Hukuna's picture
Upload 221 files
ce7bf5b verified
from pathlib import Path
from typing import Tuple, Union
from unittest import SkipTest, TestCase
import numpy as np
import pytest
import torch
import torch.nn.functional as F
import chroma
from chroma.data import Protein
from chroma.layers.structure import backbone, rmsd
from chroma.layers.structure.diffusion import (
GaussianNoiseSchedule,
ReconstructionLosses,
)
class LegacyNoiseSchedule:
"""This is the legacy noise schedule code, we keep this as a reference to check
known values"""
def __init__(
self,
beta_min: float = 0.005,
beta_max: float = 100,
log_snr_range=(-7.0, 13.5),
kind: str = "log",
):
super().__init__()
self.beta_min = beta_min
self.beta_max = beta_max
self.log_snr_range = log_snr_range
self.kind = kind
def alpha(self, t: Union[float, torch.Tensor]) -> torch.Tensor:
"""Compute alpha given time"""
return torch.exp(self.log_alpha(t))
def beta(self, t: Union[float, torch.Tensor]) -> torch.Tensor:
"""Compute beta given time"""
if not isinstance(t, torch.Tensor):
t = torch.Tensor([t]).float()
b_min, b_max = self.beta_min, self.beta_max
if self.kind == "log":
beta = torch.exp(np.log(b_min) + t * np.log(b_max / b_min))
elif self.kind == "linear":
beta = b_min + t * (b_max - b_min)
elif self.kind == "log_snr":
l_range = self.log_snr_range
snr = torch.exp((1 - t) * l_range[1] + t * l_range[0])
beta = -(l_range[0] - l_range[1]) / (snr + 1)
else:
raise NotImplementedError(self.kind)
return beta
def log_alpha(self, t: Union[float, torch.Tensor]) -> torch.Tensor:
"""Compute log(alpha) given time"""
if not isinstance(t, torch.Tensor):
t = torch.Tensor([t]).float()
b_min, b_max = self.beta_min, self.beta_max
if self.kind == "log":
log_alpha = -(
torch.exp(np.log(b_min) + t * np.log(b_max / b_min)) - b_min
) / np.log(b_max / b_min)
elif self.kind == "linear":
log_alpha = -0.5 * t ** 2 * (b_max - b_min) - t * b_min
elif self.kind == "log_snr":
l_min, l_max = self.log_snr_range
log_snr = (1 - t) * l_max + t * l_min
log_alpha = log_snr - F.softplus(log_snr)
else:
raise NotImplementedError(self.kind)
return log_alpha
def log_alpha_inverse(self, log_alpha: Union[float, torch.Tensor]) -> torch.Tensor:
"""Compute time given log(alpha)"""
if not isinstance(log_alpha, torch.Tensor):
log_alpha = torch.Tensor([log_alpha]).float()
b_min, b_max = self.beta_min, self.beta_max
if self.kind == "log":
t = (log_alpha * np.log(b_min / b_max) + b_min).log()
t = (t - np.log(b_min)) / np.log(b_max / b_min)
elif self.kind == "linear":
# Applying the quadratic formula to
# 0 = log_alpha + t * b_min + t**2 * (b_max - b_min) / 2
# we select the positive root
# -b_min + sqrt(b_min**2 - 2 log_alpha (b_max - b_min))
# t = -----------------------------------------------------
# b_max - b_min
d = b_max - b_min
t = ((b_min ** 2 - 2 * d * log_alpha).sqrt() - b_min) / d
elif self.kind == "log_snr":
l_min, l_max = self.log_snr_range
log_snr = log_alpha - torch.log(-torch.expm1(log_alpha))
t = (log_snr - l_max) / (l_min - l_max)
else:
raise NotImplementedError(self.kind)
return t
def prob_alpha(self, alpha: Union[float, torch.Tensor]) -> torch.Tensor:
"""Compute probability density"""
if self.kind == "log_snr":
l_min, l_max = self.log_snr_range
p_alpha = ((1 - alpha) * (alpha) * (l_max - l_min)).reciprocal()
else:
raise NotImplementedError(self.kind)
return p_alpha
def SNR(self, t: Union[float, torch.Tensor]) -> torch.Tensor:
"""Compute SNR given time"""
alpha = self.alpha(t)
return alpha / (1 - alpha)
def SNR_derivative(self, t: Union[float, torch.Tensor]) -> torch.Tensor:
alpha = self.alpha(t)
beta = self.beta(t)
return -(alpha * beta) / ((1 - alpha) ** 2)
def SNR_inverse(self, SNR: Union[float, torch.Tensor]) -> torch.Tensor:
"""Compute time given SNR"""
if not isinstance(SNR, torch.Tensor):
