Spaces:
Sleeping
Sleeping
File size: 36,144 Bytes
ce7bf5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 |
# Copyright Generate Biomedicines, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Layers for multivariate normal models of protein structure.
This module contains pytorch layers for perturbing protein structure with noise,
which can be useful both for data augmentation, benchmarking, or denoising based
training.
"""
import math
from typing import Optional
import numpy as np
import torch
import torch.nn.functional as F
from chroma.layers import conv
from chroma.layers.structure import backbone
class BackboneMVNGlobular(torch.nn.Module):
"""
Gaussian model for protein backbones.
"""
def __init__(
self,
covariance_model="brownian",
complex_scaling=False,
sigma_translation=1.0,
**kwargs,
):
super().__init__()
# These constant was derived from fitting uniform phi,psi chains
self._scale = 1.5587407701549267
# These parameterize the scaling law, *per xyz dimension*
# Rg = Rg0 * N_atoms ^ nu
self._nu = 2.0 / 5.0
self._rg_0_1D = 2.0 / 3.0
# Exact solution for Rg0, agrees with above to 2 decimals.
# We divide the literature prefactor for a per-residue
# scaling law (John J Tanner 2016) by two terms:
# 1. a conversion factor from residues to atoms (4^nu)
# 2. the sqrt(3) to account for isotropic dimensional (xyz) Rg contributions
# self._rg_0_1D = 2.0 / (4 ** self._nu * np.sqrt(3))
self.covariance_model = covariance_model
self.complex_scaling = complex_scaling
self.sigma_translation = sigma_translation
def _atomic_mean(self, X_flat, mask):
"""Compute the mean across all 4 atom types by mask expansion"""
mask_expand = mask.unsqueeze(-1).expand(-1, -1, 4)
mask_atomic = mask_expand.reshape(mask.shape[0], -1).unsqueeze(-1)
X_mean = torch.sum(mask_atomic * X_flat, 1, keepdims=True) / (
torch.sum(mask_atomic, 1, keepdims=True)
)
return X_mean, mask_atomic
def _C_atomic(self, C):
# Expand chain map into atomic level masking
C_expand = C.unsqueeze(-1).expand(-1, -1, 4)
C_atomic = C_expand.reshape(C.shape[0], -1)
return C_atomic
def _globular_parameters(self, C_mask_all, translation_inflation=None):
"""Compute parameters for enforcing Rg scaling"""
# Rg scaling constants
nu = self._nu
a = self._scale
r = self._rg_0_1D
# C_mask_all is ()
# Monomer and complex sizes (batch, {chains})
C_mask = C_mask_all.squeeze(-1)
N_per_chain = C_mask.sum(1)
N_per_complex = C_mask.sum([1, 2])
# Compute expected Rg^2 values per complex
Rg2_complex = (r ** 2) * N_per_complex ** (2.0 * nu)
Rg2_chain = (r ** 2) * N_per_chain ** (2.0 * nu)
# Compute OU process parameters
N_per_chain = torch.clip(N_per_chain, 1, 1e6)
# Decay parameter B is related to global spring coefficient
# as k = (1-B)^2
B = (3.0 / N_per_chain) + N_per_chain ** (-nu) * torch.sqrt(
N_per_chain ** (2 * (nu - 1)) * (N_per_chain ** 2 + 9) - (a / r) ** 2
)
B = torch.clip(B, 1e-4, 1.0 - 1e-4)
# OU process equilibrium standard deviation warm-starts process
x_init_std = torch.sqrt(1.0 / (1.0 - B ** 2))
# Compute size-weighted average Rg^2 per chain
Rg2_chain_avg = (N_per_chain * Rg2_chain).sum(1) / (N_per_chain.sum(1) + 1e-5)
Rg2_centers_of_mass = torch.clip(Rg2_complex - Rg2_chain_avg, min=1)
Rg_centers_of_mass = torch.sqrt(Rg2_centers_of_mass)
# Mean scaling parameter deflates equilibrium variance to unity and
# optionally re-inflates the per center of mass variance to implement
# complex scaling
if translation_inflation is not None:
# This argument overrides default per-chain translational scaling
# to [translation_inflation * Complex Rg]
marginal_COM_std = translation_inflation * Rg2_complex.sqrt()
mean_shift_scale = (x_init_std - marginal_COM_std[..., None]) / (x_init_std)
elif self.complex_scaling:
N_chains_per_complex = (C_mask.sum(1) > 0).sum(1)
# Correct for the fact that we are sampling chains IID (not
# centered) but want to control centered Rg
std_correction = torch.sqrt(
N_chains_per_complex / (N_chains_per_complex - 1).clamp(min=1)
)
marginal_COM_std = std_correction * Rg_centers_of_mass
mean_shift_scale = (x_init_std - marginal_COM_std[..., None]) / (x_init_std)
else:
mean_shift_scale = (x_init_std - 1.0) / (x_init_std)
return B[..., None], x_init_std[..., None], mean_shift_scale[..., None]
def _expand_masks(self, C):
C_atomic = self._C_atomic(C)
C_mask_all = backbone.expand_chain_map(torch.abs(C_atomic))[..., None]
C_mask_present = backbone.expand_chain_map(C_atomic)[..., None]
return C_mask_all, C_mask_present
def _expand_per_chain(self, Z, C):
"""Build augmented [num_batch, 4*num_residues, num_chains, 3] system"""
# Build masks and augmented [B,4N,C,3] system
C_mask_all, C_mask_present = self._expand_masks(C)
Z_expand = C_mask_all * Z[..., None, :]
return C_mask_all, C_mask_present, Z_expand
def _shift_means(self, X_expand, C_mask_mean, C_mask_apply, scale, shift=None):
"""Inflate or deflate per-chain means by a scale factor."""
