Hukuna's picture
Upload 221 files
ce7bf5b verified
# Copyright Generate Biomedicines, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Layers for building graph representations of protein structure.
This module contains pytorch layers for representing protein structure as a
graph with node and edge features based on geometric information. The graph
features are differentiable with respect to input coordinates and can be used
for building protein scoring functions and optimizing protein geometries
natively in pytorch.
"""
import json
import os
import tempfile
from typing import Optional, Tuple
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from chroma.data.protein import Protein
from chroma.layers import graph
from chroma.layers.basic import FourierFeaturization, PositionalEncoding
from chroma.layers.structure import backbone, geometry, transforms
class ProteinFeatureGraph(nn.Module):
"""Graph featurizer for protein chains and complexes.
This module builds graph representations of protein structures that are
differentiable with respect to input coordinates and invariant with respect
to global rotations and translations. It takes as input a batch of
protein backbones (single chains or complexes), constructs a sparse graph
with residues as nodes, and featurizes the backbones in terms of node and
edge feature tensors.
The graph representation has 5 components:
1. Node features `node_h` representing residues in the protein.
2. Edge features `edge_h` representing relationships between residues.
3. Index map `edge_idx` representing graph topology.
4. Node mask `mask_i` that specifies which nodes are present.
5. Edge mask `mask_ij` that specifies which edges are present.
Criteria for constructing the graph currently include k-Nearest Neighbors or
distance-weighted edge sampling.
Node and edge features are specified as tuples to make it simpler to add
additional features and options while retaining backwards compatibility.
Specifically, each node or edge feature type can be added to the list either
in default configuration by a `'feature_name'` keyword, or in modified form
with a `('feature_name', feature_kwargs)` tuple.
Example usage:
graph = ProteinFeatureGraph(
graph_type='knn',
node_features=('dihedrals',),
edge_features=[
'chain_distance',
('dmat_6mer', {'D_function': 'log'})
]
)
node_h, edge_h, edge_idx, mask_i, mask_ij = graph(X, C)
This builds a kNN graph with dihedral angles as node
features and 6mer interatomic distance matrices (process) 6mers, where
the options for post-processing the 6mers are passed as a kwargs dict.
Args:
dim_nodes (int): Hidden dimension of node features.
dim_edges (int): Hidden dimension of edge features.
num_neighbors (int): Maximum degree of the graph.
graph_kwargs (dict): Arguments for graph construction. Default is None.
node_features (list): List of node feature strings and optional args.
Valid feature strings are `{internal_coords}`.
edge_features (list): List of node feature strings and optional args.
Valid feature strings are `{'distances_6mer','distances_chain'}`.
centered (boolean): Flag for enabling feature centering. If `True`,
the features will be will centered by subtracting an empirical mean
that was computed on the reference PDB `centered_pdb`. The statistics
are per-dimension of every node and edge feature. If they have not
previously been computed, the PDB will be downloaded, featurized,
and aggregated into local statistics that are cached in the repo.
centered_pdb (str): PDB code for the reference PDB to compute some
empirical feature statistics from.
Inputs:
X (torch.Tensor): Backbone coordinates with shape
`(num_batch, num_residues, 4, 3)`. The standard atom indices for
for the the third dimension are PDB order (`[N, CA, C, O]`).
C (LongTensor, optional): Chain map with shape
`(num_batch, num_residues)`. The chain map codes positions as `0`
when masked, poitive integers for chain indices, and negative
integers to represent missing residues of the corresponding
positive integers.
custom_D (Tensor, optional): Pre-computed custom distance map
for graph construction `(numb_batch,num_residues,num_residues)`.
If present, this will override the behavior of `graph_type` and used
as the distances for k-nearest neighbor graph construction.
custom_mask_2D (Tensor, optional): Custom 2D mask to apply to `custom_D`
with shape `(numb_batch,num_residues,num_residues)`.
Outputs:
node_h (torch.Tensor): Node features with shape
`(num_batch, num_residues, dim_nodes)`.
edge_h (torch.Tensor): Edge features with shape
`(num_batch, num_residues, num_neighbors, dim_edges)`.
edge_idx (torch.LongTensor): Edge indices for neighbors with shape
`(num_batch, num_residues, num_neighbors)`.
mask_i (torch.Tensor): Node mask with shape `(num_batch, num_residues)`.
mask_ij (torch.Tensor): Edge mask with shape
`(num_batch, num_nodes, num_neighbors)`.
"""
def __init__(
self,
dim_nodes: int,
dim_edges: int,
num_neighbors: int = 30,
graph_kwargs: dict = None,
node_features: tuple = ("internal_coords",),
edge_features: tuple = ("distances_6mer", "distances_chain"),
centered: bool = True,
centered_pdb: str = "2g3n",
):
super(ProteinFeatureGraph, self).__init__()
self.dim_nodes = dim_nodes
self.dim_edges = dim_edges
self.num_neighbors = num_neighbors
graph_kwargs = graph_kwargs if graph_kwargs is not None else {}
self.graph_builder = ProteinGraph(num_neighbors, **graph_kwargs)
self.node_features = node_features
self.edge_features = edge_features
def _init_layer(layer_dict, features):
# Parse option string
custom_args = not isinstance(features, str)
key = features[0] if custom_args else features
kwargs = features[1] if custom_args else {}
return layer_dict[key](**kwargs)
# Node feature compilation
node_dict = {
"internal_coords": NodeInternalCoords,
"cartesian_coords": NodeCartesianCoords,
"radii": NodeRadii,
}
self.node_layers = nn.ModuleList(
[_init_layer(node_dict, option) for option in self.node_features]
)
# Edge feature compilation
edge_dict = {
"distances_6mer": EdgeDistance6mer,
"distances_2mer": EdgeDistance2mer,
"orientations_2mer": EdgeOrientation2mer,
"position_2mer": EdgePositionalEncodings,
"distances_chain": EdgeDistanceChain,
"orientations_chain": EdgeOrientationChain,
"cartesian_coords": EdgeCartesianCoords,
"random_fourier_2mer": EdgeRandomFourierFeatures2mer,
}
self.edge_layers = nn.ModuleList(
[_init_layer(edge_dict, option) for option in self.edge_features]
)
# Load feature centering params as buffers
self.centered = centered
self.centered_pdb = centered_pdb.lower()
if self.centered:
self._load_centering_params(self.centered_pdb)
"""
Storing separate linear transformations for each layer, rather than concat + one
large linear, provides a more even weighting of the different input
features when used with standard weight initialization. It has the
specific effect actually re-weighting the weight variance based on
the number of input features for each feature type. Otherwise, the
relative importance of each feature goes with the number of feature
dimensions.
