Spaces:
Sleeping
Sleeping
File size: 9,828 Bytes
ce7bf5b b51d1fa ce7bf5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
# Copyright Generate Biomedicines, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import numpy as np
import torch
from PIL import Image, ImageDraw, ImageFont
from sklearn.decomposition import PCA
from torch import nn
import chroma
from chroma.constants import AA20
from chroma.data import Protein
from chroma.layers.structure import backbone
def letter_to_point_cloud(
letter="G",
width_pixels=35,
font = "/home/user/app/chroma_gen/chroma/utility/LSR.ttf",
depth_ratio=0.15,
fontsize_ratio=1.2,
stroke_width=1,
margin=0.5,
max_points=2000,
):
"""Build a point cloud from a letter"""
depth = int(depth_ratio * width_pixels)
fontsize = int(fontsize_ratio * width_pixels)
font = ImageFont.truetype(font,fontsize)
ascent, descent = font.getmetrics()
text_width = font.getmask(letter).getbbox()[2]
text_height = font.getmask(letter).getbbox()[3] + descent
margin_width = int(text_width * margin)
margin_height = int(text_height * margin)
image_size = [text_width + margin_width, text_height + margin_height]
image = Image.new("RGBA", image_size, (255, 255, 255))
draw = ImageDraw.Draw(image)
draw.text(
(margin_width // 2, margin_height // 2),
letter,
(0, 0, 0),
font=font,
stroke_width=stroke_width,
stroke_fill="black",
)
A = np.asarray(image).mean(-1)
A = A < 100.0
V = np.ones(list(A.shape[:2]) + [depth]) * A[:, :, None]
X_point_cloud = np.stack(np.nonzero(V), 1)
# Uniform dequantization
X_point_cloud = X_point_cloud + np.random.rand(*X_point_cloud.shape)
if max_points is not None and X_point_cloud.shape[0] > max_points:
np.random.shuffle(X_point_cloud)
X_point_cloud = X_point_cloud[:max_points, :]
return X_point_cloud
def point_cloud_rescale(
X, num_residues, neighbor_k=8, volume_per_residue=128.57, scale_ratio=0.4
):
"""Rescale target coordinates to occupy protein-sized volume"""
# Use heuristic for radius value from the average m-th nearest neighbor
# This was tuned empirically for target problems (could be optimized on the fly as LB estimate)
D = np.sqrt(np.square(X[None, :] - X[:, None]).sum(-1))
radius = 0.5 * np.sort(D, axis=1)[:, neighbor_k].mean()
diameter = D.max()
# Estimate initial volume with 2nd order inclusion exclusion
V = point_cloud_volume(X, radius)
# Compute target volume, which scales linearly with number of residues
V_target = num_residues * volume_per_residue
scale_factor = (scale_ratio * V_target / V) ** (1.0 / 3.0)
X_rescale = scale_factor * X
cutoff_D = scale_factor * radius
return X_rescale, cutoff_D
def point_cloud_volume(X, radius):
"""Estimate the volume of a point cloud given sphere radii"""
N = X.shape[0]
# Volume estimation - One body volumes
V_1 = N * (4.0 / 3.0) * np.pi * radius ** 3
# Volume estimation - 2nd order overlaps
D = np.sqrt(np.square(X[None, :] - X[:, None]).sum(-1))
overlap_ij = (
(D < 2.0 * radius)
* (np.pi / 12.0)
* (4.0 * radius + D)
* (2.0 * radius - D) ** 2
)
V_2 = np.tril(overlap_ij, k=-1).sum()
# Inclusion-Exclusion Principle
volume = V_1 - V_2
return volume
def plane_split_protein(X=None, C=None, protein=None, mask_percent=0.5):
if protein is None:
assert X is not None and C is not None
else:
X, C, _ = protein.to_XCS()
X = X[:, :, :4, :]
X = backbone.center_X(X, C)
points = X[C > 0].reshape(-1, 3)
pca = PCA(n_components=1)
normal = torch.from_numpy(
pca.fit_transform(points.detach().cpu().numpy().transpose(1, 0))
).to(X.device)
c_alphas = X[:, :, 1, :]
c = 0
tries = 0
def percent_masked(c):
C_mask = ((c_alphas @ normal) > c).squeeze(-1) & (C > 0)
return (~C_mask).float().sum().item() / (C > 0).sum().item()
# In the first stage we find the minimum C such that all of the residues
# lie on one side of the plane (c_alphas @ normal = c)
while (percent_masked(c) < 1.0) and (tries < 300000):
tries += 1
c += 100
# Now we drag the plane back until percent_masked - masked_percent is small.
size = X.size(1)
threshold = 0.1 if size < 100 else 0.05 if size < 500 else 0.01
tries = 0
while (np.abs(percent_masked(c) - mask_percent) > threshold) and (tries < 300000):
c -= 100
tries += 1
if tries >= 300000:
print(
"Tried and failed to split protein by plane to grab"
f" {mask_percent} residues."
