Spaces:
Sleeping
Sleeping
File size: 17,849 Bytes
869dc68 80298c4 869dc68 80298c4 0125f75 80298c4 869dc68 80298c4 869dc68 80298c4 869dc68 80298c4 869dc68 80298c4 869dc68 80298c4 869dc68 80298c4 869dc68 80298c4 869dc68 80298c4 869dc68 80298c4 869dc68 80298c4 869dc68 80298c4 869dc68 80298c4 869dc68 80298c4 869dc68 80298c4 869dc68 80298c4 869dc68 80298c4 869dc68 80298c4 869dc68 80298c4 869dc68 80298c4 869dc68 80298c4 869dc68 80298c4 869dc68 80298c4 869dc68 80298c4 869dc68 80298c4 869dc68 80298c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
from utils import *
st.title("Protein Design Driven by Chroma")
def composeSample(composed_cond,output,**kwargs):
protein, trajectories = chroma.sample(chain_lengths=[100],
conditioner=composed_cond,full_output=True,**kwargs)
render(protein, trajectories, output=output)
def composeConditionerSampleDemo(style,resn):
st.caption("Here, Our objective is to facilitate scientists in the unrestricted design of protein.")
output='./output/free_protein.pdb'
backboneArgs=selectBackboneArgs()
sideChainArgs=selectSideChainArgs()
parameters={**backboneArgs,**sideChainArgs}
composed_cond=conposeConditioner()
if st.sidebar.button("Run Code with Button"):
composeSample(composed_cond,output,**parameters)
display(output,style,resn)
def format_option(option):
option_explanations = {
'samples': 'The number of proteins to sample. Default is 1.',
'steps': 'The number of integration steps for the SDE. Default is 500.',
'chain_lengths': 'The lengths of the protein chains. Default is [100].',
'langevin_isothermal': 'Whether to use the isothermal version of the Langevin SDE. Default is False.',
'integrate_func': 'The name of the integration function to use. Default is “euler_maruyama”.',
'sde_func': 'The name of the SDE function to use. Defaults to “reverse_sde”.',
'langevin_factor': 'The factor that controls the strength of the Langevin noise. Default is 2.',
'inverse_temperature': 'The inverse temperature parameter for the SDE. Default is 10.',
'protein_init': 'The initial protein state. Defaults to None.',
'full_output': 'Whether to return the full outputs of the SDE integration, including the protein sample trajectory, the Xhat trajectory (the trajectory of the perceived denoising target) and the Xunc trajectory (the trajectory of the unconditional sample path). Default is False.',
'initialize_noise': 'Whether to initialize the noise for the SDE integration. Default is True.',
'tspan': 'The time span for the SDE integration. Default is (1.0, 0.001).',
'trajectory_length': 'The number of sampled steps in the trajectory output. Maximum is `steps`. Default 200.',
'design_ban_S': 'List of amino acid single-letter codes to ban, e.g. `["C"]` to ban cysteines.',
'design_method': 'Specifies which method to use for design. Can be `potts` and `autoregressive`. Default is `potts`.',
'design_selection': 'Clamp selection for conditioning on a subsequence during sequence sampling. Can be either a selection string or a binary design mask indicating positions to be sampled with shape `(num_batch, num_residues)` or position-specific valid amino acid choices with shape `(num_batch, num_residues, num_alphabet)`.',
'design_mask_sample': 'Binary design mask indicating which positions can be sampled with shape `(num_batch, num_residues)` or which amino acids can be sampled at which position with shape `(num_batch, num_residues, num_alphabet)`.',
'design_t': 'Diffusion time for models trained with diffusion augmentation of input structures. Setting `t=0` or `t=None` will condition the model to treat the structure as exact coordinates, while values of `t > 0` will condition the model to treat structures as though they were drawn from noise-augmented ensembles with that noise level. For robust design (default) we recommend `t=0.5`, or for literal design we recommend `t=0.0`. May be a float or a tensor of shape `(num_batch)`.',
'temperature_S': 'Temperature for sequence sampling. Default 0.01.',
'temperature_chi': 'Temperature for chi angle sampling. Default 1e-3.',
'top_p_S': 'Top-p sampling cutoff for autoregressive sampling.',
'regularization': 'Complexity regularization for sampling.',