"""
self.node_linears = nn.ModuleList(
[nn.Linear(l.dim_out, self.dim_nodes) for l in self.node_layers]
)
self.edge_linears = nn.ModuleList(
[nn.Linear(l.dim_out, self.dim_edges) for l in self.edge_layers]
)
return
def forward(
self,
X: torch.Tensor,
C: torch.Tensor,
edge_idx: Optional[torch.LongTensor] = None,
mask_ij: torch.Tensor = None,
custom_D: Optional[torch.Tensor] = None,
custom_mask_2D: Optional[torch.Tensor] = None,
) -> Tuple[
torch.Tensor, torch.Tensor, torch.LongTensor, torch.Tensor, torch.Tensor
]:
mask_i = chain_map_to_mask(C)
if mask_ij is None or edge_idx is None:
edge_idx, mask_ij = self.graph_builder(
X, C, custom_D=custom_D, custom_mask_2D=custom_mask_2D
)
# Aggregate node layers
node_h = None
for i, layer in enumerate(self.node_layers):
node_h_l = layer(X, edge_idx, C)
if self.centered:
node_h_l = node_h_l - self.__getattr__(f"node_means_{i}")
node_h_l = self.node_linears[i](node_h_l)
node_h = node_h_l if node_h is None else node_h + node_h_l
if node_h is None:
node_h = torch.zeros(list(X.shape[:2]) + [self.dim_nodes], device=X.device)
# Aggregate edge layers
edge_h = None
for i, layer in enumerate(self.edge_layers):
edge_h_l = layer(X, edge_idx, C)
if self.centered:
edge_h_l = edge_h_l - self.__getattr__(f"edge_means_{i}")
edge_h_l = self.edge_linears[i](edge_h_l)
edge_h = edge_h_l if edge_h is None else edge_h + edge_h_l
if edge_h is None:
edge_h = torch.zeros(list(X.shape[:2]) + [self.dim_nodes], device=X.device)
# Apply masks
node_h = mask_i.unsqueeze(-1) * node_h
edge_h = mask_ij.unsqueeze(-1) * edge_h
return node_h, edge_h, edge_idx, mask_i, mask_ij
def _load_centering_params(self, reference_pdb: str):
basepath = os.path.join(tempfile.gettempdir(), "generate", "params")
if not os.path.exists(basepath):
os.makedirs(basepath)
filename = f"centering_{reference_pdb}.params"
self.centering_file = os.path.join(basepath, filename)
key = (
reference_pdb
+ ";"
+ json.dumps(self.node_features)
+ ";"
+ json.dumps(self.edge_features)
)
# Attempt to load saved centering params, otherwise compute and cache
json_line = None
with open(self.centering_file, "a+") as f:
prefix = key + "\t"
f.seek(0)
for line in f:
if line.startswith(prefix):
json_line = line.split(prefix)[1]
break
if json_line is not None:
print("Loaded from cache")
param_dictionary = json.loads(json_line)
else:
print(f"Computing reference stats for {reference_pdb}")
param_dictionary = self._reference_stats(reference_pdb)
json_line = json.dumps(param_dictionary)
f.write(prefix + "\t" + json_line + "\n")
for i, layer in enumerate(self.node_layers):
key = json.dumps(self.node_features[i])
tensor = torch.tensor(param_dictionary[key], dtype=torch.float32)
tensor = tensor.view(1, 1, -1)
self.register_buffer(f"node_means_{i}", tensor)
for i, layer in enumerate(self.edge_layers):
key = json.dumps(self.edge_features[i])
tensor = torch.tensor(param_dictionary[key], dtype=torch.float32)
tensor = tensor.view(1, 1, -1)
self.register_buffer(f"edge_means_{i}", tensor)
return
def _reference_stats(self, reference_pdb):
X, C, _ = Protein.from_PDBID(reference_pdb).to_XCS()
stats_dict = self._feature_stats(X, C)
return stats_dict
def _feature_stats(self, X, C, verbose=False, center=False):
mask_i = chain_map_to_mask(C)
edge_idx, mask_ij = self.graph_builder(X, C)
def _masked_stats(feature, mask, dims, verbose=False):
mask = mask.unsqueeze(-1)
feature = mask * feature
sum_mask = mask.sum()
mean = feature.sum(dims, keepdim=True) / sum_mask
var = torch.sum(mask * (feature - mean) ** 2, dims) / sum_mask
std = torch.sqrt(var)
mean = mean.view(-1)
std = std.view(-1)
if verbose:
frac = (100.0 * std**2 / (mean**2 + std**2)).type(torch.int32)
print(f"Fraction of raw variance: {frac}")
return mean, std
# Collect statistics
stats_dict = {}
# Aggregate node layers
for i, layer in enumerate(self.node_layers):
node_h = layer(X, edge_idx, C)
if center:
node_h = node_h - self.__getattr__(f"node_means_{i}")
mean, std = _masked_stats(node_h, mask_i, dims=[0, 1])
# Store in dictionary
key = json.dumps(self.node_features[i])
stats_dict[key] = mean.tolist()
# Aggregate node layers
for i, layer in enumerate(self.edge_layers):
edge_h = layer(X, edge_idx, C)
if center:
edge_h = edge_h - self.__getattr__(f"edge_means_{i}")
mean, std = _masked_stats(edge_h, mask_ij, dims=[0, 1, 2])
# Store in dictionary
key = json.dumps(self.edge_features[i])
stats_dict[key] = mean.tolist()
# Round to small number of decimal places
stats_dict = {k: [round(f, 3) for f in v] for k, v in stats_dict.items()}
return stats_dict
class ProteinGraph(nn.Module):
"""Build a graph topology given a protein backbone.
Args:
num_neighbors (int): Maximum number of neighbors in the graph.
distance_atom_type (int): Atom type for computing residue-residue
distances for graph construction. Negative values will specify
centroid across atom types. Default is `-1` (centroid).
cutoff (float): Cutoff distance for graph construction. If not None,
mask any edges further than this cutoff. Default is `None`.
mask_interfaces (Boolean): Restrict connections only to within chains,
excluding-between chain interactions. Default is `False`.
criterion (string, optional): Method used for building graph from distances.
Currently supported methods are `{knn, random_log, random_linear}`.
Default is `knn`.
random_alpha (float, optional): Length scale parameter for random graph
generation. Default is 3.
random_temperature (float, optional): Temperature parameter for
random graph sampling. Between 0 and 1 this value will interpolate
between a normal k-NN graph and sampling from the graph generation
process. Default is 1.0.
Inputs:
X (torch.Tensor): Backbone coordinates with shape
`(num_batch, num_residues, 4, 3)`.
C (torch.LongTensor): Chain map with shape
`(num_batch, num_residues)`.
custom_D (torch.Tensor, optional): Optional external distance map, for example
based on other distance metrics, with shape
`(num_batch, num_residues, num_residues)`.
custom_mask_2D (torch.Tensor, optional): Optional mask to apply to distances
before computing dissimilarities with shape
`(num_batch, num_residues, num_residues)`.
Outputs:
edge_idx (torch.LongTensor): Edge indices for neighbors with shape
`(num_batch, num_residues, num_neighbors)`.
mask_ij (torch.Tensor): Edge mask with shape
`(num_batch, num_nodes, num_neighbors)`.