SNR = torch.Tensor([SNR]).float()
log_alpha = SNR.reciprocal().log1p().neg()
t = self.log_alpha_inverse(log_alpha)
return t
@pytest.fixture(params=["brownian", "globular"])
def gaussian_noise(request):
from chroma.layers.structure.diffusion import DiffusionChainCov
covariance_model = request.param
return DiffusionChainCov(
covariance_model=covariance_model,
complex_scaling=False,
noise_schedule="log_snr",
)
@pytest.mark.parametrize("kind", ["log_snr"])
def test_noise_schedule_ssnr(kind):
"""for log_SNR scheudle SSNR(t) = alpht(t)^2"""
noise_schedule = GaussianNoiseSchedule(kind=kind, log_snr_range=(-12, 12))
t = torch.linspace(0, 1, 10)
assert torch.allclose(noise_schedule.SSNR(t), noise_schedule.alpha(t).pow(2))
@pytest.mark.parametrize("kind", ["ot_linear", "log_snr"])
def test_noise_schedule_ssnr_inverse(kind):
noise_schedule = GaussianNoiseSchedule(kind=kind, log_snr_range=(-12, 12))
t = torch.linspace(0, 1, 10)
SSNR = noise_schedule.SSNR(t)
t2 = noise_schedule.SSNR_inv(
SSNR
) # Note that inverse function map ssnr to t_tilde not t
assert torch.allclose(t2, t, atol=1e-2)
if kind == "ot_linear":
tsingular = torch.Tensor([0.500001, 0.50001])
t_tilde = noise_schedule.SSNR_inv(tsingular)
assert not torch.isnan(t_tilde).any()
@pytest.mark.parametrize("kind", ["ot_linear", "log_snr"])
def test_noise_schedule_snr_range(kind):
noise_schedule = GaussianNoiseSchedule(kind=kind, log_snr_range=(-20, 20))
assert torch.allclose(
noise_schedule.SNR(1.0).log(), torch.Tensor([-20.0]), atol=1e-2
)
assert torch.allclose(
noise_schedule.SNR(0.0).log(), torch.Tensor([20.0]), atol=1e-2
)
@pytest.mark.parametrize("kind", ["ot_linear", "log_snr"])
def test_noise_schedule_drift_coeff(kind):
noise_schedule = GaussianNoiseSchedule(kind=kind, log_snr_range=(-6, 6))
ts = torch.linspace(1e-2, 1 - 1e-2, 10)
t_map = noise_schedule.t_map(ts) # map time to the prescribed log_SNR range
if kind == "log_snr":
beta = noise_schedule.beta(ts)
# compute true beta_t
l_range = noise_schedule.log_snr_range
snr = torch.exp((1 - t_map) * l_range[1] + t_map * l_range[0])
beta_true = -(l_range[0] - l_range[1]) / (snr + 1)
assert torch.allclose(beta, beta_true, atol=1e-4)
if kind == "ot_linear":
beta = noise_schedule.beta(ts)
tlen = noise_schedule.t_max - noise_schedule.t_min
beta_true = 2.0 / (1.0 - t_map)
assert torch.allclose(beta, beta_true, atol=1e-4)
@pytest.mark.parametrize("kind", ["ot_linear", "log_snr"])
def test_noise_schedule_diffusion_coeff(kind):
noise_schedule = GaussianNoiseSchedule(kind=kind, log_snr_range=(-6, 6))
ts = torch.linspace(1e-2, 1 - 1e-2, 10)
t_map = noise_schedule.t_map(ts) # map time to the prescribed log_SNR range
if kind == "log_snr":
g = noise_schedule.g(ts)
# compute true beta_t
l_range = noise_schedule.log_snr_range
snr = torch.exp((1 - t_map) * l_range[1] + t_map * l_range[0])
g_true = (-(l_range[0] - l_range[1]) / (snr + 1)).sqrt()
assert torch.allclose(g, g_true, atol=1e-4)
if kind == "ot_linear":
g = noise_schedule.g(ts)
g_true = (2.0 * t_map / (1.0 - t_map)).sqrt()
assert torch.allclose(g, g_true, atol=1e-4)
def test_gaussian_noise_schedule():
from chroma.layers.structure.diffusion import GaussianNoiseSchedule
ot_noise = GaussianNoiseSchedule(kind="ot_linear")
log_snr_noise = GaussianNoiseSchedule(kind="log_snr")
noise = LegacyNoiseSchedule(kind="log_snr")
assert torch.allclose(
noise.alpha(torch.linspace(0, 1, 20)),
log_snr_noise.SSNR(torch.linspace(0, 1, 20)),
)
assert torch.allclose(
noise.alpha(torch.linspace(0, 1, 20)),
log_snr_noise.alpha(torch.linspace(0, 1, 20)).pow(2),
)
assert torch.allclose(
noise.beta(torch.linspace(0, 1, 20)).sqrt(),
log_snr_noise.g(torch.linspace(0, 1, 20)),
atol=5e-4,
)
assert torch.allclose(
noise.beta(torch.linspace(0, 1, 20)),
log_snr_noise.beta(torch.linspace(0, 1, 20)),
atol=5e-4,
)