X_chain_mean = (C_mask_mean * X_expand).sum(1, keepdims=True) / (
C_mask_mean.sum(1, keepdims=True) + 1e-5
)
shift = shift if shift is not None else 0
shift = shift + scale * X_chain_mean
X_expand = C_mask_apply * (X_expand + shift)
return X_expand
def _translate_by_x1(self, X_expand, C_mask, scale_mean, scale_x1):
"""Shift mean to mean <- mean + scale_mean * mean + scale_x1 * x1"""
X_1 = self._gather_chain_init(X_expand, C_mask)
X_expand = self._shift_means(
X_expand, C_mask, C_mask, scale=scale_mean, shift=X_1 * scale_x1
)
return X_expand
def _translate_by_x1_transpose(self, X_expand, C_mask, scale_mean, scale_x1):
"""Transpose of _translate_by_x1."""
# Shift mean (Symmetric under transpose)
X_chain_sum = (C_mask * X_expand).sum(1, keepdims=True)
X_chain_mean = X_chain_sum / (C_mask.sum(1, keepdims=True) + 1e-5)
X_expand = C_mask * (X_expand + scale_mean * X_chain_mean)
# Update to X_init
# The transpose of updating all by X_init is updating X_init by all
first_index = torch.max(C_mask, 1, keepdim=True)[1]
first_index_expand = first_index.expand(-1, -1, -1, 3)
X_init = torch.gather(X_expand, 1, first_index_expand)
X_init_update = X_init + scale_x1 * X_chain_sum
X_expand = X_expand.scatter(1, first_index_expand, X_init_update)
return X_expand
def _gather_chain_init(self, X_expand, C_mask):
"""Extract first coordinates, per chain"""
first_index = torch.max(C_mask, 1, keepdim=True)[1]
first_index_expand = first_index.expand(-1, -1, -1, 3)
X_init = torch.gather(X_expand, 1, first_index_expand)
return X_init
def _multiply_R(self, Z, C):
"""Multiply by the square root of the covariance matrix"""
if Z.dim() == 4:
Z = Z.reshape(Z.shape[0], -1, 3)
C_mask_all, C_mask_present, Z_expand = self._expand_per_chain(Z, C)
if self.covariance_model == "brownian":
# Step 1. Scaled cumsum along each chain (including missing residues)
# [B,4N,3] -> [B,4N,C,3]
R_Z_expand = C_mask_all * torch.cumsum(Z_expand, 1) * self._scale
# Step 2. Translate by rescaled X_1
R_Z_expand = self._translate_by_x1(
R_Z_expand, C_mask_all, scale_mean=-1, scale_x1=self.sigma_translation
)
elif self.covariance_model == "globular":
# Build coefficients per chain as as [B,C,1]
B, x_init_std, mean_shift_scale = self._globular_parameters(C_mask_all)
# Step 1. R_init
# Scale z_1 to have equilibrium variance
# z_1 will be the position where (1 - mask_{i-1}) = mask_i
C_mask_prev = F.pad(C_mask_all[:, :-1, :, :], (0, 0, 0, 0, 1, 0))
mask_init = (1.0 - C_mask_prev) * C_mask_all
# Inflate z_1 by the equilibrium variance
Z_expand = (1.0 - mask_init) * Z_expand + mask_init * x_init_std[
:, None, ...