"""
def __init__(
self,
num_neighbors: int = 30,
distance_atom_type: int = -1,
cutoff: Optional[float] = None,
mask_interfaces: bool = False,
criterion: str = "knn",
random_alpha: float = 3.0,
random_temperature: float = 1.0,
random_min_local: float = 20,
deterministic: bool = False,
deterministic_seed: int = 10,
):
super(ProteinGraph, self).__init__()
self.num_neighbors = num_neighbors
self.distance_atom_type = distance_atom_type
self.cutoff = cutoff
self.mask_interfaces = mask_interfaces
self.distances = geometry.Distances()
self.knn = kNN(k_neighbors=num_neighbors)
self.criterion = criterion
self.random_alpha = random_alpha
self.random_temperature = random_temperature
self.random_min_local = random_min_local
self.deterministic = deterministic
self.deterministic_seed = deterministic_seed
def _mask_distances(self, X, C, custom_D=None, custom_mask_2D=None):
mask_1D = chain_map_to_mask(C)
mask_2D = mask_1D.unsqueeze(2) * mask_1D.unsqueeze(1)
if self.distance_atom_type > 0:
X_atom = X[:, :, self.distance_atom_type, :]
else:
X_atom = X.mean(dim=2)
if custom_D is None:
D = self.distances(X_atom, dim=1)
else:
D = custom_D
if custom_mask_2D is None:
if self.mask_interfaces:
mask_2D = torch.eq(C.unsqueeze(1), C.unsqueeze(2))
mask_2D = mask_2D * mask_2D.type(torch.float32)
if self.cutoff is not None:
mask_cutoff = (D <= self.cutoff).type(torch.float32)
mask_2D = mask_cutoff * mask_2D
else:
mask_2D = custom_mask_2D
return D, mask_1D, mask_2D
def _perturb_distances(self, D):
# Replace distance by log-propensity
if self.criterion == "random_log":
logp_edge = -3 * torch.log(D)
elif self.criterion == "random_linear":
logp_edge = -D / self.random_alpha
elif self.criterion == "random_uniform":
logp_edge = D * 0
else:
return D
if not self.deterministic:
Z = torch.rand_like(D)
else:
with torch.random.fork_rng():
torch.random.manual_seed(self.deterministic_seed)
Z_shape = [1] + list(D.shape)[1:]
Z = torch.rand(Z_shape, device=D.device)
# Sample Gumbel noise
G = -torch.log(-torch.log(Z))
# Negate because are doing argmin instead of argmax
D_key = -(logp_edge / self.random_temperature + G)
return D_key
def forward(
self,
X: torch.Tensor,
C: torch.LongTensor,
custom_D: Optional[torch.Tensor] = None,
custom_mask_2D: Optional[torch.Tensor] = None,
) -> Tuple[torch.LongTensor, torch.Tensor]:
D, mask_1D, mask_2D = self._mask_distances(X, C, custom_D, custom_mask_2D)
if self.criterion != "knn":
if self.random_min_local > 0:
# Build first k-NN graph (local)
self.knn.k_neighbors = self.random_min_local
edge_idx_local, _, mask_ij_local = self.knn(D, mask_1D, mask_2D)
# Build mask exluding these first ones
mask_ij_remaining = 1.0 - mask_ij_local
mask_2D_remaining = torch.ones_like(mask_2D).scatter(
2, edge_idx_local, mask_ij_remaining
)
mask_2D = mask_2D * mask_2D_remaining
# Build second k-NN graph (random)
self.knn.k_neighbors = self.num_neighbors - self.random_min_local
D = self._perturb_distances(D)
edge_idx_random, _, mask_ij_random = self.knn(D, mask_1D, mask_2D)
edge_idx = torch.cat([edge_idx_local, edge_idx_random], 2)
mask_ij = torch.cat([mask_ij_local, mask_ij_random], 2)
# Handle small proteins
k = min(self.num_neighbors, D.shape[-1])
edge_idx = edge_idx[:, :, :k]
mask_ij = mask_ij[:, :, :k]
self.knn.k_neighbors = self.num_neighbors
return edge_idx.contiguous(), mask_ij.contiguous()
else:
D = self._perturb_distances(D)
edge_idx, edge_D, mask_ij = self.knn(D, mask_1D, mask_2D)
return edge_idx, mask_ij
class kNN(nn.Module):
"""Build a k-nearest neighbors graph given a dissimilarity matrix.
Args:
k_neighbors (int): Number of nearest neighbors to include as edges of
each node in the graph.
Inputs:
D (torch.Tensor): Dissimilarity matrix with shape
`(num_batch, num_nodes, num_nodes)`.
mask (torch.Tensor, optional): Node mask with shape `(num_batch, num_nodes)`.
mask_2D (torch.Tensor, optional): Edge mask with shape
`(num_batch, num_nodes, num_nodes)`.
Outputs:
edge_idx (torch.LongTensor): Edge indices with shape
`(num_batch, num_nodes, k)`. The slice `edge_idx[b,i,:]` contains
the indices `{j in N(i)}` of the k nearest neighbors of node `i`
in object `b`.
edge_D (torch.Tensor): Distances to each neighbor with shape
`(num_batch, num_nodes, k)`.
mask_ij (torch.Tensor): Edge mask with shape
`(num_batch, num_nodes, num_neighbors)`.
"""
def __init__(self, k_neighbors: int):
super(kNN, self).__init__()
self.k_neighbors = k_neighbors
def forward(
self,
D: torch.Tensor,
mask: Optional[torch.Tensor] = None,
mask_2D: Optional[torch.Tensor] = None,
) -> Tuple[torch.LongTensor, torch.Tensor, torch.Tensor]:
mask_full = None
if mask is not None:
mask_full = mask.unsqueeze(2) * mask.unsqueeze(1)
if mask_2D is not None:
mask_full = mask_2D if mask_full is None else mask_full * mask_2D
if mask_full is not None:
max_float = np.finfo(np.float32).max
D = mask_full * D + (1.0 - mask_full) * max_float
k = min(self.k_neighbors, D.shape[-1])
edge_D, edge_idx = torch.topk(D, int(k), dim=-1, largest=False)
mask_ij = None
if mask_full is not None:
mask_ij = graph.collect_edges(mask_full.unsqueeze(-1), edge_idx)
mask_ij = mask_ij.squeeze(-1)
return edge_idx, edge_D, mask_ij
class NodeInternalCoords(nn.Module):
"""Node features representing internal coordinates.
Args:
include_ideality (Boolean): Whether or not to include ideality features
along with direct geometry.
Attributes:
dim_out (int): Number of dimensions of the output features.
Inputs:
X (torch.Tensor): Backbone coordinates with shape
`(num_batch, num_residues, num_atom_types, 3)`.
edge_idx (torch.LongTensor): Graph indices for expansion with shape
`(num_batch, num_residues, num_neighbors)`.
C (torch.LongTensor): Chain map with shape
`(num_batch, num_residues)`.