# SNR_derivative from previous impelementation is susceptible from floating point error,
# commenting out this test.
# assert torch.allclose(
# noise.SNR_derivative(torch.linspace(0, 1, 20)),
# log_snr_noise.SNR_derivative(torch.linspace(0, 1, 20)),
# atol=5e-4,
# )
assert torch.allclose(ot_noise.log_SNR(1.0), torch.Tensor([-7.00]))
assert torch.allclose(ot_noise.log_SNR(0.0), torch.Tensor([13.50]))
assert torch.allclose(
log_snr_noise.prob_SSNR(torch.linspace(0.01, 0.99, 5)),
noise.prob_alpha(torch.linspace(0.01, 0.99, 5)),
)
@pytest.fixture(scope="session")
def XCS():
repo = Path(chroma.__file__).parent.parent
test_cif = str(Path(repo, "tests", "resources", "6wgl.cif"))
X, C, S = Protein(test_cif).to_XCS()
return X, C, S
@pytest.mark.parametrize("kind", ["log", "linear", "log_snr"])
def test_noise_schedule_log_alpha_inverse(kind):
noise_schedule = LegacyNoiseSchedule(kind=kind)
t = torch.tensor([0.05, 0.1, 0.2, 0.5, 0.8, 0.9, 0.95])
log_alpha = noise_schedule.log_alpha(t)
t2 = noise_schedule.log_alpha_inverse(log_alpha)
assert torch.allclose(t2, t, atol=1e-2)
@pytest.mark.parametrize("kind", ["log", "linear"])
def test_noise_schedule_SNR_inverse(kind):
noise_schedule = LegacyNoiseSchedule(kind=kind)
t = torch.tensor([0.05, 0.1, 0.2, 0.5, 0.8, 0.9, 0.95])
SNR = noise_schedule.SNR(t)
t2 = noise_schedule.SNR_inverse(SNR)
assert torch.allclose(t2, t, rtol=1e-4)
def debug_importance_weights_alpha(debug_plot=False):
"""Debug plot"""
noise_schedule = LegacyNoiseSchedule(kind="log_snr")
# Difficult to integrate numerically, but the below simulations check out
alpha = torch.Tensor(np.linspace(0.01, 0.99, 1000))
prob_alpha = noise_schedule.prob_alpha(alpha)
if debug_plot:
from matplotlib import pyplot as plt
T = torch.Tensor(np.linspace(1e-3, 1.0 - 1e-3, 1000))
alpha = noise_schedule.alpha(T)
prob_alpha = noise_schedule.prob_alpha(alpha)
plt.subplot(3, 1, 1)
plt.plot(T.data.numpy(), alpha.data.numpy())
plt.xlim([0, 1])
plt.xlabel("t")
plt.ylabel("alpha")
plt.subplot(3, 1, 2)
plt.hist(alpha.data.numpy(), bins=100, density=True)
plt.plot(alpha, prob_alpha.data.numpy())
plt.xlim([0, 1])
plt.ylim([0, 10])
plt.xlabel("alpha")
plt.ylabel("p(alpha)")
plt.subplot(3, 1, 3)
plt.plot(T.data.numpy(), (1.0 / prob_alpha).data.numpy())
plt.xlim([0, 1])
plt.xlabel("t")
plt.ylabel("importance weights")
plt.tight_layout()
plt.show()
return
def test_invertibility_X_Z(gaussian_noise, XCS):
"""Test the forward and inverse transforms for the Diffusion MVN."""