] * Z_expand
# Step 2. R_sum
# Apply linear recurrence `x_i = z_i + b * x_{i-1}`
# Repack all independent signals and coeffs (B,C,3) in 1D
num_B, num_N, num_C, _ = Z_expand.shape
# [B,4N,C,3] => [B,C,3,4N] => [BC3, 4N]
Z_1D = Z_expand.permute([0, 2, 3, 1]).reshape([-1, num_N])
# [B,C,1] => [BC,1] => [BC,3] => [BC3]
B_1D = B.reshape([-1, 1]).expand([-1, 3]).reshape([-1])
R_Z_1D = self._scale * conv.filter1D_linear_decay(Z_1D, B_1D)
# [BC3,4N] -> [B,C,3,4N] -> [B,4N,C,3]
R_Z_expand = R_Z_1D.reshape([num_B, num_C, 3, num_N]).permute([0, 3, 1, 2])
R_Z_expand = C_mask_all * R_Z_expand
# Step 3. R_center
# Rescale translational variance
scale = -mean_shift_scale[:, None, ...]
R_Z_expand = self._shift_means(
R_Z_expand, C_mask_all, C_mask_all, scale=scale
)
# Collapse out chain dimension
R_Z = R_Z_expand.sum(2).reshape(Z.shape[0], -1, 4, 3)
return R_Z
def _multiply_R_transpose(self, Z, C):
"""Multiply by the square root of the covariance matrix (transpose)"""
if Z.dim() == 4:
Z = Z.reshape(Z.shape[0], -1, 3)
# Inflate chain dimension [B,4N,C,3]
C_mask_all, C_mask_present, Z_expand = self._expand_per_chain(Z, C)
if self.covariance_model == "brownian":
# Step 2. [Transpose of] Translate by rescaled X_1
Z_expand = self._translate_by_x1_transpose(
Z_expand, C_mask_all, scale_mean=-1, scale_x1=self.sigma_translation
)
# Step 1. [Transpose of] Scaled cumsum along each chain
Rt_Z_expand = torch.flip(torch.cumsum(torch.flip(Z_expand, [1]), 1), [1])
Rt_Z_expand = C_mask_all * Rt_Z_expand * self._scale
elif self.covariance_model == "globular":
# Build coefficients per chain as as [B,C,1]
B, x_init_std, mean_shift_scale = self._globular_parameters(C_mask_all)
Rt_Z_expand = Z_expand
# Step 3. R_center_transpose = R_center (by symmetry)
scale = -mean_shift_scale[:, None, ...]
Rt_Z_expand = self._shift_means(
Rt_Z_expand, C_mask_all, C_mask_all, scale=scale
)
# Step 2. R_sum_transpose = R_sum @ R_flip
# Apply linear recurrence `x_i = z_i + b * x_{i-1}`
# Repack all independent signals and coeffs (B,C,3) in 1D
num_B, num_N, num_C, _ = Rt_Z_expand.shape
# [B,4N,C,3] => [B,C,3,4N] => [BC3, 4N]
Z_1D = Rt_Z_expand.permute([0, 2, 3, 1]).reshape([-1, num_N])
Z_1D_reverse = torch.flip(Z_1D, [1])
# [B,C,1] => [BC,1] => [BC,3] => [BC3]
B_1D = B.reshape([-1, 1]).expand([-1, 3]).reshape([-1])
Rt_Z_1D_reverse = self._scale * conv.filter1D_linear_decay(
Z_1D_reverse, B_1D
)
Rt_Z_1D = torch.flip(Rt_Z_1D_reverse, [1])
# [BC3,4N] -> [B,C,3,4N] -> [B,4N,C,3]
Rt_Z_expand = Rt_Z_1D.reshape([num_B, num_C, 3, num_N]).permute(
[0, 3, 1, 2]
)
Rt_Z_expand = C_mask_all * Rt_Z_expand
# Step 1. R_init_transpose = R_init (by symmetry)
# Scale z_1 to have equilibrium variance
# z_1 will be the position where (1 - mask_{i-1}) = mask_i
C_mask_prev = F.pad(C_mask_all[:, :-1, :, :], (0, 0, 0, 0, 1, 0))
mask_init = (1.0 - C_mask_prev) * C_mask_all
# Inflate z_1 by the equilibrium variance
Rt_Z_expand = (1.0 - mask_init) * Rt_Z_expand + mask_init * x_init_std[
:, None, ...