Outputs:
node_h (torch.Tensor): Edge distance matrix features with shape
`(num_batch, num_residues, 20)`
"""
def __init__(
self,
include_ideality: bool = False,
distance_eps: float = 0.01,
log_lengths: bool = False,
):
super(NodeInternalCoords, self).__init__()
self.internal_coords = geometry.InternalCoords()
self.distance_eps = distance_eps
self.include_ideality = include_ideality
self.dim_out = 28 if self.include_ideality else 20
self.log_lengths = log_lengths
# Engh and Huber Ideal Geometry
ideal_lengths = [1.459, 1.525, 1.336, 1.229]
ideal_angles = [111.0, 117.2, 121.7, 120.0]
# Angles are output as complement in radians
ideal_angles = [np.pi - degrees * np.pi / 180.0 for degrees in ideal_angles]
if self.include_ideality:
ideal_lengths = torch.as_tensor(ideal_lengths).view([1, 1, -1])
self.register_buffer("ideal_lengths", ideal_lengths)
ideal_angles = torch.as_tensor(ideal_angles).view([1, 1, -1])
self.register_buffer("ideal_angles", ideal_angles)
def forward(
self,
X: torch.Tensor,
edge_idx: Optional[torch.LongTensor] = None,
C: Optional[torch.LongTensor] = None,
) -> torch.Tensor:
outs = self.internal_coords(X, C=C, return_masks=True)
dihedrals, angles, lengths = outs[:3]
mask_dihedrals, mask_angles, mask_lengths = outs[3:]
angle_stack = torch.cat([dihedrals, angles], dim=-1)
mask = chain_map_to_mask(C).unsqueeze(-1)
if self.log_lengths:
lengths = torch.log(lengths + self.distance_eps)
feature_list = [torch.cos(angle_stack), torch.sin(angle_stack), lengths]
# Ideality scores
if self.include_ideality:
# Mask angle features
mask_stack = torch.cat([mask_dihedrals, mask_angles], dim=-1)
feature_list[0] = mask_stack * feature_list[0]
feature_list[1] = mask_stack * feature_list[1]
_D_fun = lambda D: torch.log(D + self.distance_eps)
length_scores = (_D_fun(lengths) - _D_fun(self.ideal_lengths)) ** 2
angle_scores = torch.cos(angles - self.ideal_angles)
length_scores = mask_lengths * length_scores
angle_scores = mask_angles * angle_scores
feature_list = feature_list + [length_scores, angle_scores]
node_h = mask * torch.cat(feature_list, dim=-1)
return node_h
class NodeRadii(nn.Module):
"""Node features representing radii in the larger complex.
Args:
length_scale (float): Typical length scale for normalizing distances.
Attributes:
dim_out (int): Number of dimensions of the output features. (4)
Inputs:
X (torch.Tensor): Backbone coordinates with shape
`(num_batch, num_residues, num_atom_types, 3)`.
edge_idx (torch.LongTensor): Graph indices for expansion with shape
`(num_batch, num_residues, num_neighbors)`.
C (torch.LongTensor): Chain map with shape
`(num_batch, num_residues)`.
Outputs:
node_h (torch.Tensor): Node radii features with shape
`(num_batch, num_residues, 4)`
"""
def __init__(self, length_scale: float = 100.0):
super(NodeRadii, self).__init__()
self.dim_out = 4
self.length_scale = length_scale
def forward(
self,
X: torch.Tensor,
edge_idx: Optional[torch.LongTensor] = None,
C: Optional[torch.LongTensor] = None,
) -> torch.Tensor:
num_batch, num_residues = list(C.shape)
mask_i = (C > 0).float()
mask_i = mask_i.reshape([num_batch, num_residues, 1, 1]).expand(X.shape)
X_center = (mask_i * X).sum([1, 2], keepdim=True) / mask_i.sum(
[1, 2], keepdim=True
)
node_h = (mask_i * ((X - X_center) / self.length_scale) ** 2).sum(-1)
return node_h
class Edge6mers(nn.Module):
"""Build concatenation of 3mer coordinates on graph edges.
This layer assembles the pairwise concatenations of the coordinates
`{X_a for a in {i-1,i,i+1,j-1,j,j+1}}` along every edge in a graph. This can
be used for stitching of '6mer PairTERMs'.
Args:
require_contiguous (boolean, optional): Whether to enforce that
`{i-1,i,i+1}` and`{j-1,j,j+1}` are each made up of contiguous
residues from the same protein chain. Default is `True`.
Inputs:
X (torch.Tensor): Backbone coordinates with shape
`(num_batch, num_residues, num_atom_types, 3)`.
edge_idx (torch.LongTensor): Graph indices for expansion with shape
`(num_batch, num_residues, num_neighbors)`.
mask (Tensor, optional): Mask tensor with shape
`(num_batch, num_residues)`.
Outputs:
X_ij (torch.Tensor): Pairwise-concatenated 3mers with shape
`(num_batch, num_residues, num_neighbors, 2*num_atom_types, 3)`.
mask_ij (Tensor, if mask): Propagated mask tensor for edges with shape
`(num_batch, num_residues, num_neighbors)`.
"""
def __init__(self, require_contiguous: bool = True):
super(Edge6mers, self).__init__()
self.require_contiguous = require_contiguous
def forward(
self,
X: torch.Tensor,
edge_idx: torch.LongTensor,
C: Optional[torch.LongTensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
def _pair_expand(h, collate_fun):
# Build local neighborhoods [i-1, i, i+1]
h_left = F.pad(h[:, :-1, :], (0, 0, 1, 0), "constant", 0)
h_middle = h[:, :, :]
h_right = F.pad(h[:, 1:, :], (0, 0, 0, 1), "constant", 0)
h_i = collate_fun((h_left, h_middle, h_right))
# Concatenate [j-1, j, j+1] of neighbors
h_j = graph.collect_neighbors(h_i, edge_idx)
h_i_tile = h_i.unsqueeze(-2).expand(h_j.size())
h_ij = collate_fun((h_i_tile, h_j))
return h_ij
# Concatenation collation function for stitching
_cat = lambda hs: torch.cat(hs, dim=-1)
# Cumulative product collation function for mask propagation
def _mul(hs):
result = hs[0]
for h_i in hs[1:]:
result = result * h_i
return result
# Element-wise enforce values are greater than 0 and equal
def _nonzero_and_equal(hs):
entry_0 = hs[0]
result = (hs[0] > 0.0).type(torch.float32)
for h_i in hs[1:]:
result = result * (entry_0 == h_i).type(torch.float32)
return result
# Build local neighborhoods [i-1, i, i+1]
# X [batch, position, atom, xyz]
X_flat = X.reshape(X.size(0), X.size(1), -1)
X_ij = _pair_expand(X_flat, collate_fun=_cat)
X_ij = X_ij.view(list(X_ij.size())[:-1] + [-1, 3])
if C is not None:
if self.require_contiguous:
mask_ij = _pair_expand(C.unsqueeze(-1), collate_fun=_nonzero_and_equal)
else:
mask = chain_map_to_mask(C)
mask_ij = _pair_expand(mask.unsqueeze(-1), collate_fun=_mul)
return X_ij, mask_ij
else:
return X_ij
class Edge2mers(nn.Module):
"""Build concatenation of 1mer coordinates on graph edges.
Inputs:
X (torch.Tensor): Backbone coordinates with shape
`(num_batch, num_residues, num_atom_types, 3)`.
edge_idx (torch.LongTensor): Graph indices for expansion with shape
`(num_batch, num_residues, num_neighbors)`.
C (torch.LongTensor): Chain map with shape
`(num_batch, num_residues)`.
Outputs:
X_ij (torch.Tensor): Pairwise-concatenated 3mers with shape
`(num_batch, num_residues, num_neighbors, 2*num_atom_types, 3)`.
mask_ij (Tensor, if mask): Propagated mask tensor for edges with shape
`(num_batch, num_residues, num_neighbors)`.