'potts_mcmc_depth': 'Depth of sampling (number of steps per alphabet letter times number of sites) per cycle.',
'potts_proposal': 'MCMC proposal for Potts sampling. Currently implemented proposals are `dlmc` (default) for Discrete Langevin Monte Carlo [1] or `chromatic` for graph-colored block Gibbs sampling. [1] Sun et al. Discrete Langevin Sampler via Wasserstein Gradient Flow (2023).',
'potts_symmetry_order': 'Symmetric design. The first `(num_nodes // symmetry_order)` residues in the protein system will be variable, and all consecutively tiled sets of residues will be locked to these during decoding. Internally this is accomplished by summing the parameters Potts model under a symmetry constraint into this reduced sized system and then back imputing at the end. Currently only implemented for Potts models.',
'SubsequenceConditioner':' Chroma Conditioning module which, given a GraphDesign model and a subset ofresidues for which sequence information is known, can add gradients to samplingthat bias the samples towards increased `log p(sequence | structure)`',
'ShapeConditioner':'Volumetric potential for optimizing towards arbitrary geometries.',
'ProCapConditioner':'Natural language conditioning for protein backbones.This conditioner uses an underlying `ProteinCaption` model to determine thelikelihood of a noised structure corresponding to a given caption. Captionscan be specified as corresopnding to a particular chain of the structure, or to the entire complex. The encoded structures and captions are passed to themodel together, and the output loss that adjusts the energy is the masked cross-entropy over the caption tokens.',
'ProClassConditioner':'A Chroma Conditioning module which can specify chain level annotations for fold,function, and organism. The current labels that can be conditioned on are:',
'SubstructureConditioner':'A Chroma Conditioning module which can specifiy a subset of residues for which to condition on absolute atomic coordinates, see supplementary section M for more details.',
'SymmetryConditioner':' A symmetry conditioner applies a set of symmetry operations to a protein structure and enforces constraints on the resulting conformations. It can be used to model symmetric complexes or assemblies of proteins.',
'verbose':' bool = False',
}
return f"{option} - {option_explanations.get(option, 'No explanation available')}"
def selectBackboneArgs():
# backbone args
"""
# Backbone Args
samples: int = 1,
steps: int = 500,
chain_lengths: List[int] = [100],
tspan: List[float] = (1.0, 0.001),
protein_init: Protein = None,
conditioner: Optional[nn.Module] = None,
langevin_factor: float = 2,
langevin_isothermal: bool = False,
inverse_temperature: float = 10,
initialize_noise: bool = True,
integrate_func: Literal["euler_maruyama", "heun"] = "euler_maruyama",
sde_func: Literal["langevin", "reverse_sde", "ode"] = "reverse_sde",
trajectory_length: int = 200,
full_output: bool = False,
"""
options=st.sidebar.multiselect('Choose backbone parameters for sampling',
['samples','steps', 'chain_lengths','tspan', 'langevin_factor',
'langevin_isothermal','inverse_temperature','trajectory_length','protein_init',
'initialize_noise','integrate_func','sde_func'],
[],format_func=format_option)
container=st.sidebar.container(border=True)
parameters={}
if 'steps' in options:
parameters['steps']=container.number_input("steps:The number of integration steps for the SDE. Default is 500.",min_value=150,max_value=500,step=50,value=200,key='steps_sample')
if 'samples' in options:
parameters['samples']=container.number_input("samples:The number of proteins to sample. Default is 1",min_value=1,max_value=5,value=1,step=1,key='samples')
if 'chain_lengths' in options:
parameters['chain_lengths'] = container.number_input("chain_lengths:The lengths of the protein chains. Default is [100].",min_value=50,max_value=350, step=50,value=100,key='chain_lengths')
if 'tspan' in options:
parameters['tspan'] = container.slider('tspan:Select time span', min_value=0.001, max_value=1.0, value=(1.0, 0.001),step=0.001)
if 'langevin_factor' in options:
parameters['langevin_factor'] = container.number_input('langevin_factor:The factor that controls the strength of the Langevin noise. Default is 2.',min_value=1.0, max_value=5.0, value=2.0, step=1,
key='langevin_factor')
if 'langevin_isothermal' in options:
parameters['langevin_isothermal'] = container.checkbox("langevin_isothermal:Whether to use the isothermal version of the Langevin SDE. Default is False",value=False)
if 'inverse_temperature' in options:
parameters['inverse_temperature'] = container.number_input('inverse_temperature:The inverse temperature parameter for the SDE. Default is 10.',min_value=0, max_value=40, value=10, step=2,
key='inverse_temperature')
if 'initialize_noise' in options:
parameters['initialize_noise'] = container.checkbox('initialize_noise:Whether to initialize the noise for the SDE integration. Default is True.',value=True)
if 'integrate_func' in options:
parameters['integrate_func'] = container.selectbox('integrate_func:The name of the integration function to use. Default is “euler_maruyama”', ['euler_maruyama', 'heun'],
index=0)
if 'sde_func' in options:
parameters['sde_func'] = container.selectbox('sde_func:Select SDE Function', ['langevin', 'reverse_sde', 'ode'], index=0)
if 'trajectory_length' in options:
parameters['trajectory_length'] = container.number_input('trajectory_length:The number of sampled steps in the trajectory output. Maximum is `steps`. Default 200.',min_value=50, max_value=300, value=200, step=50,
key='trajectory_length')
if 'protein_init' in options:
pdb_id=st.sidebar.text_input("protein_init: Select pdb_id@param ['5SV5', '6QAZ', '3BDI'] {allow-input:true}",'3BDI',key='pdb_id')
protein = Protein(pdb_id, canonicalize=True, device=device)
parameters['protein_init'] = protein
return parameters
def selectSideChainArgs():
"""
# Sidechain Args
design_ban_S: Optional[List[str]] = None,
design_method: Literal["potts", "autoregressive"] = "potts",
design_selection: Optional[Union[str, torch.Tensor]] = None,
design_t: Optional[float] = 0.5,
temperature_S: float = 0.01,
temperature_chi: float = 1e-3,
top_p_S: Optional[float] = None,
regularization: Optional[str] = "LCP",
potts_mcmc_depth: int = 500,
potts_proposal: Literal["dlmc", "chromatic"] = "dlmc",
potts_symmetry_order: int = None,
verbose: bool = False,
"""
options = st.sidebar.multiselect('Choose side_chain parameters for sampling',
['design_ban_S', 'design_method', 'design_selection', 'design_t', 'temperature_S', 'temperature_chi',
'top_p_S', 'regularization', 'potts_mcmc_depth', 'potts_proposal', 'potts_symmetry_order', 'verbose'],
[], format_func=format_option, key='sideChainArgs')
container = st.sidebar.container(border=True)
parameters = {}
if 'design_ban_S' in options:
# Placeholder value, modify according to your requirements
parameters['design_ban_S'] = container.multiselect('design_ban_S:Select banned residues for design', ['Res1', 'Res2'], default=[])
if 'design_method' in options:
# Placeholder value, modify according to your requirements
parameters['design_method'] = container.radio('design_method:Select design method', ['potts', 'autoregressive'], index=0)
if 'design_selection' in options:
# Placeholder value, modify according to your requirements
parameters['design_selection'] = container.text_input('design_selection:Enter design selection', key='design_selection')
if 'design_t' in options:
parameters['design_t'] = container.number_input('design_t:Enter design temperature', min_value=0.0, value=0.5, key='design_t')
if 'temperature_S' in options:
parameters['temperature_S'] = container.number_input('temperature_S:Enter S temperature', value=0.01, key='temperature_S')
if 'temperature_chi' in options:
parameters['temperature_chi'] = container.number_input('temperature_chi:Enter chi temperature', value=1e-3, key='temperature_chi')
if 'top_p_S' in options:
# Placeholder value, modify according to your requirements
parameters['top_p_S'] = container.number_input('top_p_S:Enter top p for S', key='top_p_S')
if 'regularization' in options:
# Placeholder value, modify according to your requirements
parameters['regularization'] = container.selectbox('regularization:Select regularization method', ['LCP', 'Other'], index=0)
if 'potts_mcmc_depth' in options:
parameters['potts_mcmc_depth'] = container.number_input('potts_mcmc_depth:Enter MCMC depth for Potts', value=500, key='potts_mcmc_depth')
if 'potts_proposal' in options:
# Placeholder value, modify according to your requirements
parameters['potts_proposal'] = container.selectbox('potts_proposal:Select Potts proposal', ['dlmc', 'chromatic'], index=0)
if 'potts_symmetry_order' in options:
parameters['potts_symmetry_order'] = container.number_input('potts_symmetry_order:Enter symmetry order for Potts', key='potts_symmetry_order')
if 'verbose' in options:
parameters['verbose'] = container.checkbox('verbose:Enable Verbose', value=False)
return parameters
def conposeConditioner():
options = st.sidebar.multiselect(
'Choose conditioners for sampling',
['ProClassConditioner', 'SymmetryConditioner', 'SubsequenceConditioner',
'ProCapConditioner','SubstructureConditioner'],
[],format_func=format_option)
conditioners_list=[]
# 判断每个选项是否被选择
if 'ProClassConditioner' in options:
container=st.sidebar.container(border=True)
container.write('----ProClassConditioner is selected!------')
CATH=container.text_input('CATH:protein domain annotations from <https://www.cathdb.info/>. Annotation examples include 2, 2.40, 2.40.155.','3.40.50',key='CATH')
length=container.number_input('chain_length:The lengths of the protein chains.Default is 130,step=10.',min_value=50,max_value=250,step=10,value=130,key='length_fold')
proclass_model = graph_classifier.load_model("named:public", device=device)
conditioner = conditioners.ProClassConditioner("cath", CATH, model=proclass_model,device=device)
container.write('----ProClassConditioner is selected!------')
conditioners_list.append(conditioner)
if 'SymmetryConditioner' in options:
container=st.sidebar.container(border=True)
container.write('----SymmetryConditioner is selected!------')
symmetry_group=container.text_input('symmetry_group:@param ["C_2", "C_3", "C_4", "C_5", "C_6", "C_7", "C_8", "D_2", "D_3", "D_4", "D_5", "D_6", "D_7", "D_8", "T", "O", "I"]',value="C_3",key='symmetry_group_mss')
knbr=container.number_input("knbr:The number of neighbors to consider for each chain in the complex.Default is 3,step=1",min_value=1,max_value=10,step=1,value=3,key='knbr_mss')
c_symmetry = conditioners.SymmetryConditioner(G=symmetry_group, num_chain_neighbors=knbr)
container.write('----SymmetryConditioner is selected!------')
conditioners_list.append(c_symmetry)
if 'SubsequenceConditioner' in options:
pdb_id=st.sidebar.text_input("pdb_id@param ['5SV5', '6QAZ', '3BDI'] {allow-input:true}",'3BDI',key='pdb_id_mss')
protein = Protein(pdb_id, canonicalize=True, device=device)
# regenerate residues with X coord < 25 A and y coord < 25 A
substruct_conditioner = conditioners.SubstructureConditioner(
protein, backbone_model=chroma.backbone_network, selection="x < 25 and y < 25")
conditioners_list.append(substruct_conditioner)
if 'ProCapConditioner' in options:
CAPTION=st.sidebar.text_input('a caption:natural language prompts.',value='Crystal structure of SH2 domain',key='caption')
torch.manual_seed(0)
conditioner = conditioners.ProCapConditioner(CAPTION, -1)
conditioners_list.append(conditioner)
if 'SubstructureConditioner' in options:
pdb_id=st.sidebar.text_input("pdb_id@param ['5SV5', '6QAZ', '3BDI'] {allow-input:true}",'3BDI',key='pdb_id_mss')
protein = Protein(pdb_id, canonicalize=True, device=device)
# regenerate residues with X coord < 25 A and y coord < 25 A
substruct_conditioner = conditioners.SubstructureConditioner(
protein, backbone_model=chroma.backbone_network, selection="x < 25 and y < 25")
# if 'ScrewConditioner' in options:
# if 'InflateConditioner' in options:
# if 'RgConditioner' in options:
composed_cond = conditioners.ComposedConditioner(conditioners_list)
return composed_cond
style=st.sidebar.selectbox("Select Visualization Style:Can be 'stick', 'sphere', 'cross','cartoon'",('stick', 'sphere', 'cross','cartoon'),key='style')
resn=st.sidebar.selectbox("Select the Amino Acid Type to Display",
('*', 'ALA','ARG','ASN','ASP','CYS','GLN','GLU','GLY','HIS','ILE','LEU','LYS','MET','PHE','PRO','SER','THR','TRP','TYR','VAL'),key='resn')
composeConditionerSampleDemo(style,resn) |