 0, s2]]
        ).float()
        self.register_buffer("R_local", R_local)
        self.register_buffer("Ri_local", torch.linalg.inv(R_local).detach())

    def _unflatten(self, Z):
        if len(Z.shape) == 3:
            num_batch, num_atoms, _ = Z.shape
            num_residues = num_atoms // 4
            Z_unflat = Z.reshape([num_batch, num_residues, 4, 3])
            return Z_unflat
        else:
            return Z

    def _multiply_R(self, Z, C):
        """Multiply by the square root of the covariance matrix"""
        Z_unflat = self._unflatten(Z)
        R_Z_unflat = torch.einsum("biax,ca->bicx", Z_unflat, self.R_local)
        R_Z = R_Z_unflat.reshape(Z.shape)
        return R_Z

    def _multiply_R_transpose(self, Z, C):
        """Multiply by the square root of the covariance matrix (transpose)"""
        Z_unflat = self._unflatten(Z)
        Rt_Z_unflat = torch.einsum("biax,ac->bicx", Z_unflat, self.R_local)
        Rt_Z = Rt_Z_unflat.reshape(Z.shape)
        return Rt_Z

    def _multiply_R_inverse(self, X, C):
        """Multiply by the inverse of the square root of the covariance matrix"""
        X_unflat = self._unflatten(X)
        Ri_X = torch.einsum("biax,ca->bicx", X_unflat, self.Ri_local)
        return Ri_X.reshape(X.shape)

    def _multiply_R_inverse_transpose(self, X, C):
        """Multiply by the inverse trasnpose of the square root of the
        covariance matrix
        """
        X_unflat = self._unflatten(X)
        Rit_X = torch.einsum("biax,ac->bicx", X_unflat, self.Ri_local)
        return Rit_X.reshape(X.shape)

    def multiply_covariance(self, dX, C):
        """Multiply by the covariance matrix.

        Args:
            dX (Tensor): Backbone tensor with dimensions
                `(num_batch, num_residues, 4, 3)`.
            (Note: this will typically be a gradient or direction vector,
            such as the score function. Not absolute coordinates).
            C (Tensor): Chain map with dimensions

        returns:
            C_dX (Tensor): The matrix-vector product resulting from
        left-multiplying by the covariance matrix.
        """
        # Covariance C = G @ G.T
        dX_flat = dX.reshape([dX.shape[0], -1, 3])
        Rt_dX = self._multiply_R_transpose(dX_flat, C)
        C_dX = self._multiply_R(Rt_dX, C)
        C_dX = C_dX.reshape(dX.shape)
        return C_dX

    def multiply_inverse_covariance(self, dX, C):
        """Multiply by the inverse covariance matrix.

        Args:
            dX (Tensor): Backbone tensor with dimensions
                `(num_batch, num_residues, 4, 3)`.
            C (Tensor): Chain map with dimensions

        returns:
            Ci_dX (Tensor): The matrix-vector product resulting from
        left-multiplying by the inverse covariance matrix.
        """
        # Covariance C = G @ G.T
        dX_flat = dX.reshape([dX.shape[0], -1, 3])
        Ri_dX = self._multiply_R_inverse(dX_flat, C)
        Ci_dX = self._multiply_R_inverse_transpose(Ri_dX, C)
        Ci_dX = Ci_dX.reshape(dX.shape)
        return Ci_dX

    def log_determinant(self, C):
        """Compute log determinant of the covariance matrix"""
        log_s1 = np.log(self.stddev_CA)
        log_s2 = np.log(self.stddev_atoms)
        num_residues = C.ne(0).float().sum(1)
        """ We have
                det([s2,s1, 0, 0],
                    [0, s1, 0, 0],
                    [0, s1,s2, 0],
                    [0, s1, 0,s2])
                =
                det([s1, 0, 0, 0],
                    [s1, s2, 0, 0],
                    [s1, 0,s2, 0],
                    [s1, 0, 0,s2])
                = s1 * s2^3
            And we pick up one determinant per residue per xyz dimension
        """
        logdet = 3 * num_residues * (log_s1 + 3.0 * log_s2)
        return logdet

    def log_prob(
        self, X: torch.Tensor, C: torch.Tensor, *, normalized: bool = False
    ) -> torch.Tensor:
        raise NotImplementedError

    def sample(
        self,
        C: torch.Tensor,
        ddX: Optional[torch.Tensor] = None,
        Z: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        """Sample from the Gaussian."""
        num_batch = C.shape[0]
        num_residues = C.shape[1]

        if Z is None:
            Z = torch.randn([num_batch, num_residues * 4, 3], device=C.device)
        if ddX is None:
            X_flat = self._multiply_R(Z, C)
        else:
            RtddX = self._multiply_R_transpose(ddX, C)
            X_flat = self._multiply_R(Z + RtddX, C)

        X = X_flat.reshape([num_batch, num_residues, 4, 3])
        return X