] * Rt_Z_expand
# Collapse out chain dimension
Rt_Z = Rt_Z_expand.sum(2).reshape(Z.shape[0], -1, 4, 3)
return Rt_Z
def _multiply_R_inverse(self, X, C):
"""Multiply by the inverse of the square root of the covariance matrix"""
if X.dim() == 4:
X = X.reshape(X.shape[0], -1, 3)
# Inflate chain dimension [B,4N,C,3]
C_mask_all, C_mask_present, X_expand = self._expand_per_chain(X, C)
if self.covariance_model == "brownian":
# Step 2. [Inverse of] Translate by rescaled X_1
X_expand = self._translate_by_x1(
X_expand, C_mask_all, scale_mean=1 / self.sigma_translation, scale_x1=-1
)
# Step 1. [Inverse of] Scaled cumsum per chain [X_i - X_(i-1)]
Ri_X_expand = X_expand - F.pad(X_expand[:, :-1, :, :], (0, 0, 0, 0, 1, 0))
Ri_X_expand = C_mask_all * Ri_X_expand / self._scale
elif self.covariance_model == "globular":
# Build coefficients per chain as as [B,C,1]
B, x_init_std, mean_shift_scale = self._globular_parameters(C_mask_all)
# Step 3. R_center_inverse
# Rescale translational variance
mean_shift_scale_inverse = mean_shift_scale / (1 - mean_shift_scale)
scale = mean_shift_scale_inverse[:, None, ...]
X_expand = self._shift_means(X_expand, C_mask_all, C_mask_all, scale=scale)
# Step 2. R_sum_inverse
# Apply linear recurrence `x_i = z_i + b * x_{i-1}`
X_prev = F.pad(X_expand[:, :-1, :, :], (0, 0, 0, 0, 1, 0))
Ri_X_expand = (
C_mask_all * (X_expand - B[:, None, ...] * X_prev) / self._scale
)
# Step 1. R_init_inverse
# Scale z_1 to have equilibrium variance
# z_1 will be the position where (1 - mask_{i-1}) = mask_i
C_mask_prev = F.pad(C_mask_all[:, :-1, :, :], (0, 0, 0, 0, 1, 0))
mask_init = (1.0 - C_mask_prev) * C_mask_all
Ri_X_expand = (
1.0 - mask_init
) * Ri_X_expand + mask_init * Ri_X_expand / x_init_std[:, None, ...]
# Collapse out chain dimension
Ri_X = Ri_X_expand.sum(2).reshape(X.shape[0], -1, 4, 3)
return Ri_X
def _multiply_R_inverse_transpose(self, X, C):
"""Multiply by the inverse trasnpose of the square root of the
covariance matrix
"""
if X.dim() == 4:
X = X.reshape(X.shape[0], -1, 3)
C_mask_all, C_mask_present, X_expand = self._expand_per_chain(X, C)
if self.covariance_model == "brownian":
# Step 1. [Inverse transpose of] Scaled cumsum per chain [X_i - X_(i+1)]
Rit_X_expand = X_expand - F.pad(X_expand[:, 1:, :, :], (0, 0, 0, 0, 0, 1))
Rit_X_expand = C_mask_all * Rit_X_expand / self._scale
# Step 2. [Inverse transpose of] Translate by rescaled X_1
Rit_X_expand = self._translate_by_x1_transpose(
Rit_X_expand,
C_mask_all,
scale_mean=1 / self.sigma_translation,
scale_x1=-1,
)
elif self.covariance_model == "globular":
# Build coefficients per chain as as [B,C,1]
B, x_init_std, mean_shift_scale = self._globular_parameters(C_mask_all)
Rit_X_expand = X_expand
# Step 1. R_init_inverse_transpose = R_init_inverse (by symmetry)
# Scale z_1 to have equilibrium variance
# z_1 will be the position where (1 - mask_{i-1}) = mask_i
C_mask_prev = F.pad(C_mask_all[:, :-1, :, :], (0, 0, 0, 0, 1, 0))
mask_init = (1.0 - C_mask_prev) * C_mask_all
Rit_X_expand = (
1.0 - mask_init
) * Rit_X_expand + mask_init * Rit_X_expand / x_init_std[:, None, ...]
# Step 2. R_sum_inverse_transpose
# Apply linear recurrence `x_i = z_i + b * x_{i-1}`
X_future = F.pad(Rit_X_expand[:, 1:, :, :], (0, 0, 0, 0, 0, 1))
Rit_X_expand = (
C_mask_all * (Rit_X_expand - B[:, None, ...] * X_future) / self._scale
)
# Step 3. R_center_inverse_transpose = R_center_inverse (by symmetry)
# Rescale translational variance
mean_shift_scale_inverse = mean_shift_scale / (1 - mean_shift_scale)
scale = mean_shift_scale_inverse[:, None, ...]
Rit_X_expand = self._shift_means(
Rit_X_expand, C_mask_all, C_mask_all, scale=scale
)
Rit_X = Rit_X_expand.sum(2).reshape(X.shape[0], -1, 4, 3)
return Rit_X
def multiply_covariance(self, dX, C):
"""Multiply by the covariance matrix.