"""
def __init__(self):
super(Edge2mers, self).__init__()
def forward(
self,
X: torch.Tensor,
edge_idx: torch.LongTensor,
C: Optional[torch.LongTensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
num_batch = edge_idx.shape[0]
num_residues = edge_idx.shape[1]
num_neighbors = edge_idx.shape[2]
num_atom_types = X.shape[2]
shape_X = [num_batch, num_residues, num_neighbors, num_atom_types * 3]
X_flat = X.reshape(num_batch, num_residues, -1)
X_i = X_flat.unsqueeze(2).expand(shape_X)
X_j = graph.collect_neighbors(X_flat, edge_idx).expand(shape_X)
X_ij = torch.cat([X_i, X_j], -1)
X_ij = X_ij.reshape(
num_batch, num_residues, num_neighbors, 2 * num_atom_types, 3
)
if C is not None:
mask_i = chain_map_to_mask(C).unsqueeze(-1)
mask_j = graph.collect_neighbors(mask_i, edge_idx)
mask_ij = mask_i.unsqueeze(2) * mask_j
return X_ij, mask_ij
else:
return X_ij
class EdgeDistance6mer(nn.Module):
"""Edge features based on chain distance matrices along each i,j 6mer.
Args:
feature (str, optional): Option string in {'log', 'inverse', 'raw'}
specifying how to process the raw distance features.
Defaults to 'log'.
distance_eps (float, optional): Smoothing parameter to prevent feature
explosion at small distances. Can be thought of as a 'minimum length
scale'. Defaults to 0.01.
require_contiguous (boolean, optional): Whether to enforce that each
3mer, `{i-1,i,i+1}` and`{j-1,j,j+1}`, is made up of contiguous
residues from the same protein chain. Default is `False` for
backwards compatibility, but `True` is recommended as best practice.
Attributes:
dim_out (int): Number of dimensions of the output features.
Inputs:
X (torch.Tensor): Backbone coordinates with shape
`(num_batch, num_residues, num_atom_types, 3)`.
edge_idx (torch.LongTensor): Graph indices for expansion with shape
`(num_batch, num_residues, num_neighbors)`.
C (torch.LongTensor): Chain map with shape
`(num_batch, num_residues)`.
Outputs:
edge_h (torch.Tensor): Edge distance matrix features with shape
`(num_batch, num_residues, num_neighbors, (6 * num_atom_types)**2)`
"""
def __init__(
self,
feature: str = "log",
distance_eps: float = 0.01,
num_atom_types: int = 4,
require_contiguous: bool = False,
):
super(EdgeDistance6mer, self).__init__()
self.feature = feature
self.distance_eps = distance_eps
self.num_atom_types = num_atom_types
self.layer_6mers = Edge6mers(require_contiguous=require_contiguous)
self.layer_distance = geometry.Distances()
# Public attribute
self.dim_out = (6 * num_atom_types) ** 2
self.feature = feature
feature_functions = {
"log": self.log_func,
"inverse": self.inverse_func,
"raw": self.raw_func,
}
self.feature_function = feature_functions[feature]
def forward(
self,
X: torch.Tensor,
edge_idx: torch.LongTensor,
C: Optional[torch.LongTensor] = None,
) -> torch.Tensor:
X_ij, mask_ij = self.layer_6mers(X, edge_idx, C=C)
D_ij = self.layer_distance(X_ij, dim=-2)
feature_ij = self.feature_function(D_ij)
feature_ij_flat = feature_ij.reshape(list(D_ij.shape[:3]) + [-1])
edge_h = mask_ij * feature_ij_flat
# debug_plot_edge6merdist(edge_h, feature=self.feature)
return edge_h
def log_func(self, D):
return torch.log(D + self.distance_eps)
def inverse_func(self, D):
return 1.0 / (D + self.distance_eps)
def raw_func(self, D):
return D
class EdgeDistance2mer(nn.Module):
"""Edge features based on chain distance matrices along each i,j 2mer.
Args:
feature (str, optional): Option string in {'log', 'inverse', 'raw'}
specifying how to process the raw distance features.
Defaults to 'log'.
distance_eps (float, optional): Smoothing parameter to prevent feature
explosion at small distances. Can be thought of as a 'minimum length
scale'. Defaults to 0.01.
Attributes:
dim_out (int): Number of dimensions of the output features.
Inputs:
X (torch.Tensor): Backbone coordinates with shape
`(num_batch, num_residues, num_atom_types, 3)`.
edge_idx (torch.LongTensor): Graph indices for expansion with shape
`(num_batch, num_residues, num_neighbors)`.
C (torch.LongTensor): Chain map with shape
`(num_batch, num_residues)`.
Outputs:
edge_h (torch.Tensor): Edge distance matrix features with shape
`(num_batch, num_residues, num_neighbors, (6 * num_atom_types)**2)`
"""
def __init__(
self,
features: str = "rbf+log",
distance_eps: float = 0.01,
num_atom_types: int = 4,
rbf_min: float = 0.0,
rbf_max: float = 20.0,
rbf_count: int = 20,
):
super(EdgeDistance2mer, self).__init__()
self.distance_eps = distance_eps
self.num_atom_types = num_atom_types
self.layer_2mers = Edge2mers()
self.layer_distance = geometry.Distances()
features = features.split("+")
if not isinstance(features, list):
features = [features]
self.features = features
if "rbf" in self.features:
self.rbf_function = RBFExpansion(rbf_min, rbf_max, rbf_count)
dim_base = (2 * num_atom_types) ** 2
feature_dims = {
"log": dim_base,
"inverse": dim_base,
"raw": dim_base,
"rbf": dim_base * rbf_count,
}
# Public attribute
self.dim_out = sum([feature_dims[d] for d in features])
self.feature_funcs = {
"log": lambda D: torch.log(D + self.distance_eps),
"inverse": lambda D: 1.0 / (D + self.distance_eps),
"raw": lambda D: D,
"rbf": lambda D: self.rbf_function(D),
}
def featurize(self, D):
h_list = []
for feature in self.features:
h = self.feature_funcs[feature](D)
h_list.append(h)
h = torch.cat(h_list, -1)
return h
def forward(
self,
X: torch.Tensor,
edge_idx: torch.LongTensor,
C: Optional[torch.LongTensor] = None,
) -> torch.Tensor:
X_ij, mask_ij = self.layer_2mers(X, edge_idx, C=C)
D_ij = self.layer_distance(X_ij, dim=-2)
shape_flat = list(D_ij.shape[:3]) + [-1]
D_ij = D_ij.reshape(shape_flat)
feature_ij = self.featurize(D_ij)
# DEBGUG
# _debug_plot_edges(edge_idx, feature_ij, unravel=True)
# exit(0)
edge_h = mask_ij * feature_ij
return edge_h
class EdgeOrientation2mer(nn.Module):
"""Edge features based on chain distance matrices along each i,j 2mer.
Args:
feature (str, optional): Option string in {'log', 'inverse', 'raw'}
specifying how to process the raw distance features.
Defaults to 'log'.
distance_eps (float, optional): Smoothing parameter to prevent feature
explosion at small distances. Can be thought of as a 'minimum length
scale'. Defaults to 0.01.
Attributes:
dim_out (int): Number of dimensions of the output features.