)
c = 0
C_mask = ((c_alphas @ normal) > c).squeeze(-1) & (C > 0)
print(
f"Returning {100 * percent_masked(0.0):.2f} percent residues masked"
" instead."
)
else:
C_mask = ((c_alphas @ normal) > c).squeeze(-1) & (C > 0)
print(
f"Split protein by plane, masking {100 * percent_masked(c):.2f} percent of"
" residues."
)
return C_mask
def export_potts_evzoom(
outfile: str,
chroma: nn.Module,
protein: Protein,
t: float = 0.5,
alphabet_reorder="DEKRHQNSTPGAVILMCFWY",
element_cutoff_percentile: float = 0.95,
norm_cutoff_fraction: float = 0.98,
logo_cutoff_fraction: float = 0.9,
):
"""Build EVzoom visualization given Chroma and a protein.
EVzoom files can be dragged and dropped onto a viewer at EVzoom.org
Args:
outfile (str): File destination for outputting EVzoom json data. Should
end in `.json`.
chroma (nn.Module): Chroma model instance.
protein (Protein): Protein
t (float): Diffusion time for evaluating ChromaDesign Potts models.
alphabet_reorder (str): Amino acid ordering for EVzoom output.
element_cutoff_percentile (float): Percentile on (0,1) at which to clip
`J_ij` element-wise values for visualization.
norm_cutoff_fraction (float): Only visualize the top `i,j` pairs whose
norms account for this fraction of the sum of all norm values.
logo_cutoff_fraction (float): Only visualize the amino acids whose
cumulative marginal probabilities account for this total fraction
per position.
"""
if not outfile.endswith(".json"):
raise Exception("Destination should be a json file")
alphabet = AA20
X, C, S = protein.to_XCS()
h, J, edge_idx = chroma.design_network.predict_potts(X, C, t=t)
log_probs = chroma.design_network.predict_marginals(X, C, t=t)[0]
sequence = "".join([alphabet[ax] for ax in S.cpu().data.numpy().flatten().tolist()])
permute_ix = np.array([alphabet.index(c) for c in alphabet_reorder])
evz_data = {
"map": {"letters": sequence, "indices": list(range(len(sequence)))},
"logo": [],
"couplings": [],
}
h = -h[0, :, :].data.cpu().numpy()
J = -J[0, :, :, :, :].data.cpu().numpy()
edge_idx = edge_idx[0, :, :].data.cpu().numpy()
log_probs = log_probs[0, :, :].data.cpu().numpy()
N = J.shape[0]
k = J.shape[1]
# Compute entropy
P = np.exp(log_probs)
P = P / np.sum(P, 1, keepdims=True)
H = -np.sum(P * np.log2(P), 1)
# Determine top residues per position
P_sort = np.sort(P, axis=-1)[:, ::-1]
CDF = P_sort.cumsum(axis=-1)
ix_valid = CDF <= logo_cutoff_fraction
ix = ix_valid.sum(axis=1)
p_cutoff_logo = P_sort[np.arange(N), ix]
P_mask = P >= p_cutoff_logo[:, np.newaxis]
# Export logo
for i in range(N):
bits = (np.log2(20.0) - H[i]) * P[i]
aa_idx = np.argsort(bits)[::-1]
data_i = []
for a_i in aa_idx:
if P_mask[i, a_i]:
data_i.append({"code": alphabet[a_i], "bits": str(bits[a_i])})
evz_data["logo"].append(data_i)
# Compute cutoff automatically
norms = (J ** 2).sum(axis=(2, 3))
norms_descend = np.sort(norms.flatten())[::-1]
norms_cumsum = np.cumsum(norms_descend)
valid_norms = norms_cumsum / norms_cumsum[-1] < norm_cutoff_fraction
cutoff = norms_descend[valid_norms].min()
# Export couplings
for i in range(N):
for j in range(k):
j_idx = edge_idx[i, j]
score = np.sqrt(np.mean(J[i, j, :, :] ** 2))
if score > cutoff:
ii = [ix for ix in permute_ix if P_mask[i, ix]]
jj = [ix for ix in permute_ix if P_mask[j_idx, ix]]
J_ij = J[i, j, :, :]
J_ij = J_ij[ii][:, jj]
J_ij = np.clip(
J_ij,
np.percentile(J_ij, 100 * (1 - element_cutoff_percentile)),
np.percentile(J_ij, element_cutoff_percentile * 100),
)
J_ij = np.round(J_ij, 3)
data_ij = {
"i": i + 1,
"j": str(j_idx + 1),
"score": str(score),
"iC": [alphabet[ix] for ix in ii],
"jC": [alphabet[ix] for ix in jj],
"matrix": J_ij.tolist(),
}
evz_data["couplings"].append(data_ij)
with open(outfile, "w") as file:
file.write(json.dumps(evz_data))
|