Args:
dX (Tensor): Backbone tensor with dimensions
`(num_batch, num_residues, 4, 3)`.
(Note: this will typically be a gradient or direction vector,
such as the score function. Not absolute coordinates).
C (Tensor): Chain map with dimensions
returns:
C_dX (Tensor): The matrix-vector product resulting from
left-multiplying by the covariance matrix.
"""
# Covariance C = G @ G.T
dX_flat = dX.reshape([dX.shape[0], -1, 3])
Rt_dX = self._multiply_R_transpose(dX_flat, C)
C_dX = self._multiply_R(Rt_dX, C)
C_dX = C_dX.reshape(dX.shape)
return C_dX
def multiply_inverse_covariance(self, dX, C):
"""Multiply by the inverse covariance matrix.
Args:
dX (Tensor): Backbone tensor with dimensions
`(num_batch, num_residues, 4, 3)`.
C (Tensor): Chain map with dimensions
returns:
Ci_dX (Tensor): The matrix-vector product resulting from
left-multiplying by the inverse covariance matrix.
"""
# Covariance C = G @ G.T
dX_flat = dX.reshape([dX.shape[0], -1, 3])
Ri_dX = self._multiply_R_inverse(dX_flat, C)
Ci_dX = self._multiply_R_inverse_transpose(Ri_dX, C)
Ci_dX = Ci_dX.reshape(dX.shape)
return Ci_dX
def log_determinant(self, C):
"""Compute log determinant of the covariance matrix"""
C_mask_all, C_mask_present = self._expand_masks(C)
B, x_init_std, xi = self._globular_parameters(C_mask_all)
a = self._scale
B = B[..., 0]
xi = xi[..., 0]
# Compute determinants per chain
N_chain = C_mask_all.sum([1, 3])
logdet_chain = (
N_chain * np.log(a) + torch.log(1.0 - xi) - 0.5 * torch.log(1.0 - B ** 2)
)
# We pick up one determinant per chain per spatial dimension (xyz)
logdet = 3.0 * logdet_chain.sum(-1)
return logdet
def log_prob(self, X: torch.Tensor, C: torch.Tensor) -> torch.Tensor:
"""
Compute log probability for Backbone MVN as follows:
term1 = -n/2 log(2π)
term2 = -1/2 log|Σ|
term3 = -1/2 ∑_{i=1}^{n} (x_i - μ)^T Σ^-1 (x_i - μ)
logP = term1 + term2 + term3
Args:
X (torch.Tensor): of size (batch, num_residues, 4, 3)
C (torch.Tensor): of size (batch, num_residues)
Returns:
logp (torch.Tensor): of size (batch,)
"""
term1 = -(C.shape[1] * 4 * 3) / 2 * np.log(2 * np.pi)
term2 = -1 / 2 * self.log_determinant(C)
term3 = -1 / 2 * (X * self.multiply_inverse_covariance(X, C)).sum([1, 2, 3])
logp = term1 + term2 + term3
return logp
def sample(
self,
C: torch.Tensor,
ddX: Optional[torch.Tensor] = None,
Z: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""
Draws samples from the MVN.
Args:
C: (torch.Tensor): specifying the shape of the samples.
ddX (torch.Tensor, optional): Optionally can specify a shift ddX which will be transformed (R^t * ddX) and used to shift Z.
Z (torch.Tensor, optional): Optionally can specify random normal samples to transform into samples from the backbone MVN.
Returns:
X (torch.Tensor): of size (C.size(0), C.size(1), 4, 3) samples from the MVN.
"""
num_batch = C.shape[0]
num_residues = C.shape[1]
if Z is None:
Z = torch.randn([num_batch, num_residues * 4, 3], device=C.device)
if ddX is None:
X_flat = self._multiply_R(Z, C)
else:
RtddX = self._multiply_R_transpose(ddX, C)
X_flat = self._multiply_R(Z + RtddX, C)
X = X_flat.reshape([num_batch, num_residues, 4, 3])
return X
class ConditionalBackboneMVNGlobular(BackboneMVNGlobular):
"""
A conditional MVN distribution where some subset of the atomic coordinates are known.
Args:
covariance_model (str): Specifying the covariance_model of the base distribution (which respect to which we are conditioning).
complex_scaling (bool): Specifying the complex_scaling of the base distribution (which respect to which we are conditioning).
sigma_translation (float): Specifying the sigma_translation of the base distribution (which respect to which we are conditioning).