Inputs:
X (torch.Tensor): Backbone coordinates with shape
`(num_batch, num_residues, num_atom_types, 3)`.
edge_idx (torch.LongTensor): Graph indices for expansion with shape
`(num_batch, num_residues, num_neighbors)`.
C (torch.LongTensor): Chain map with shape
`(num_batch, num_residues)`.
Outputs:
edge_h (torch.Tensor): Edge distance matrix features with shape
`(num_batch, num_residues, num_neighbors, (6 * num_atom_types)**2)`
"""
def __init__(self, distance_eps: float = 0.1, num_atom_types: int = 4):
super(EdgeOrientation2mer, self).__init__()
self.distance_eps = distance_eps
self.num_atom_types = num_atom_types
self.layer_2mers = Edge2mers()
# Public attribute
self.dim_out = 3 * (2 * num_atom_types) ** 2
def _normed_vec(self, V):
# Unit vector from i to j
mag_sq = (V**2).sum(dim=-1, keepdim=True)
mag = torch.sqrt(mag_sq + self.distance_eps)
V_norm = V / mag
return V_norm
def forward(
self,
X: torch.Tensor,
edge_idx: torch.LongTensor,
C: Optional[torch.LongTensor] = None,
) -> torch.Tensor:
X_ij, mask_ij = self.layer_2mers(X, edge_idx, C=C)
# Build direction vectors
U_ij = self._normed_vec(X_ij.unsqueeze(3) - X_ij.unsqueeze(4))
# Build reference frame
X_N, X_CA, X_C, X_O = X.unbind(2)
_normed_cross = lambda U_a, U_b: self._normed_vec(torch.cross(U_a, U_b, dim=-1))
u_CA_N = self._normed_vec(X_N - X_CA)
u_CA_C = self._normed_vec(X_C - X_CA)
n_1 = u_CA_N
n_2 = _normed_cross(n_1, u_CA_C)
n_3 = _normed_cross(n_1, n_2)
R = torch.stack([n_1, n_2, n_3], -1)
U_ij = torch.einsum("nijabx,nixy->nijaby", U_ij, R)
# DEBUG:
# _debug_plot_edges(edge_idx, U_ij[:,:,:,1,5,:])
feature_ij = U_ij.view(list(edge_idx.shape)[:3] + [-1])
edge_h = mask_ij * feature_ij
return edge_h
class EdgeOrientationChain(nn.Module):
"""Edge features encoding the relative orientations of chains and chain atoms.
Args:
feature (str, optional): Option string in {'log', 'inverse', 'raw'}
specifying how to process the raw distance features.
Defaults to 'log'.
distance_eps (float, optional): Smoothing parameter to prevent feature
explosion at small distances. Can be thought of as a 'minimum length
scale'. Defaults to 0.1.
distance_eps (float, optional): Like `distance_eps`, but for orientation
calculations. Can be thought of as a 'minimum length scale'
Defaults to 1E-5.
Attributes:
dim_out (int): Number of dimensions of the output features.
Inputs:
X (torch.Tensor): Backbone coordinates with shape
`(num_batch, num_residues, num_atom_types, 3)`.
edge_idx (torch.LongTensor): Graph indices for expansion with shape
`(num_batch, num_residues, num_neighbors)`.
C (torch.LongTensor): Chain map with shape
`(num_batch, num_residues)`.
Outputs:
edge_h (torch.Tensor): Edge distance matrix features with shape
`(num_batch, num_residues, num_neighbors, 24)`
"""
def __init__(
self, feature: str = "log", distance_eps: float = 0.1, norm_eps: float = 1e-1
):
super(EdgeOrientationChain, self).__init__()
self.distance_eps = distance_eps
self.norm_eps = norm_eps
self.feature = feature
feature_functions = {
"log": lambda D: torch.log(D + self.distance_eps),
"inverse": lambda D: 1.0 / (D + self.distance_eps),
"raw": lambda D: D,
}
self.feature_function = feature_functions[feature]
# Public attribute
self.dim_out = 24
def _normed_vec(self, V):
# Unit vector from i to j
mag_sq = (V**2).sum(dim=-1, keepdim=True)
mag = torch.sqrt(mag_sq + self.norm_eps)
V_norm = V / mag
return V_norm
def _reference_frames(self, X):
# Build reference frames at each i
X_N, X_CA, X_C, X_O = X.unbind(2)
_normed_cross = lambda U_a, U_b: self._normed_vec(torch.cross(U_a, U_b, dim=-1))
u_CA_N = self._normed_vec(X_N - X_CA)
u_CA_C = self._normed_vec(X_C - X_CA)
n_1 = u_CA_N
n_2 = _normed_cross(n_1, u_CA_C)
n_3 = _normed_cross(n_1, n_2)
R = torch.stack([n_1, n_2, n_3], -1)
return R
def _reference_frames_chain(self, X, C):
# Build reference frames at each i
X_N, X_CA, X_C, X_O = X.unbind(2)
_normed_cross = lambda U_a, U_b: self._normed_vec(torch.cross(U_a, U_b, dim=-1))
u_CA_N = self._normed_vec(X_N - X_CA)
u_CA_C = self._normed_vec(X_C - X_CA)
u_CA_N_avg = self._chain_average(u_CA_N, C)
u_CA_C_avg = self._chain_average(u_CA_C, C)
n_1 = self._normed_vec(u_CA_N_avg)
n_2 = _normed_cross(n_1, self._normed_vec(u_CA_C_avg))
n_3 = _normed_cross(n_1, n_2)
R = torch.stack([n_1, n_2, n_3], -1)
return R
def _chain_average(self, node_h, C, eps=1e-5):
# Compute the per-chain averages of each feature within a chain, in place
num_batch, num_residues = list(C.shape)
num_chains = int(torch.max(C).item())
# Build a position == chain expanded mask (B,L,C)
C_expand = C.unsqueeze(-1).expand(-1, -1, num_chains)
idx = torch.arange(num_chains, device=C.device) + 1
idx_expand = idx.view(1, 1, -1)
mask_expand = (idx_expand == C_expand).type(torch.float32)
mask_expand = mask_expand.unsqueeze(-1)
# Masked reduction
node_h_expand = node_h.unsqueeze(2).expand(-1, -1, num_chains, -1)
node_h_chain_average = (mask_expand * node_h_expand).sum(1, keepdim=True) / (
(mask_expand).sum(1, keepdim=True) + eps
)
# Back-expand (B,C,K) => (B,L,3)
node_h_chain_average = (mask_expand * node_h_chain_average).sum(2)
return node_h_chain_average
def _R_neighbors(self, R_i, edge_idx):
num_batch, num_residues, num_k = list(edge_idx.shape)
R_flat_i = R_i.reshape(num_batch, num_residues, 9)
R_flat_j = graph.collect_neighbors(R_flat_i, edge_idx)
R_j = R_flat_j.reshape(num_batch, num_residues, num_k, 3, 3)
return R_j
def _transformation_features(self, X_i, X_j, R_i, R_j, edge_idx, edges=True):
# Distance and direction
dX = X_j - X_i.unsqueeze(2).contiguous()
L = torch.sqrt((dX**2).sum(-1, keepdim=True) + self.distance_eps)
u_ij = torch.einsum("niab,nija->nijb", R_i, dX / L)
# Relative orientation
R_relative_ij = torch.einsum("niab,nijac->nijbc", R_i, R_j)
q_ij = geometry.quaternions_from_rotations(R_relative_ij)
h = torch.cat((self.feature_function(L), u_ij, q_ij), dim=-1)
return h
def forward(
self,
X: torch.Tensor,
edge_idx: torch.LongTensor,
C: Optional[torch.LongTensor] = None,
) -> torch.Tensor:
num_batch, num_residues, num_k = list(edge_idx.shape)
# Compute local positions (C-alpha) and frames (B, L, 4)
R_i = self._reference_frames(X)
R_chain_i = self._reference_frames_chain(X, C)
# X chain
X_i = X[:, :, 1, :]
X_j = graph.collect_neighbors(X_i, edge_idx)
X_chain_i = self._chain_average(X_i, C)
X_chain_j = graph.collect_neighbors(X_chain_i, edge_idx)
# Relative chain features
R_chain_j = self._R_neighbors(R_chain_i, edge_idx)
R_j = self._R_neighbors(R_i, edge_idx)
h_chain_to_chain = self._transformation_features(
X_chain_i, X_chain_j, R_chain_i, R_chain_j, edge_idx
)
h_chain_to_node = self._transformation_features(
X_chain_i, X_j, R_chain_i, R_j, edge_idx
)
h_node_to_node = self._transformation_features(X_i, X_j, R_i, R_j, edge_idx)
edge_h = torch.cat((h_chain_to_chain, h_chain_to_node, h_node_to_node), -1)
# DEBUG:
# h = h_node_to_node
# _debug_plot_edges(edge_idx, h[:,:,:,0].unsqueeze(-1))
# _debug_plot_edges(edge_idx, h[:,:,:,1:4])
# _debug_plot_edges(edge_idx, h[:,:,:,5:9])
mask_i = chain_map_to_mask(C).unsqueeze(-1)
mask_j = graph.collect_neighbors(mask_i, edge_idx)
mask_ij = mask_i.unsqueeze(2) * mask_j
edge_h = mask_ij * edge_h
return edge_h
class EdgeDistanceChain(nn.Module):
"""Edge features based on distance matrices along each i,j 6mer.