X_native, C, S = XCS
t = 0.5
# Sample something with noise
X = gaussian_noise(X_native, C, t=t)
alpha = gaussian_noise.noise_schedule.alpha(t=t)
sigma = gaussian_noise.noise_schedule.sigma(t=t)
# Cycle constraint
Z = gaussian_noise._X_to_Z(X, X_native, C, alpha, sigma)
X_cycle = gaussian_noise._Z_to_X(Z, X_native, C, alpha, sigma)
Z_cycle = gaussian_noise._X_to_Z(X_cycle, X_native, C, alpha, sigma)
X_cycle = gaussian_noise._Z_to_X(Z_cycle, X_native, C, alpha, sigma)
Z_cycle = gaussian_noise._X_to_Z(X_cycle, X_native, C, alpha, sigma)
X = backbone.impute_masked_X(X, C)
X_cycle = backbone.impute_masked_X(X_cycle, C)
assert torch.allclose(X, X_cycle, atol=1e-3)
assert torch.allclose(Z, Z_cycle, atol=1e-3)
@pytest.mark.parametrize("sde_func", ["reverse_sde", "ode"])
def test_sample_sde(gaussian_noise, XCS, sde_func):
X_native, C, S = XCS
def X0_func(X, C, t):
return X_native
out = gaussian_noise.sample_sde(
X0_func=X0_func, C=C, X_init=None, N=40, sde_func=sde_func
)
_, rmsd_val = rmsd.BackboneRMSD().align(out["X_sample"], X_native, C=C)
assert rmsd_val < 0.2
def test_elbo(gaussian_noise, XCS):
X_native, C, S = XCS
def X0_func(X, C, t):
return X_native
elbo = gaussian_noise.estimate_elbo(X0_func, X_native, C)
assert elbo > 5.0 # the likelihood of dirac delta approaches infinity
elbo = gaussian_noise.estimate_elbo(
X0_func, X_native + torch.randn_like(X_native), C
)
assert elbo < 0.0 # the likelihood of dirac delta approaches infinity
def test_logp(gaussian_noise, XCS):
X_native, C, S = XCS
# imputation
X_native = backbone.center_X(X_native, C)
X_native = backbone.impute_masked_X(X_native, C)
C = C
def X0_func(X, C, t):
return X_native
logp = gaussian_noise.estimate_logp(X0_func, X_native, C, N=50)
assert logp > 5.0 # the likelihood of dirac delta approaches infinity
logp = gaussian_noise.estimate_logp(
X0_func, X_native + torch.randn_like(X_native), C, N=50
)
assert logp < 0.0
def test_reconloss(gaussian_noise, XCS):
X_native, C, S = XCS
loss_func = ReconstructionLosses(diffusion=gaussian_noise)
loss_func(X_native, X_native, C, 0.5)
def test_score_function(gaussian_noise):
"""Test the forward and inverse transforms for the Diffusion MVN."""
t = 0.9
# Sample something with nois
from chroma.layers.structure.backbone import ProteinBackbone
length_backbones = [100]
X_native = ProteinBackbone(
num_batch=1, num_residues=sum(length_backbones), init_state="alpha",
)()
C = torch.cat(
[torch.full([rep], i + 1) for i, rep in enumerate(length_backbones)]
).expand(X_native.shape[0], -1)
S = torch.zeros_like(C)
X = gaussian_noise(X_native, C, t=t)
def X0_func(X, C, t):
return X_native
score_autodiff = gaussian_noise.score(X, X0_func, C, t=t)
score_direct = gaussian_noise._score_direct(X, X0_func, C, t=t)
assert torch.allclose(score_autodiff, score_direct, atol=1e-1)
# Sanity checks
if False:
from chroma.data import xcs
from chroma.layers.structure.diffusion import (
_debug_viz_gradients,
_debug_viz_XZC,
)
covariance_model = noise.base_gaussian.covariance_model
xcs.XCS_to_system(X, C, S).writeCIF("test_noise.cif", "")
_debug_viz_gradients(
f"test_{covariance_model}_score_autodiff.pml",
[X],
[score_autodiff],
C,
S,
name="score_autodiff",
color="red",
)
_debug_viz_gradients(
f"test_{covariance_model}_score_icov.pml",
[X],
[score_icov],
C,
S,
name="score_icov",
color="blue",
)
from matplotlib import pyplot as plt
plt.figure()
plt.subplot(3, 1, 1)
plt.plot((score_autodiff - score_icov).data.numpy().flatten())
plt.subplot(3, 1, 2)
plt.plot(score_icov.data.numpy().flatten())
plt.subplot(3, 1, 3)
plt.plot(C.data.numpy().flatten())
plt.savefig(f"test_{covariance_model}_scores.pdf")
# mask = (C > 0).float().reshape(C.shape[0], C.shape[1], 1, 1)
# score_decorrelate = mask * noise.base_gaussian.multiply_covariance(score_autodiff, C)
# _debug_viz_gradients("term_repulsion.pml", [X], [X_centered], C, S)
# _debug_viz_gradients("term_score_function.pml", [X], [score_decorrelate], C, S)
# X_impute = backbone.impute_masked_X(X, C)
# flow_gradient = noise.flow_gradient(score_autodiff, X_impute, C, t=t)
# _debug_viz_gradients("term_net.pml", [X], [flow_gradient], C, S)
# TODO: Diagnose and fix tiny boundary discrepancies
# at missing change edges which make this test fail
# assert torch.allclose(score_autodiff, score_icov, atol=1e-1)