X (torch.Tensor): of size (1, num_residues, 4, 3) containing atomic coordinates
C (torch.Tensor): of size (1, num_residues) specifying chain specification
D (torch.Tensor): of size (1, num_residues) containing 1s or 0s, (castable as Byte or Bool) where 1 indicates a residue's structural information
is to be conditioned on.
gamma (float): This inflates variance of the center of mass of the samples generated by the CMVN.
"""
def __init__(
self,
covariance_model: str = "brownian",
complex_scaling: bool = False,
sigma_translation: float = 1.0,
X: Optional[torch.Tensor] = None,
C: Optional[torch.Tensor] = None,
D: Optional[torch.Tensor] = None,
gamma: Optional[float] = None,
**kwargs,
):
super().__init__(covariance_model, complex_scaling, sigma_translation, **kwargs)
assert D.shape[0] == 1
assert C.shape[0] == 1
assert X.shape[0] == 1
self.gamma = gamma
self.register_buffer("X", X)
self.register_buffer("C", C)
self.register_buffer("D", D.float())
self._check_C(self.C.abs())
R, RRt = self._materialize_RRt(self.C)
self.register_buffer("R", R)
self.register_buffer("RRt", RRt)
R_clamp, RRt_clamp = self._condition_RRt(self.RRt, self.D)
self.register_buffer("R_clamp", R_clamp)
self.register_buffer("RRt_clamp", RRt_clamp)
R_clamp_inverse = torch.linalg.pinv(self.R_clamp)
self.register_buffer("R_clamp_inverse", R_clamp_inverse)
self.register_buffer("mu_sample", self.mu(X))
def _center_of_mass(self, X, C):
mask_expand = (
(C > 0).float().reshape(list(C.shape) + [1, 1]).expand([-1, -1, 4, -1])
)
X_mean = (mask_expand * X).sum([1, 2], keepdims=True) / (
mask_expand.sum([1, 2], keepdims=True)
)
return X_mean
def mu(self, X: torch.Tensor):
"""
Returns the mean of the conditional distribution obtained by conditioning on atomic coordinates specified in `X` at
the residues specified in `self.D`.
Args:
X (torch.Tensor): of size (B, num_residues, 4, 3)
Returns:
X_mu (torch.Tensor): of size (B, num_residues, 4, 3)
"""
B, _, _, _ = X.size()
loc = self._center_of_mass(X, self.D).squeeze().reshape(B, 1, 3)
m = (self.D_atom[..., None] > 0).repeat(B, 1, 3)
X_flat = X.reshape(B, -1, 3)
X_restricted = X_flat[m].reshape(B, -1, 3)
mu = loc + (self.S12 @ torch.linalg.pinv(self.S22) @ (X_restricted - loc))
X_mu = X_flat.scatter(1, self.zero_indices[None, ..., None].repeat(B, 1, 3), mu)
return X_mu.reshape(B, -1, 4, 3)
def sample(
self,
num_batch: int = 1,
Z: Optional[torch.Tensor] = None,
mu_X: Optional[torch.Tensor] = None,
):
"""
Draws samples from the conditional MVN with mean `mu_X`.
Args:
num_batch (int): Number of samples to draw.
Z (torch.Tensor, optional): of size (batch, num_residues, 4, 3) random standard normal samples can be specified (that are transformed into samples from the CMVN)
mu_X (torch.Tensor, optional): of size (batch, num_residues, 4, 3) optionally take the mean with respect to a different `X` tensor than was used to instantiate the class.
Returns:
samples (torch.Tensor): of size (num_batch, num_residues, 4, 3)
"""
if Z is not None:
num_batch = Z.shape[0]
C_expand = self.C.repeat(num_batch, 1, 1, 1)
mu = self.mu_sample.repeat(num_batch, 1, 1, 1)
if mu_X is not None:
mu = self.mu(mu_X)
if Z is None:
Z = torch.randn_like(mu)
return mu + self._multiply_R(Z, C_expand)
def _scatter(self, A, index, source):
J = torch.zeros_like(A)
J[index[:, None], index[None, :]] = source
return J
def _materialize_RRt(self, C):
"""As in C.4 of `https://www.biorxiv.org/content/10.1101/2022.12.01.518682v1.full.pdf`"""
a = self._scale
bs, sl = C.size()
Z = torch.randn(bs, 4 * sl, 3).to(C.device)
C_mask_all, C_mask_present, Z_expand = self._expand_per_chain(Z, C)
gamma = self.gamma if self.gamma is None or self.gamma > 0.0 else None
b, x_init_std, xi = self._globular_parameters(
C_mask_all, translation_inflation=gamma
)
C_atom = self._C_atomic(C.abs())
R_center = self._build_R_center(C_atom, xi)
R_sum = self._build_R_sum(C_atom, b)
R_init = self._build_R_init(C_atom, b)
R = a * R_center @ R_sum @ R_init
RRt = R @ R.t()
return R, RRt
def _check_C(self, C):
_C = C[0][:-1] - C[0][1:]
if (_C > 0).any():
raise ValueError("Chain map needs to be increasing in this class!")