These feature capture (signed) intra-chain distances as well as distinguish
between same vs. different chain.
Args:
Attributes:
dim_out (int): Number of dimensions of the output features.
Inputs:
X (torch.Tensor): Backbone coordinates with shape
`(num_batch, num_residues, num_atom_types, 3)`.
edge_idx (torch.LongTensor): Graph indices for expansion with shape
`(num_batch, num_residues, num_neighbors)`.
C (torch.LongTensor): Chain map with shape
`(num_batch, num_residues)`.
Outputs:
edge_h (torch.Tensor): Edge chain distance features with shape
`(num_batch, num_residues, num_neighbors, 2)`
"""
def __init__(self):
super(EdgeDistanceChain, self).__init__()
# Public attribute
self.dim_out = 3
def forward(
self,
X: torch.Tensor,
edge_idx: torch.LongTensor,
C: Optional[torch.LongTensor] = None,
) -> torch.Tensor:
# Is the edge intra-chain or inter-chain?
chain_i = C.unsqueeze(-1)
chain_j = graph.collect_neighbors(chain_i, edge_idx).squeeze(-1)
is_interface = torch.ne(chain_i, chain_j).type(torch.float32)
# If it is intra-chain, what is the chain distance?
residue_i = torch.arange(edge_idx.shape[1], device=X.device).view((1, -1, 1))
residue_j = edge_idx
D_signed = (residue_j - residue_i).type(torch.float32)
D_residue = torch.abs(D_signed)
D_intra = (1.0 - is_interface) * torch.log(D_residue + 1.0)
D_intra_sign = (1.0 - is_interface) * torch.sign(D_signed)
edge_h = torch.stack([is_interface, D_intra, D_intra_sign], dim=-1)
return edge_h
class EdgePositionalEncodings(nn.Module):
"""Edge features based on positional encodings of chain distance |i-j|.
Args:
dim_embeddings (int): Embedding dimension.
Attributes:
dim_out (int): Number of dimensions of the output features.
Inputs:
X (torch.Tensor): Backbone coordinates with shape
`(num_batch, num_residues, num_atom_types, 3)`.
edge_idx (torch.LongTensor): Graph indices for expansion with shape
`(num_batch, num_residues, num_neighbors)`.
C (torch.LongTensor): Chain map with shape
`(num_batch, num_residues)`.
Outputs:
edge_h (torch.Tensor): Edge chain distance features with shape
`(num_batch, num_residues, num_neighbors, 2)`
"""
def __init__(self, dim_embedding: int = 128, period_range: tuple = (1.0, 1000.0)):
super(EdgePositionalEncodings, self).__init__()
# Public attribute
self.dim_out = dim_embedding
self.encoding = PositionalEncoding(
d_model=dim_embedding, period_range=period_range
)
def forward(
self,
X: torch.Tensor,
edge_idx: torch.LongTensor,
C: Optional[torch.LongTensor] = None,
) -> torch.Tensor:
# Is the edge intra-chain or inter-chain?
chain_i = C.unsqueeze(-1)
chain_j = graph.collect_neighbors(chain_i, edge_idx).squeeze(-1)
mask_intrachain = torch.eq(chain_i, chain_j).float()
# If it is intra-chain, what is the chain distance?
residue_i = torch.arange(edge_idx.shape[1], device=X.device).view((1, -1, 1))
residue_j = edge_idx
D_signed = (residue_j - residue_i).float()
edge_h = mask_intrachain[..., None] * self.encoding(D_signed[..., None])
return edge_h
class EdgeRandomFourierFeatures2mer(nn.Module):
"""For edge-ij computes a random fourier projection of the SE3-invariant feature t_ji
pointing from i to j in the local frame of residue i, optionally including the projection
of the associated quaternion representation of R_ji the rotation from taking you from frame i to frame j
Features are decayed exponentially at rate alpha.
