Spaces:
Sleeping
Sleeping
File size: 6,776 Bytes
ce7bf5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
from unittest import TestCase
import pytest
import torch
from chroma.layers.structure.backbone import (
BackboneBuilder,
LossBackboneResidueDistance,
ProteinBackbone,
RigidTransform,
RigidTransformer,
)
class TestProteinBackbone(TestCase):
def test_cuda(self):
if torch.cuda.is_available():
try:
protein_backbone = ProteinBackbone(1).cuda()
except Exception:
protein_backbone = None
self.assertTrue(protein_backbone is not None)
def test_sample(self):
protein_backbone = ProteinBackbone(1)
expected = torch.Tensor(
[
[
[
[0.1331, -1.6303, -0.7377],
[0.0414, -0.1759, -0.8080],
[-0.3710, 0.4114, 0.5376],
[0.1965, 1.3947, 1.0081],
]
]
]
)
predicted = protein_backbone()
self.assertEqual((1, 1, 4, 3), predicted.shape)
self.assertTrue(torch.allclose(expected, predicted, rtol=1e-03))
def test_random_init_backbone(self):
protein_backbone = ProteinBackbone(1, init_state="")
predicted = protein_backbone()
self.assertEqual((1, 1, 4, 3), predicted.shape)
def test_sample_cartesian(self):
protein_backbone = ProteinBackbone(1, use_internal_coords=False)
expected = torch.Tensor(
[
[
[
[0.1331, -1.6303, -0.7377],
[0.0414, -0.1759, -0.8080],
[-0.3710, 0.4114, 0.5376],
[0.1965, 1.3947, 1.0081],
]
]
]
)
predicted = protein_backbone()
self.assertEqual((1, 1, 4, 3), predicted.shape)
self.assertTrue(torch.allclose(expected, predicted, rtol=1e-03))
def test_initialized_sample(self):
torch.manual_seed(7)
input_x = torch.rand(1, 2, 4, 3)
predicted = ProteinBackbone(1, use_internal_coords=False, X_init=input_x)()
expected = torch.Tensor(
[
[
[
[-5.3644e-07, -2.6469e-01, 1.4716e-01],
[1.2197e-01, -2.3073e-01, -8.6988e-02],
[-3.2784e-01, 1.6625e-01, -1.4673e-01],
[3.1635e-01, 3.9145e-01, 3.8886e-02],
],
[
[-2.4808e-01, -2.5717e-01, -6.6959e-02],
[-1.7564e-01, 2.5689e-01, -4.3900e-01],
[4.3500e-01, -3.5570e-01, 3.7083e-01],
[-1.2175e-01, 2.9370e-01, 1.8280e-01],
],
]
]
)
self.assertTrue(torch.allclose(predicted, expected, rtol=1e-03))
class TestRigidTransform(TestCase):
def test_sample(self):
# Default behavior should be identity transformation
rigid_transform = RigidTransform()
torch.manual_seed(7)
input_x = torch.rand(1, 1, 4, 3)
predicted = rigid_transform(input_x)
self.assertTrue(torch.allclose(predicted, input_x, rtol=1e-3))
class TestRigidTransformer(TestCase):
def test_sample(self):
rigid_transformer = RigidTransformer(center_rotation=True, keep_centered=True)
input_x = torch.rand(1, 1, 4, 3)
mean_centered = input_x - torch.mean(input_x.reshape(1, -1, 3), axis=-2)
# Test Identity
no_translation = torch.zeros(1, 3)
identity_q = torch.Tensor([[1.0, 0, 0, 0]])
predicted = rigid_transformer(input_x, no_translation, identity_q)
self.assertTrue(torch.allclose(predicted, mean_centered, rtol=1e-3))
# Test Translation
x_translation = torch.Tensor([[1, 0, 0]])
expected = mean_centered + x_translation
predicted = rigid_transformer(input_x, x_translation, identity_q)
self.assertTrue(torch.allclose(predicted, expected, rtol=1e-3))
class TestBackboneBuilder(TestCase):
def test_sample(self):
phi_tensor = torch.Tensor([[-1.0472]])
psi_tensor = torch.Tensor([[-0.7854]])
backbone_builder = BackboneBuilder()
expected = torch.Tensor(
[
[
[
[-1.2286, 0.2223, -1.2286],
[-1.3203, 1.6767, -1.2989],
[-1.7327, 2.2640, 0.0468],
[-1.1652, 3.2473, 0.5172],
]
]
]
)
predicted = backbone_builder(phi_tensor, psi_tensor)
self.assertTrue(torch.allclose(expected, predicted, rtol=1e-3))
def test_custom_sample(self):
num_residues = 1
phi_tensor = torch.Tensor([[-1.0472]])
psi_tensor = torch.Tensor([[-0.7854]])
backbone_builder = BackboneBuilder()
expected = torch.Tensor(
[
[
[
[-1.2286, 0.2223, -1.2286],
[-1.3203, 1.6767, -1.2989],
[-1.7327, 2.2640, 0.0468],
[-1.1652, 3.2473, 0.5172],
]
]
]
)
predicted = backbone_builder(phi_tensor, psi_tensor)
lengths = torch.tensor(
[[backbone_builder.lengths[key] for key in ["C_N", "N_CA", "CA_C"]]],
dtype=torch.float32,
)
lengths = lengths.repeat(1, 1) # (1,3)
angles = torch.tensor(
[[backbone_builder.angles[key] for key in ["CA_C_N", "C_N_CA", "N_CA_C"]]],
dtype=torch.float32,
)
angles = angles.repeat(1, 1) # (1,3)
omega = backbone_builder.angles["omega"] * torch.ones(1, 1) # (1,1)
predicted = backbone_builder(phi_tensor, psi_tensor, omega, angles, lengths)
self.assertTrue(torch.allclose(expected, predicted, rtol=1e-3))
lengths = torch.tensor(
[[backbone_builder.lengths[key] for key in ["C_N", "N_CA", "CA_C"]]],
dtype=torch.float32,
)
lengths = lengths.repeat(1, num_residues) # (1,3)
angles = torch.tensor(
[[backbone_builder.angles[key] for key in ["CA_C_N", "C_N_CA", "N_CA_C"]]],
dtype=torch.float32,
)
angles = angles.repeat(1, num_residues) # (1,3)
omega = backbone_builder.angles["omega"] * torch.ones(1, num_residues) # (1,1)
predicted = backbone_builder(phi_tensor, psi_tensor, omega, angles, lengths)
self.assertTrue(torch.allclose(expected, predicted, rtol=1e-3))
|