def _build_R_center(self, C_atom, xi):
chain_indices = C_atom.unique()
blocks = []
for chain_index, _xi in zip(chain_indices, xi[0]):
N = C_atom[C_atom == chain_index].numel()
blocks.append(
(
torch.eye(N, device=_xi.device)
- (_xi / N) * torch.ones(N, N, device=_xi.device)
)
)
return torch.block_diag(*blocks)
def _build_R_sum(self, C_atom, b):
chain_indices = C_atom.unique()
blocks = []
for chain_index, _b in zip(chain_indices, b[0]):
N = C_atom[C_atom == chain_index].numel()
blocks.append(
(
_b
** (
torch.arange(N, device=_b.device).unsqueeze(0)
- torch.arange(N, device=_b.device).unsqueeze(-1)
)
.tril()
.abs()
).tril()
)
return torch.block_diag(*blocks)
def _build_R_init(self, C_atom, b):
indices = [(C_atom == k).float().argmax(1).item() for k in C_atom.unique()]
N = C_atom.numel()
P3 = torch.eye(N).to(C_atom.device)
for index, _b in zip(indices, b[0]):
P3.diagonal().data[index] = 1 / math.sqrt(1 - _b ** 2)
return P3
def _condition_RRt(self, RRt, D):
"""
Args:
RRt (torch.tensor): of size (N x N) the original full covariance
D (torch.tensor): of dtype float and size (1xN) containing 1.0 for known indices else 0.0.
"""
self.register_buffer("D_atom", self._C_atomic(D))
self.register_buffer("zero_indices", torch.nonzero((1 - self.D_atom[0]))[:, 0])
self.register_buffer("nonzero_indices", torch.nonzero(self.D_atom[0])[:, 0])
self.register_buffer("S11", RRt[self.zero_indices][:, self.zero_indices])
self.register_buffer("S12", RRt[self.zero_indices][:, self.nonzero_indices])
self.register_buffer("S21", RRt[self.nonzero_indices][:, self.zero_indices])
self.register_buffer("S22", RRt[self.nonzero_indices][:, self.nonzero_indices])
S_clamp = self.S11 - ((self.S12 @ torch.linalg.pinv(self.S22) @ self.S21))
R_clamp = torch.linalg.cholesky(S_clamp)
self.register_buffer("RRt_clamp_restricted", R_clamp @ R_clamp.t())
RRt_clamp = self._scatter(
torch.zeros_like(RRt), self.zero_indices, self.RRt_clamp_restricted
)
R_clamp = self._scatter(torch.zeros_like(RRt), self.zero_indices, R_clamp)
return R_clamp, RRt_clamp
def _multiply_R(self, Z, C):
Z_flat = Z.reshape([Z.shape[0], -1, 3])
return (self.R_clamp @ Z_flat).reshape(Z.shape)
def _multiply_R_transpose(self, Z, C):
Z_flat = Z.reshape([Z.shape[0], -1, 3])
return (self.R_clamp.t() @ Z_flat).reshape(Z.shape)
def _multiply_R_inverse(self, X, C):
X_flat = X.reshape([X.shape[0], -1, 3])
return (self.R_clamp_inverse @ X_flat).reshape(X.shape)
def _multiply_R_inverse_transpose(self, X, C):
X_flat = X.reshape([X.shape[0], -1, 3])
return (self.R_clamp_inverse.t() @ X_flat).reshape(X.shape)
def multiply_covariance(self, dX, C):
dX_flat = dX.reshape([dX.shape[0], -1, 3])
return (self.RRt_clamp @ dX_flat).reshape(dX.shape)
def multiply_inverse_covariance(self, dX, C):
dX_flat = dX.reshape([dX.shape[0], -1, 3])
return (self.RRt_clamp_inverse @ dX_flat).reshape(dX.shape)
class BackboneMVNResidueGas(torch.nn.Module):
"""
Gaussian model for protein backbones.