Args:
dim_embedding (int): dimension of embedding
trainable (bool): Whether to train the weight matrix of the fourier features
scale (float): The scale (standard deviation) to sample random weights from
use_quaternion (bool): Whether to embed the quaternion representation as well
Inputs:
X (torch.tensor): of size (batch, length, (4 or 14), 3)
edge_idx (torch.LongTensor): of size (batch, length, num_neighbors)
C (torch.tensor): of size (batch, length)
Outputs:
edge_h (torch.tensor): of size (batch, length, num_neighbors, dim_embedding)
"""
def __init__(
self,
dim_embedding: int = 128,
trainable: bool = False,
scale: float = 1.0,
use_quaternion: bool = False,
seed: int = 10,
):
super().__init__()
self._seed = seed
with torch.random.fork_rng():
torch.random.manual_seed(self._seed)
self.vector_f = FourierFeaturization(
3, dim_embedding, trainable=trainable, scale=scale
)
self.distance_f = FourierFeaturization(
64, dim_embedding, trainable=trainable, scale=scale
)
self.use_quaternion = use_quaternion
if self.use_quaternion:
self.quat_f = FourierFeaturization(
4, dim_embedding, trainable=trainable, scale=scale
)
self.layer_2mers = Edge2mers()
self.layer_distance = geometry.Distances()
self.frame_builder = backbone.FrameBuilder()
self.dim_out = dim_embedding
def forward(
self,
X: torch.Tensor,
edge_idx: torch.LongTensor,
C: Optional[torch.LongTensor] = None,
) -> torch.Tensor:
X_ij, mask_ij = self.layer_2mers(X, edge_idx, C=C)
D_ij = self.layer_distance(X_ij, dim=-2)
D_ij = D_ij.reshape(*D_ij.size()[:-2], -1)
R_i, t_i, _ = self.frame_builder.inverse(X, C)
R_j, t_j = transforms.collect_neighbor_transforms(R_i, t_i, edge_idx)
R_ji, t_ji = transforms.compose_inner_transforms(
R_j, t_j, R_i.unsqueeze(-3), t_i.unsqueeze(-2)
)
edge_h = self.vector_f(t_ji) + self.distance_f(D_ij)
if self.use_quaternion:
Q_ji = geometry.quaternions_from_rotations(R_ji)
edge_h = edge_h + self.quat_f(Q_ji)
return edge_h
class RBFExpansion(nn.Module):
def __init__(
self,
value_min: float,
value_max: float,
num_rbf: int,
std: Optional[float] = None,
):
super(RBFExpansion, self).__init__()
rbf_centers = torch.linspace(value_min, value_max, num_rbf)
self.register_buffer("rbf_centers", rbf_centers)
if std is None:
std = (rbf_centers[1] - rbf_centers[0]).item()
self.std = std
def forward(self, h: torch.Tensor) -> torch.Tensor:
shape = list(h.shape)
shape_ones = [1 for _ in range(len(shape))] + [-1]
rbf_centers = self.rbf_centers.view(shape_ones)
h = torch.exp(-(((h.unsqueeze(-1) - rbf_centers) / self.std) ** 2))
h = h.view(shape[:-1] + [-1])
return h
class NodeCartesianCoords(nn.Module):
"""Node features containing raw relative coordinates.
Warning: these features are not rotationally invariant.
Args:
scale_factor (float, optional): Scale factor to rescale raw coordinates
for neural network processing. Default is 0.3.
num_atom_types (int, optional): Number of atom types. Default is 4.
Attributes:
dim_out (int): Number of dimensions of the output features.
Inputs:
X (torch.Tensor): Backbone coordinates with shape
`(num_batch, num_residues, num_atom_types, 3)`.
edge_idx (torch.LongTensor): Graph indices for expansion with shape
`(num_batch, num_residues, num_neighbors)`.
C (torch.LongTensor): Chain map with shape
`(num_batch, num_residues)`.
Outputs:
edge_h (torch.Tensor): Node relative coordinates features with shape
`(num_batch, num_residues, 3 * (num_atom_types)**2)`
"""
def __init__(self, scale_factor: float = 0.3, num_atom_types: int = 4):
super(NodeCartesianCoords, self).__init__()
self.scale_factor = scale_factor
self.num_atom_types = num_atom_types
# Public attribute
self.dim_out = 3 * (num_atom_types**2)
def forward(
self,
X: torch.Tensor,
edge_idx: torch.LongTensor,
C: Optional[torch.LongTensor] = None,
) -> torch.Tensor:
num_batch, num_residues, num_neighbors = list(edge_idx.shape)
dX = X.unsqueeze(-2) - X.unsqueeze(-3)
node_h = self.scale_factor * dX.reshape([num_batch, num_residues, -1])
if C is not None:
mask_i = chain_map_to_mask(C)
node_h = mask_i.unsqueeze(-1) * node_h
return node_h
class EdgeCartesianCoords(nn.Module):
"""Edge features containing raw relative coordinates.
Warning: these features are not rotationally invariant.
Args:
scale_factor (float, optional): Scale factor to rescale raw coordinates
for neural network processing. Default is 0.1.
num_atom_types (int, optional): Number of atom types. Default is 4.
Attributes:
dim_out (int): Number of dimensions of the output features.
Inputs:
X (torch.Tensor): Backbone coordinates with shape
`(num_batch, num_residues, num_atom_types, 3)`.
edge_idx (torch.LongTensor): Graph indices for expansion with shape
`(num_batch, num_residues, num_neighbors)`.
C (torch.LongTensor): Chain map with shape
`(num_batch, num_residues)`.
Outputs:
edge_h (torch.Tensor): Edge relative coordinates features with shape
`(num_batch, num_residues, num_neighbors, 3 * (num_atom_types)**2)`
"""
def __init__(self, scale_factor: float = 0.1, num_atom_types: int = 4):
super(EdgeCartesianCoords, self).__init__()
self.scale_factor = scale_factor
self.num_atom_types = num_atom_types
# Public attribute
self.dim_out = 3 * (num_atom_types**2)
def forward(
self,
X: torch.Tensor,
edge_idx: torch.LongTensor,
C: Optional[torch.LongTensor] = None,
) -> torch.Tensor:
num_batch, num_residues, num_neighbors = list(edge_idx.shape)
# Collect coordiates and j
X_flat = X.reshape([num_batch, num_residues, -1])
X_j_flat = graph.collect_neighbors(X_flat, edge_idx)
X_j = X_j_flat.reshape(
[num_batch, num_residues, num_neighbors, 1, self.num_atom_types, 3]
)
X_i = X.reshape([num_batch, num_residues, 1, self.num_atom_types, 1, 3])
dX = X_j - X_i
edge_h = self.scale_factor * dX.reshape(
[num_batch, num_residues, num_neighbors, -1]
)
if C is not None:
mask_i = chain_map_to_mask(C)
mask_i_expand = mask_i.unsqueeze(-1)
mask_j = graph.collect_neighbors(mask_i_expand, edge_idx)
mask_ij = mask_j * mask_i_expand.unsqueeze(-1)
edge_h = mask_ij * edge_h
return edge_h
def chain_map_to_mask(C: torch.LongTensor) -> torch.Tensor:
"""Convert chain map into a mask.
Args:
C (torch.LongTensor): Chain map with shape
`(num_batch, num_residues)`.
Returns:
mask (Tensor, optional): Mask tensor with shape
`(num_batch, num_residues)`.
"""
return (C > 0).type(torch.float32)
def _cgo_cylinder(X1, X2, radius=0.5, rgb=(0.0, 0.0, 1.0)):
x1, y1, z1 = X1.data.numpy().flatten().tolist()
x2, y2, z2 = X2.data.numpy().flatten().tolist()
r1, g1, b1 = rgb
r2, g2, b2 = rgb
cgo_str = (
f"[ 9.0, {x1}, {y1}, {z1}, {x2}, {y2}, {z2}, {radius}, {r1}, {g1}, {b1}, {r2},"
f" {g2}, {b2} ]"
)
return cgo_str
def _cgo_sphere(X1, radius=1.0):
x1, y1, z1 = X1.data.numpy().flatten().tolist()
cgo_str = f"[ 7.0, {x1}, {y1}, {z1}, {radius}]"
return cgo_str
def _cgo_color(rgb=(0.0, 0.0, 1.0)):
r, g, b = rgb
cgo_str = f"[ 6.0, {r}, {g}, {b}]"
return cgo_str
if __name__ == "__main__":
_debug_plot_random_graphs(num_neighbors=60)