"""
def __init__(self, stddev_CA=10.0, stddev_atoms=1.0, **kwargs):
super().__init__()
self.stddev_CA = stddev_CA
self.stddev_atoms = stddev_atoms
# The full R matrix factorizes into a block diagonal of 4x4 matrices
s1 = stddev_CA
s2 = stddev_atoms
# Atoms are N-CA-C=O
R_local = torch.tensor(
[[s2, s1, 0, 0], [0, s1, 0, 0], [0, s1, s2, 0], [0, s1, 0, s2]]
).float()
self.register_buffer("R_local", R_local)
self.register_buffer("Ri_local", torch.linalg.inv(R_local).detach())
def _unflatten(self, Z):
if len(Z.shape) == 3:
num_batch, num_atoms, _ = Z.shape
num_residues = num_atoms // 4
Z_unflat = Z.reshape([num_batch, num_residues, 4, 3])
return Z_unflat
else:
return Z
def _multiply_R(self, Z, C):
"""Multiply by the square root of the covariance matrix"""
Z_unflat = self._unflatten(Z)
R_Z_unflat = torch.einsum("biax,ca->bicx", Z_unflat, self.R_local)
R_Z = R_Z_unflat.reshape(Z.shape)
return R_Z
def _multiply_R_transpose(self, Z, C):
"""Multiply by the square root of the covariance matrix (transpose)"""
Z_unflat = self._unflatten(Z)
Rt_Z_unflat = torch.einsum("biax,ac->bicx", Z_unflat, self.R_local)
Rt_Z = Rt_Z_unflat.reshape(Z.shape)
return Rt_Z
def _multiply_R_inverse(self, X, C):
"""Multiply by the inverse of the square root of the covariance matrix"""
X_unflat = self._unflatten(X)
Ri_X = torch.einsum("biax,ca->bicx", X_unflat, self.Ri_local)
return Ri_X.reshape(X.shape)
def _multiply_R_inverse_transpose(self, X, C):
"""Multiply by the inverse trasnpose of the square root of the
covariance matrix
"""
X_unflat = self._unflatten(X)
Rit_X = torch.einsum("biax,ac->bicx", X_unflat, self.Ri_local)
return Rit_X.reshape(X.shape)
def multiply_covariance(self, dX, C):
"""Multiply by the covariance matrix.
Args:
dX (Tensor): Backbone tensor with dimensions
`(num_batch, num_residues, 4, 3)`.
(Note: this will typically be a gradient or direction vector,
such as the score function. Not absolute coordinates).
C (Tensor): Chain map with dimensions
returns:
C_dX (Tensor): The matrix-vector product resulting from
left-multiplying by the covariance matrix.
"""
# Covariance C = G @ G.T
dX_flat = dX.reshape([dX.shape[0], -1, 3])
Rt_dX = self._multiply_R_transpose(dX_flat, C)
C_dX = self._multiply_R(Rt_dX, C)
C_dX = C_dX.reshape(dX.shape)
return C_dX
def multiply_inverse_covariance(self, dX, C):
"""Multiply by the inverse covariance matrix.
Args:
dX (Tensor): Backbone tensor with dimensions
`(num_batch, num_residues, 4, 3)`.
C (Tensor): Chain map with dimensions
returns:
Ci_dX (Tensor): The matrix-vector product resulting from
left-multiplying by the inverse covariance matrix.
"""
# Covariance C = G @ G.T
dX_flat = dX.reshape([dX.shape[0], -1, 3])
Ri_dX = self._multiply_R_inverse(dX_flat, C)
Ci_dX = self._multiply_R_inverse_transpose(Ri_dX, C)
Ci_dX = Ci_dX.reshape(dX.shape)
return Ci_dX
def log_determinant(self, C):
"""Compute log determinant of the covariance matrix"""
log_s1 = np.log(self.stddev_CA)
log_s2 = np.log(self.stddev_atoms)
num_residues = C.ne(0).float().sum(1)
""" We have
det([s2,s1, 0, 0],
[0, s1, 0, 0],
[0, s1,s2, 0],
[0, s1, 0,s2])
=
det([s1, 0, 0, 0],
[s1, s2, 0, 0],
[s1, 0,s2, 0],
[s1, 0, 0,s2])
= s1 * s2^3
And we pick up one determinant per residue per xyz dimension
"""
logdet = 3 * num_residues * (log_s1 + 3.0 * log_s2)
return logdet
def log_prob(
self, X: torch.Tensor, C: torch.Tensor, *, normalized: bool = False
) -> torch.Tensor:
raise NotImplementedError
def sample(
self,
C: torch.Tensor,
ddX: Optional[torch.Tensor] = None,
Z: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""Sample from the Gaussian."""
num_batch = C.shape[0]
num_residues = C.shape[1]
if Z is None:
Z = torch.randn([num_batch, num_residues * 4, 3], device=C.device)
if ddX is None:
X_flat = self._multiply_R(Z, C)
else:
RtddX = self._multiply_R_transpose(ddX, C)
X_flat = self._multiply_R(Z + RtddX, C)
X = X_flat.reshape([num_batch, num_residues, 4, 3])
return X
|